1
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
2
|
Truong AD, Hong Y, Nguyen HT, Nguyen CT, Chu NT, Tran HTT, Dang HV, Lillehoj HS, Hong YH. Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. Br Poult Sci 2020; 62:68-80. [PMID: 32812773 DOI: 10.1080/00071668.2020.1812524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Leukocyte immunoglobulin-like receptor A5 (LILRA5) is a key molecule that regulates the immune system. However, the LILRA5 gene has not been characterised in avian species, including chickens. The present study aimed to identify and functionally characterise LILRA5 identified from two genetically disparate chicken lines, viz., Marek's disease (MD)-resistant (R) line 6.3 and MD-susceptible (S) line 7.2. 2. Multiple sequence alignment and phylogenetic analyses confirmed that the identity and similarity homologies of amino acids of LILRA5 in chicken lines 6.3 and 7.2 ranged between 93% and 93.7%, whereas those between chicken and mammals ranged between 20.9% and 43.7% and 21.1% to 43.9%, respectively. The newly cloned LILRA5 from chicken lines 6.3 and 7.2 revealed high conservation and a close relationship with other known mammalian LILRA5 proteins. 3. The results indicated that LILRA5 from chicken lines 6.3 and 7.2 was associated with phosphorylation of Src kinases and protein tyrosine phosphatase non-receptor type 11 (SHP2), which play a regulatory role in immune functions. Moreover, the results demonstrated that LILRA5 in these lines was associated with the activation of major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of the transporter associated with antigen processing. In addition, LILRA5 in both chicken lines activated and induced Janus kinase (JAK)-signal transducer and the activator of transcription (STAT), nuclear factor kappa B (NF-κB), phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2 signalling pathways; toll-like receptors; and Th1-, Th2-, and Th17- cytokines. 4. The data suggested that LILRA5 has innate immune receptors essential for macrophage immune response and provide novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- A D Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam.,Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - Y Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - H T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - C T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - N T Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H T T Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H V Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services , Beltsville, MD, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| |
Collapse
|
3
|
Guselnikov SV, Taranin AV. Unraveling the LRC Evolution in Mammals: IGSF1 and A1BG Provide the Keys. Genome Biol Evol 2019; 11:1586-1601. [PMID: 31106814 PMCID: PMC6557307 DOI: 10.1093/gbe/evz102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Receptors of the leukocyte receptor cluster (LRC) play a range of important functions in the human immune system. However, the evolution of the LRC remains poorly understood, even in m\ammals not to mention nonmammalian vertebrates. We conducted a comprehensive bioinformatics analysis of the LRC-related genes in the publicly available genomes of six species that represent eutherian, marsupial, and monotreme lineages of mammals. As a result, the LRCs of African elephant and armadillo were characterized, two new genes, IGSF1 and A1BG, were attributed to the LRC of eutherian mammals, the LRC gene content was substantially extended in the short-tailed opossum and Tasmanian devil and, finally, four LRC genes were identified in the platypus genome. These findings have for the first time provided a solid basis for inference of the LRC phylogeny across mammals. Our analysis suggests that the mammalian LRC family likely derived from two ancestral genes, which evolved in a lineage-specific manner by expansion/contraction, extensive exon shuffling, and sequence divergence. The striking structural and functional diversity of eutherian LRC molecules appears largely lineage specific. The only family member retained in all the three mammalian lineages is a collagen-binding receptor OSCAR. Strong sequence conservation of a transmembrane domain known to associate with FcRγ suggests an adaptive role of this domain subtype in the LRC evolution.
Collapse
Affiliation(s)
- Sergey V Guselnikov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| | - Alexander V Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| |
Collapse
|
4
|
Németh T, Futosi K, Szabó M, Aradi P, Saito T, Mócsai A, Jakus Z. Importance of Fc Receptor γ-Chain ITAM Tyrosines in Neutrophil Activation and in vivo Autoimmune Arthritis. Front Immunol 2019; 10:252. [PMID: 30858848 PMCID: PMC6397848 DOI: 10.3389/fimmu.2019.00252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Activating Fcγ receptors associated with Fc receptor γ-chain (FcRγ) are critical for mediating neutrophil effector functions in immune complex-mediated autoimmune diseases. FcRγ contains ITAM tyrosines and the in vivo role of these tyrosines has not been defined in neutrophils and arthritis. In this study, the in vivo functions of FcRγ ITAM tyrosines were characterized using wild type and ITAM tyrosine mutant (Y65F/Y76F) transgenic mice crossed to an FcRγ-deficient genetic background. FcRγ-deficient neutrophils showed undetectable cell surface expression of the activating Fcγ receptor IV, defective immune complex-induced superoxide production, degranulation and spreading. Although the re-expression of both the wild type and the ITAM tyrosine mutant (Y65F/Y76F) FcRγ could restore activating Fcγ receptor expression of FcRγ-deficient neutrophils, only the wild type transgenic form could mediate Fcγ receptor-dependent effector functions. In contrast, neutrophils carrying ITAM tyrosine mutant FcRγ were unable to produce superoxide, mediate degranulation and perform active spreading. In addition, our results confirmed the protection of FcRγ-deficient mice from autoimmune arthritis. Importantly, the presence of the wild type FcRγ transgene, in contrast to the ITAM tyrosine mutant transgene, partially reversed autoimmune arthritis development. The reversing effect of the wild type transgene was even more robust when animals carried the wild type transgene in a homozygous form. Collectively, FcRγ ITAM tyrosines play a critical role in the induction of neutrophil effector responses, the initiation and progression of an autoantibody-induced experimental arthritis in vivo, indicating a signaling, rather than just a receptor stabilizing function of the molecule.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Marcell Szabó
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Dissen E, Fossum S, Hoelsbrekken SE, Saether PC. NK cell receptors in rodents and cattle. Semin Immunol 2008; 20:369-75. [PMID: 18977671 DOI: 10.1016/j.smim.2008.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/04/2008] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells discriminate between normal syngeneic cells and infected, neoplastic or MHC-disparate allogeneic cells. The reactivity of NK cells appears to be regulated by a balance between activating receptors that recognize non-self or altered self, and inhibitory receptors recognizing normal, self-encoded MHC class I molecules. Subfamilies of NK receptors undergo rapid evolution, and appear to co-evolve with the MHC. We here review present views on the evolution and function of NK cell receptors, with an emphasis on knowledge gained in cattle and rodents.
Collapse
Affiliation(s)
- Erik Dissen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, PO Box 1105 Blindern, N-0317 Oslo, Norway.
| | | | | | | |
Collapse
|
6
|
Gibbings DJ, Ghetu AF, Dery R, Befus AD. Macrophage migration inhibitory factor has a MHC class I-like motif and function. Scand J Immunol 2008; 67:121-32. [PMID: 18201367 DOI: 10.1111/j.1365-3083.2007.02046.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is found in immune-privileged sites and inhibits cytotoxicity mediated by CD3-ve lymphokine-activated killer cells (LAK). The mechanism by which MIF attenuates LAK cytotoxicity is unknown. We provide evidence that MIF has a major histocompatibility complex (MHC) class I-like motif. A monoclonal antibody (OX18) that binds a conserved region of rat MHC class I proteins binds native MIF. Anti-MIF polyclonal antibodies bind MHC class I. Epitope mapping suggests OX18 binds a loop of MHC class I bound by several receptors for MHC class I. A sequence (PRPEG) within the proposed OX18-binding site on MHC class I exists with a short insertion in MIF. OX18 does not bind MIF that is denatured by SDS-PAGE. This suggests the OX18 epitope is dependent on higher order structure in MIF. Interestingly, MIF inhibits binding of tetramers of MHC class I (H2D(b)) to LAK cells, suggesting it may bind to receptors for MHC class I. MIF may be an example where small regions of MHC class I are used by endogenous and viral proteins to control cytotoxicity mediated by immune cells.
Collapse
Affiliation(s)
- D J Gibbings
- Department of Medicine, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
7
|
Jakus Z, Németh T, Verbeek JS, Mócsai A. Critical but overlapping role of FcgammaRIII and FcgammaRIV in activation of murine neutrophils by immobilized immune complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:618-29. [PMID: 18097064 PMCID: PMC2647079 DOI: 10.4049/jimmunol.180.1.618] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune complex-induced activation of neutrophils through cell surface FcRs plays a central role in the pathogenesis of autoimmune inflammatory diseases. These diseases are often modeled using genetically modified mice. However, in contrast to the number of studies on human cells, the identity of FcRs involved in immune complex activation of murine neutrophils is at present unknown. Furthermore, little is known about the cellular functions mediated by the recently identified murine FcgammaRIV. In this study, we tested the identity of FcRs involved in the activation of neutrophils by plate-bound immune complexes, using various knockout mouse strains, function-blocking mAbs, or the combination of both approaches. Activation of murine neutrophils by immobilized IgG immune complexes was abrogated in FcR gamma-chain-deficient cells, but not by the single or combined deficiency of the gamma-chain-associated FcgammaRI and FcgammaRIII, or by blocking Abs against either FcgammaRIII or FcgammaRIV alone. However, treatment of FcgammaRIII-deficient neutrophils with FcgammaRIV-blocking Abs or simultaneous blocking of FcgammaRIII and FcgammaRIV in wild-type cells completely inhibited the immune complex-induced cellular responses. In parallel studies, activation of human neutrophils by immobilized immune complexes was abrogated by blocking Abs against either FcgammaRIIA or FcgammaRIIIB alone. Taken together, neutrophil activation by immobilized immune complexes requires the murine FcgammaRIII/FcgammaRIV or the human FcgammaRIIA/FcgammaRIIIB molecules. Although both of the two human receptors are required for this response, the two murine receptors play overlapping, redundant roles. These results promote our understanding of autoimmune diseases and identify an IgG-dependent cellular function of FcgammaRIV.
Collapse
Affiliation(s)
- Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Stafford JL, Wilson M, Nayak D, Quiniou SM, Clem LW, Miller NW, Bengtén E. Identification and Characterization of a FcR Homolog in an Ectothermic Vertebrate, the Channel Catfish (Ictalurus punctatus). THE JOURNAL OF IMMUNOLOGY 2006; 177:2505-17. [PMID: 16888012 DOI: 10.4049/jimmunol.177.4.2505] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An FcR homolog (IpFcRI), representing the first such receptor from an ectothermic vertebrate, has been identified in the channel catfish (Ictalurus punctatus). Mining of the catfish expressed sequence tag databases using mammalian FcR sequences for CD16, CD32, and CD64 resulted in the identification of a teleost Ig-binding receptor. IpFcRI is encoded by a single-copy gene containing three Ig C2-like domains, but lacking a transmembrane segment and cytoplasmic tail. The encoded Ig domains of IpFcRI are phylogenetically and structurally related to mammalian FcR and the presence of a putative Fc-binding region appears to be conserved. IpFcRI-related genomic sequences are also present in both pufferfish and rainbow trout, indicating the likely presence of a soluble FcR in other fish species. Northern blot and qualitative PCR analyses demonstrated that IpFcRI is primarily expressed in IgM-negative leukocytes derived from the lymphoid kidney tissues and PBL. Significantly lower levels of IpFcRI expression were detected in catfish clonal leukocyte cell lines. Using the native leader, IpFcRI was secreted when transfected into insect cells and importantly the native IpFcRI glycoprotein was detected in catfish plasma using a polyclonal Ab. Recombinant IpFcRI binds catfish IgM as assessed by both coimmunoprecipation and cell transfection studies and it is presumed that it functions as a secreted FcR akin to the soluble FcR found in mammals. The identification of an FcR homolog in an ectothermic vertebrate is an important first step toward understanding the evolutionary history and functional importance of vertebrate Ig-binding receptors.
Collapse
Affiliation(s)
- James L Stafford
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Laun K, Coggill P, Palmer S, Sims S, Ning Z, Ragoussis J, Volpi E, Wilson N, Beck S, Ziegler A, Volz A. The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like Loci. PLoS Genet 2006; 2:e73. [PMID: 16699593 PMCID: PMC1458963 DOI: 10.1371/journal.pgen.0020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 03/28/2006] [Indexed: 11/23/2022] Open
Abstract
The innate and adaptive immune systems of vertebrates possess complementary, but intertwined functions within immune responses. Receptors of the mammalian innate immune system play an essential role in the detection of infected or transformed cells and are vital for the initiation and regulation of a full adaptive immune response. The genes for several of these receptors are clustered within the leukocyte receptor complex (LRC). The purpose of this study was to carry out a detailed analysis of the chicken (Gallus gallus domesticus) LRC. Bacterial artificial chromosomes containing genes related to mammalian leukocyte immunoglobulin-like receptors were identified in a chicken genomic library and shown to map to a single microchromosome. Sequencing revealed 103 chicken immunoglobulin-like receptor (CHIR) loci (22 inhibitory, 25 activating, 15 bifunctional, and 41 pseudogenes). A very complex splicing pattern was found using transcript analyses and seven hypervariable regions were detected in the external CHIR domains. Phylogenetic and genomic analysis showed that CHIR genes evolved mainly by block duplications from an ancestral inhibitory receptor locus, with transformation into activating receptors occurring more than once. Evolutionary selection pressure has led not only to an exceptional expansion of the CHIR cluster but also to a dramatic diversification of CHIR loci and haplotypes. This indicates that CHIRs have the potential to complement the adaptive immune system in fighting pathogens. The immune system developed to cope with a diverse array of pathogens, including infectious organisms. The detection of these pathogens by cells of the immune system is mediated by a large set of specific receptor proteins. Here the authors seek to understand how a particular subset of cell surface receptors of the domestic chicken, the chicken Ig-like receptors (CHIR), has evolved. They demonstrate that at least 103 such receptor loci are clustered on a single microchromosome and provide the first detailed analysis of this region. The sequences of the CHIR genes suggest the presence of inhibitory, activating, and bifunctional receptors, as well as numerous incomplete loci (pseudogenes) that appear to have evolved by duplications of an ancestral inhibitory receptor gene. Multiple regions of very high sequence variability were also identified within CHIR loci which, together with considerable expansion of the number of these genes, suggest that CHIR polypeptides are involved in critical functions in the immune system of the chicken.
Collapse
Affiliation(s)
- Katja Laun
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sophie Palmer
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sarah Sims
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zemin Ning
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Emanuela Volpi
- The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Natalie Wilson
- The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Stephan Beck
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andreas Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Berlin, Germany
- * To whom correspondence should be addressed. E-mail:
| | - Armin Volz
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Fodor S, Jakus Z, Mócsai A. ITAM-based signaling beyond the adaptive immune response. Immunol Lett 2005; 104:29-37. [PMID: 16332394 DOI: 10.1016/j.imlet.2005.11.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 10/29/2005] [Accepted: 11/08/2005] [Indexed: 01/26/2023]
Abstract
Classical immunoreceptors like lymphocyte antigen receptors and Fc-receptors (FcR) are central players of the adaptive immune response. These receptors utilize a common signal transduction mechanism, which relies on immunoreceptor tyrosine-based activation motifs (ITAMs) present in the receptor complex. Upon ligand binding to the receptors, tyrosines within the ITAM sequence are phosphorylated by Src-family kinases, leading to an SH2-domain mediated recruitment and activation of the Syk or the related ZAP-70 tyrosine kinase. These kinases then initiate further downstream signaling events. Here we review recent evidence indicating that components of this ITAM-based signaling machinery are also present in a number of non-lymphoid or even non-immune cell types and they participate in diverse biological functions beyond the adaptive immune response, including innate immune mechanisms, platelet activation, bone resorption or tumor development. These results suggest that the ITAM-based signaling paradigm has much wider implications than previously anticipated.
Collapse
Affiliation(s)
- Szabina Fodor
- Department of Computer Science, Corvinus University, Budapest, Hungary
| | | | | |
Collapse
|