1
|
Harrell AW, Reid K, Vahle J, Brouta F, Beilmann M, Young G, Beattie KA, Valentin JP, Shaid S, Brinck P. Endeavours made by trade associations, pharmaceutical companies and regulators in the replacement, reduction and refinement of animal experimentation in safety testing of pharmaceuticals. Regul Toxicol Pharmacol 2024; 152:105683. [PMID: 39117168 DOI: 10.1016/j.yrtph.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Following the European Commission decision to develop a roadmap to phase out animal testing and the signing of the US Modernisation Act, there is additional pressure on regulators and the pharmaceutical industry to abandon animal experimentation in safety testing. Often, endeavours already made by governments, regulators, trade associations, and industry to replace, reduce and refine animal experimentation (3Rs) are unnoticed. Herein, we review such endeavours to promote wider application and acceptance of 3Rs. ICH guidelines have stated 3Rs objectives and have enjoyed many successes driven by global consensus. Initiatives driven by US and European regulators such as the removal of the Abnormal Toxicity Test are neutralised by reticent regional regulators. Stream-lined testing requirements have been proposed for new modalities, oncology, impurity management and animal pharmacokinetics/metabolism. Use of virtual controls, value of the second toxicity species, information sharing and expectations for life-threatening diseases, human specific or well-characterised targets are currently being scrutinised. Despite much effort, progress falls short of the ambitious intent of decisionmakers. From a clinical safety and litigation perspective pharmaceutical companies and regulators are reluctant to step away from current paradigms unless replacement approaches are validated and globally accepted. Such consensus has historically been best achieved through ICH initiatives.
Collapse
Affiliation(s)
| | - Kirsty Reid
- European Federation of Pharmaceutical Industries and Associates, Leopold Plaza Building, Rue Du Trone 108, B-1050. Brussels, Belgium
| | - John Vahle
- Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, IN, USA
| | - Frederic Brouta
- UCB Biopharma SRL, Chemin Du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Graeme Young
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK. UK
| | - Kylie A Beattie
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK. UK
| | | | - Shajahan Shaid
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK. UK
| | | |
Collapse
|
2
|
Melepat B, Li T, Vinkler M. Natural selection directing molecular evolution in vertebrate viral sensors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105147. [PMID: 38325501 DOI: 10.1016/j.dci.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
Collapse
Affiliation(s)
- Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic.
| |
Collapse
|
3
|
Stejskalova K, Janova E, Splichalova P, Futas J, Oppelt J, Vodicka R, Horin P. Twelve toll-like receptor (TLR) genes in the family Equidae - comparative genomics, selection and evolution. Vet Res Commun 2024; 48:725-741. [PMID: 37874499 PMCID: PMC10998774 DOI: 10.1007/s11259-023-10245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Toll-like receptors (TLRs) represent an important part of the innate immune system. While human and murine TLRs have been intensively studied, little is known about TLRs in non-model species. The order Perissodactyla comprises a variety of free-living and domesticated species exposed to different pathogens in different habitats and is therefore suitable for analyzing the diversity and evolution of immunity-related genes. We analyzed TLR genes in the order Perissodactyla with a focus on the family Equidae. Twelve TLRs were identified by bioinformatic analyses of online genomic resources; their sequences were confirmed in equids by genomic DNA re-sequencing of a panel of nine species. The expression of TLR11 and TLR12 was confirmed in the domestic horse by cDNA sequencing. Phylogenetic reconstruction of the TLR gene family in Perissodactyla identified six sub-families. TLR4 clustered together with TLR5; the TLR1-6-10 subfamily showed a high degree of sequence identity. The average estimated evolutionary divergence of all twelve TLRs studied was 0.3% among the Equidae; the most divergent CDS were those of Equus caballus and Equus hemionus kulan (1.34%) in the TLR3, and Equus africanus somaliensis and Equus quagga antiquorum (2.1%) in the TLR1 protein. In each TLR gene, there were haplotypes shared between equid species, most extensively in TLR3 and TLR9 CDS, and TLR6 amino acid sequence. All twelve TLR genes were under strong negative overall selection. Signatures of diversifying selection in specific codon sites were detected in all TLRs except TLR8. Differences in the selection patterns between virus-sensing and non-viral TLRs were observed.
Collapse
Affiliation(s)
- K Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - E Janova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - P Splichalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
| | - J Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - J Oppelt
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
| | | | - P Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 61242, Czech Republic.
- RG Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic.
| |
Collapse
|
4
|
Fang YD, Liu JY, Xie F, Liu LP, Zeng WW, Wang WH. Antibody preparation and age-dependent distribution of TLR8 in Bactrian camel spleens. BMC Vet Res 2023; 19:276. [PMID: 38104080 PMCID: PMC10725000 DOI: 10.1186/s12917-023-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Toll-like receptor 8 (TLR8) can recognize specific pathogen-associated molecular patterns and exert multiple immunological functions through activation of signaling cascades. However, the precise distribution and age-related alterations of TLR8 in the spleens of Bactrian camels have not yet been investigated. This study aimed to prepare a rabbit anti-Bactrian camel TLR8 polyclonal antibody and elucidate the distribution of TLR8 in the spleens of Bactrian camels at different age groups. The methodology involved the construction of the pET-28a-TLR8 recombinant plasmid, followed by the expression of TLR8 recombinant protein via prokaryotic expression. Subsequently, rabbits were immunized with the purified protein to prepare the TLR8 polyclonal antibody. Finally, twelve Alashan Bactrian camels were categorized into four groups: young (1-2 years), pubertal (3-5 years), middle-aged (6-16 years) and old (17-20 years). These camels received intravenous sodium pentobarbital (20 mg/kg) anesthesia and were exsanguinated to collect spleen samples. Immunohistochemical techniques were employed to observe and analyze the distribution patterns and age-related changes of TLR8 in the spleen. RESULTS The results showed that the TLR8 recombinant protein was expressed in the form of inclusion body with a molecular weight of 52 kDa, and the optimal induction condition involved 0.3 mmol/L IPTG induction for 8 h. The prepared antibody yielded a titer of 1:32 000, and the antibody demonstrated specific binding to TLR8 recombinant protein. TLR8 positive cells exhibited a consistent distribution pattern in the spleen across different age groups of Bactrian camels, primarily scattered within the periarterial lymphatic sheath of the white pulp, marginal zone, and red pulp. The predominant cell type expressing TLR8 was macrophages, with expression also observed in neutrophils and dendritic cells. Statistical analysis revealed that there were significant differences in the distribution density of TLR8 positive cells among different spleen regions at the same age, with the red pulp, marginal zone, and white pulp showing a descending order (P<0.05). Age-related changes indicated that the distribution density in the marginal zone and red pulp exhibited a similar trend of initially increasing and subsequently decreasing from young to old camels. As camels age, there was a significant decrease in the distribution density across all spleen regions (P<0.05). CONCLUSIONS The results confirmed that this study successfully prepared a rabbit anti-Bactrian camel TLR8 polyclonal antibody with good specificity. TLR8 positive cells were predominantly located in the red pulp and marginal zone of the spleen, signifying their pivotal role in the innate immune response of the spleen. Aging was found to significantly reduce the density of TLR8 positive cells, while leaving their scattered distribution characteristics unaffected. These findings provide valuable support for further investigations into the immunomorphology and immunosenescence of the spleen in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Yu Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Guo S, Zeng M, Gao W, Li F, Wei X, Shi Q, Wen Z, Song Z. Toll-like Receptor 3 in the Hybrid Yellow Catfish ( Pelteobagrus fulvidraco ♀ × P. vachelli ♂): Protein Structure, Evolution and Immune Response to Exogenous Aeromonas hydrophila and Poly (I:C) Stimuli. Animals (Basel) 2023; 13:288. [PMID: 36670828 PMCID: PMC9854889 DOI: 10.3390/ani13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
As a major mediator of cellular response to viral infection in mammals, Toll-like receptor 3 (TLR3) was proved to respond to double-stranded RNA (dsRNA). However, the molecular mechanism by which TLR3 functions in the viral infection response in teleosts remains to be investigated. In this study, the Toll-like receptor 3 gene of the hybrid yellow catfish was identified and characterized by comparative genomics. Furthermore, multiple sequence alignment, genomic synteny and phylogenetic analysis suggested that the homologous TLR3 genes were unique to teleosts. Gene structure analysis showed that five exons and four introns were common components of TLR3s in the 12 examined species, and interestingly the third exon in teleosts was the same length of 194 bp. Genomic synteny analysis indicated that TLR3s were highly conserved in various teleosts, with similar organizations of gene arrangement. De novo predictions showed that TLR3s were horseshoe-shaped in multiple taxa except for avian (with a round-shaped structure). Phylogenetic topology showed that the evolution of TLR3 was consistent with the evolution of the studied species. Selection analysis showed that the evolution rates of TLR3 proteins were usually higher than those of TLR3-TIR domains, indicating that the latter were more conserved. Tissue distribution analysis showed that TLR3s were widely distributed in the 12 tested tissues, with the highest transcriptions in liver and intestine. In addition, the transcription levels of TLR3 were significantly increased in immune-related tissues after infection of exogenous Aeromonas hydrophila and poly (I:C). Molecular docking showed that TLR3 in teleosts forms a complex with poly (I:C). In summary, our present results suggest that TLR3 is a pattern recognition receptor (PRR) gene in the immune response to pathogen infections in hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenxue Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fan Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiuying Wei
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Donahue DA, Ballesteros C, Maruggi G, Glover C, Ringenberg MA, Marquis M, Ben Abdeljelil N, Ashraf A, Rodriguez LA, Stokes AH. Nonclinical Safety Assessment of Lipid Nanoparticle-and Emulsion-Based Self-Amplifying mRNA Vaccines in Rats. Int J Toxicol 2023; 42:37-49. [PMID: 36472205 DOI: 10.1177/10915818221138781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines containing mRNA with the capacity to self-amplify represent an alternative to the mRNA vaccines that came to prominence during the COVID-19 pandemic. To gain further insights on the safety profile of self-amplifying mRNA- (SAM-) vaccines, this preclinical toxicology study in rats evaluated the effect of (i) the type of delivery system (lipid nanoparticle [LNP] vs cationic nano-emulsion [CNE]); (ii) antigen-encoding sequence (rabies glycoprotein G vs SARS-CoV-2 Spike); and (iii) RNA amplification. Further analyses also evaluated gene expression in peripheral blood after vaccination, and the biodistribution of vaccine RNA. The SAM vaccines administered as two doses 2-weeks apart had acceptable safety profiles in rats, with respect to clinical signs, blood biochemistry, and macroscopic and microscopic pathology. A transient increase in ALT/AST ratio occurred only in female rats and in the absence of muscle and liver damage was dependent on RNA amplification and appeared related to the greater quantities of vaccine RNA in the muscle and livers of female rats vs male rats. The RNA and delivery-vehicle components, but not the nature of the antigen-coding sequence or the requirement for RNA amplification, affected aspects of the stimulation of innate-immune activity, which was consistent with the transient activation of type I and type II interferon signaling. The delivery vehicle, LNP, differed from CNE as vaccine RNA in CNE compositions appeared independently to stimulate innate-immune activity at 4 hours after vaccination. Our analysis supports further studies to assess whether these differences in innate-immune activity affect safety and efficacy of the SAM vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Asma Ashraf
- Charles River Laboratories, Laval, QC, Canada
| | | | | |
Collapse
|
7
|
TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics 2022; 74:475-485. [PMID: 35419618 DOI: 10.1007/s00251-022-01262-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLRs) are one of the most ancient and widely studied innate immune receptors responsible for host defense against invading pathogens. Among the known TLRs, TLR7 and TLR8 sense and recognize single-stranded (ss) RNAs with a dynamic evolutionary history. While TLR8 was lost in birds and duplicated in turtles and crocodiles, TLR7 is duplicated in some birds, but in other tetrapods, there is only one copy. In mammals, with the exception of lagomorphs, TLR7 and TLR8 are highly conserved. Here, we aim to study the evolution of TLR7 and TLR8 in mammals, with a special focus in the order Lagomorpha. By searching public sequence databases, conducting evolutionary analysis, and evaluating gene expression, we were able to confirm that TLR8 is absent in hares but widely expressed in the European rabbit. In contrast, TLR7 is absent in the European rabbit and quite divergent in hares. Our results suggest that, in lagomorphs, more in particular in leporids, TLR7 and TLR8 genes have evolved faster than in any other mammalian group. The long history of interaction with viruses and their location in highly dynamic telomeric regions might explain the pattern observed.
Collapse
|
8
|
A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Mol Ther 2022; 30:1897-1912. [PMID: 34990810 PMCID: PMC8721936 DOI: 10.1016/j.ymthe.2022.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 01/08/2023] Open
Abstract
RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).
Collapse
|
9
|
Müller C, Hrynkiewicz R, Bębnowska D, Maldonado J, Baratelli M, Köllner B, Niedźwiedzka-Rystwej P. Immunity against Lagovirus europaeus and the Impact of the Immunological Studies on Vaccination. Vaccines (Basel) 2021; 9:vaccines9030255. [PMID: 33805607 PMCID: PMC8002203 DOI: 10.3390/vaccines9030255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
In the early 1980s, a highly contagious viral hemorrhagic fever in rabbits (Oryctolagus cuniculus) emerged, causing a very high rate of mortality in these animals. Since the initial occurrence of the rabbit hemorrhagic disease virus (RHDV), several hundred million rabbits have died after infection. The emergence of genetically-different virus variants (RHDV GI.1 and GI.2) indicated the very high variability of RHDV. Moreover, with these variants, the host range broadened to hare species (Lepus). The circulation of RHDV genotypes displays different virulences and a limited induction of cross-protective immunity. Interestingly, juvenile rabbits (<9 weeks of age) with an immature immune system display a general resistance to RHDV GI.1, and a limited resistance to RHDV GI.2 strains, whereas less than 3% of adult rabbits survive an infection by either RHDV GI.1. or GI.2. Several not-yet fully understood phenomena characterize the RHD. A very low infection dose followed by an extremely rapid viral replication could be simplified to the induction of a disseminated intravascular coagulopathy (DIC), a severe loss of lymphocytes—especially T-cells—and death within 36 to 72 h post infection. On the other hand, in animals surviving the infection or after vaccination, very high titers of RHDV-neutralizing antibodies were induced. Several studies have been conducted in order to deepen the knowledge about the virus’ genetics, epidemiology, RHDV-induced pathology, and the anti-RHDV immune responses of rabbits in order to understand the phenomenon of the juvenile resistance to this virus. Moreover, several approaches have been used to produce efficient vaccines in order to prevent an infection with RHDV. In this review, we discuss the current knowledge about anti-RHDV resistance and immunity, RHDV vaccination, and the further need to establish rationally-based RHDV vaccines.
Collapse
Affiliation(s)
- Claudia Müller
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany;
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | | | | | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
- Correspondence: (B.K.); (P.N.-R.)
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
- Correspondence: (B.K.); (P.N.-R.)
| |
Collapse
|
10
|
Stokes A, Pion J, Binazon O, Laffont B, Bigras M, Dubois G, Blouin K, Young JK, Ringenberg MA, Ben Abdeljelil N, Haruna J, Rodriguez LA. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats. Regul Toxicol Pharmacol 2020; 113:104648. [PMID: 32240713 DOI: 10.1016/j.yrtph.2020.104648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
Abstract
The novel self-amplifying mRNA (SAM) technology for vaccines consists of an engineered replication-deficient alphavirus genome encoding an RNA-dependent RNA polymerase and the gene of the target antigen. To validate the concept, the rabies glycoprotein G was chosen as antigen. The delivery system for this vaccine was a cationic nanoemulsion. To characterize the local tolerance, potential systemic toxicity and biodistribution of this vaccine, two nonclinical studies were performed. In the repeated dose toxicity study, the SAM vaccine was administered intramuscularly to rats on four occasions at two-week intervals followed by a four-week recovery period. SAM-related changes consisted of a transient increase in neutrophil count, alpha-2-macroglobulin and fibrinogen levels. Transient aspartate aminotransferase and alanine aminotransferase increases were also noted in females only. At necropsy, observations related to the elicited inflammatory reaction, such as enlargement of the draining lymph nodes were observed that were almost fully reversible by the end of the recovery period. In the biodistribution study, rats received a single intramuscular injection of SAM vaccine and then were followed until Day 60. Rabies RNA was found at the injection sites and in the draining lymph nodes one day after administration, then generally decreased in these tissues but remained detectable up to Day 60. Rabies RNA was also transiently found in blood, lungs, spleen and liver. No microscopic changes in the brain and spinal cord were recorded. In conclusion, these results showed that the rabies SAM vaccine was well-tolerated by the animals and supported the clinical development program.
Collapse
Affiliation(s)
| | - Johanne Pion
- Citoxlab (A Charles River Company), Laval (Québec), Canada
| | | | - Benoit Laffont
- Citoxlab (A Charles River Company), Laval (Québec), Canada
| | - Maude Bigras
- Citoxlab (A Charles River Company), Laval (Québec), Canada
| | | | - Karine Blouin
- Citoxlab (A Charles River Company), Laval (Québec), Canada
| | | | | | | | - Julius Haruna
- Citoxlab (A Charles River Company), Laval (Québec), Canada
| | | |
Collapse
|
11
|
Pinheiro A, Águeda-Pinto A, Melo-Ferreira J, Neves F, Abrantes J, Esteves PJ. Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evol Biol 2019; 19:221. [PMID: 31791244 PMCID: PMC6889247 DOI: 10.1186/s12862-019-1547-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023] Open
Abstract
Background Toll-like receptors (TLRs) are the most widely studied innate immunity receptors responsible for recognition of invading pathogens. Among the TLR family, TLR5 is the only that senses and recognizes flagellin, the major protein of bacterial flagella. TLR5 has been reported to be under overall purifying selection in mammals, with a small proportion of codons under positive selection. However, the variation of substitution rates among major mammalian groups has been neglected. Here, we studied the evolution of TLR5 in mammals, comparing the substitution rates among groups. Results In this study we analysed the TLR5 substitution rates in Euungulata, Carnivora, Chiroptera, Primata, Rodentia and Lagomorpha, groups. For that, Tajima’s relative rate test, Bayesian inference of evolutionary rates and genetic distances were estimated with CODEML’s branch model and RELAX. The combined results showed that in the Lagomorpha, Rodentia, Carnivora and Chiroptera lineages TLR5 is evolving at a higher substitution rate. The RELAX analysis further suggested a significant relaxation of selective pressures for the Lagomorpha (K = 0.22, p < 0.01), Rodentia (K = 0.58, p < 0.01) and Chiroptera (K = 0.65, p < 0.01) lineages and for the Carnivora ancestral branches (K = 0.13, p < 0.01). Conclusions Our results show that the TLR5 substitution rate is not uniform among mammals. In fact, among the different mammal groups studied, the Lagomorpha, Rodentia, Carnivora and Chiroptera are evolving faster. This evolutionary pattern could be explained by 1) the acquisition of new functions of TLR5 in the groups with higher substitution rate, i.e. TLR5 neofunctionalization, 2) by the beginning of a TLR5 pseudogenization in these groups due to some redundancy between the TLRs genes, or 3) an arms race between TLR5 and species-specific parasites.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | - Ana Águeda-Pinto
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - José Melo-Ferreira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
12
|
Coetzer WG, Turner TR, Schmitt CA, Grobler JP. Adaptive genetic variation at three loci in South African vervet monkeys ( Chlorocebus pygerythrus) and the role of selection within primates. PeerJ 2018; 6:e4953. [PMID: 29888138 PMCID: PMC5991302 DOI: 10.7717/peerj.4953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Vervet monkeys (Chlorocebus pygerythrus) are one of the most widely distributed non-human primate species found in South Africa. They occur across all the South African provinces, inhabiting a large variety of habitats. These habitats vary sufficiently that it can be assumed that various factors such as pathogen diversity could influence populations in different ways. In turn, these factors could lead to varied levels of selection at specific fitness linked loci. The Toll-like receptor (TLR) gene family, which play an integral role in vertebrate innate immunity, is a group of fitness linked loci which has been the focus of much research. In this study, we assessed the level of genetic variation at partial sequences of two TLR loci (TLR4 and 7) and a reproductively linked gene, acrosin (ACR), across the different habitat types within the vervet monkey distribution range. Gene variation and selection estimates were also made among 11-21 primate species. Low levels of genetic variation for all three gene regions were observed within vervet monkeys, with only two polymorphic sites identified for TLR4, three sites for TLR7 and one site for ACR. TLR7 variation was positively correlated with high mean annual rainfall, which was linked to increased pathogen abundance. The observed genetic variation at TLR4 might have been influenced by numerous factors including pathogens and climatic conditions. The ACR exonic regions showed no variation in vervet monkeys, which could point to the occurrence of a selective sweep. The TLR4 and TLR7 results for the among primate analyses was mostly in line with previous studies, indicating a higher rate of evolution for TLR4. Within primates, ACR coding regions also showed signs of positive selection, which was congruent with previous reports on mammals. Important additional information to the already existing vervet monkey knowledge base was gained from this study, which can guide future research projects on this highly researched taxon as well as help conservation agencies with future management planning involving possible translocations of this species.
Collapse
Affiliation(s)
- Willem G Coetzer
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Trudy R Turner
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
13
|
Alan E, Liman N. Toll-like receptor expression patterns in the rat uterus during post partum involution. Reprod Fertil Dev 2017; 30:330-348. [PMID: 28701256 DOI: 10.1071/rd16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/12/2017] [Indexed: 11/23/2022] Open
Abstract
Toll-like receptors (TLRs) belong to a family of pathogen recognition receptors and play critical roles in detecting and responding to invading pathogens. TLR expression could be significant because, in the uterus, the reproductive tract is an important site of exposure to and infection by pathogens during the post partum involution period. To clarify the expression and localisation patterns of TLRs in the rat uterus on Days 1, 3, 5 and 10 post partum (PP1, PP3, PP5 and PP10 respectively), immunohistochemistry and western blotting were used to analyse TLR1-7, TLR9 and TLR10. The immunohistochemistry results indicated that TLR1-7, TLR9 and TLR10 were localised in both the cytoplasm and nuclei of luminal and glandular epithelium, stromal fibroblasts and myometrial cells in the rat uterus. In the luminal epithelium, TLR4-7 were also found in lateral membranes, whereas TLR10 was present in apical membranes. Western blot analysis revealed that the expression of TLR proteins increased with the number of days post partum, reaching a maximum on PP10, although levels did not differ significantly from those on PP1 (P>0.05). These findings confirm that TLR1-7, TLR9 and TLR10 are constitutively expressed in uterine cells and that localisation pattern of TLRs in the endometrium varies with structural changes in the uterus on different days of involution. These results suggest that TLRs may play a role in uterine repair and remodelling during physiological involution.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
14
|
Chai HH, Lim D, Suk JE, Choi BH, Cho YM. Design of anti-BVDV drug based on common chemical features, their interaction, and scaffolds of TLR8 agonists. Int J Biol Macromol 2016; 92:1095-1112. [DOI: 10.1016/j.ijbiomac.2016.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022]
|
15
|
Tarlinton RE, Alder L, Moreton J, Maboni G, Emes RD, Tötemeyer S. RNA expression of TLR10 in normal equine tissues. BMC Res Notes 2016; 9:353. [PMID: 27435589 PMCID: PMC4952062 DOI: 10.1186/s13104-016-2161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/13/2016] [Indexed: 11/14/2022] Open
Abstract
Background Toll like receptors are one of the major innate immune system pathogen recognition systems. There is little data on the expression of the TLR10 member of this family in the horse. Results This paper describes the genetic structure of the Equine TLR10 gene and its RNA expression in a range of horse tissues. It describes the phylogenetic analysis of the Equine TLR1,6,10,2 annotations in the horse genome, firmly identifying them in their corresponding gene clades compared to other species and firmly placing the horse gene with other TLR10 genes from odd-toed ungulates. Additional 3’ transcript extensions to that annotated for TLR10 in the horse genome have been identified by analysis of RNAseq data. RNA expression of the equine TLR10 gene was highest in peripheral blood mononucleocytes and lymphoid tissue (lymph nodes and spleen), however some expression was detected in all tissues tested (jejunum, caudal mesenteric lymph nodes, bronchial lymph node, spleen, lung, colon, kidney and liver). Additional data on RNAseq expression of all equine TLR genes (1–4 and 6–10) demonstrate higher expression of TLR4 than other equine TLRs in all tissues. Conclusion The equine TLR10 gene displays significant homology to other mammalian TLR10 genes and could be reasonably assumed to have similar fuctions. Its RNA level expression is higher in resting state PBMCs in horses than in other tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachael E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Lauren Alder
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Joanna Moreton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
16
|
Yu D, Wu Y, Xu L, Fan Y, Peng L, Xu M, Yao YG. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew (Tupaia belangeri chinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:127-138. [PMID: 26923770 DOI: 10.1016/j.dci.2016.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
In mammals, the toll-like receptors (TLRs) play a major role in initiating innate immune responses against pathogens. Comparison of the TLRs in different mammals may help in understanding the TLR-mediated responses and developing of animal models and efficient therapeutic measures for infectious diseases. The Chinese tree shrew (Tupaia belangeri chinensis), a small mammal with a close relationship to primates, is a viable experimental animal for studying viral and bacterial infections. In this study, we characterized the TLRs genes (tTLRs) in the Chinese tree shrew and identified 13 putative TLRs, which are orthologs of mammalian TLR1-TLR9 and TLR11-TLR13, and TLR10 was a pseudogene in tree shrew. Positive selection analyses using the Maximum likelihood (ML) method showed that tTLR8 and tTLR9 were under positive selection, which might be associated with the adaptation to the pathogen challenge. The mRNA expression levels of tTLRs presented an overall low and tissue-specific pattern, and were significantly upregulated upon Hepatitis C virus (HCV) infection. tTLR4 and tTLR9 underwent alternative splicing, which leads to different transcripts. Phylogenetic analysis and TLR structure prediction indicated that tTLRs were evolutionarily conserved, which might reflect an ancient mechanism and structure in the innate immune response system. Taken together, TLRs had both conserved and unique features in the Chinese tree shrew.
Collapse
Affiliation(s)
- Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
17
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
18
|
Teri Lear, PhD (1951-2016). Cytogenet Genome Res 2016; 149:237-240. [DOI: 10.1159/000450535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/19/2022] Open
|
19
|
Chen C, Zibiao H, Ming Z, Shiyi C, Ruixia L, Jie W, SongJia L. Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:341-348. [PMID: 24858029 DOI: 10.1016/j.dci.2014.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Toll-like receptors (TLRs) are vital for innate immunity, and they were expressed in various immune cells, tissues and organs. Moreover, TLRs specific expression pattern in different cells, tissue and organs have been confirmed to have correlation with the ability to resistance to pathogenic challenges. The present study aimed to determine the expression profiles and levels of TLR2, 3, 4, 5, 6, 8 and 10 in the lung, trachea, intestine, stomach, liver, spleen, uterine horn and body, cervix, ovary, oviduct and hypothalamus of female rabbits, and whether the expression level of TLR2 and 4 in the ovary, oviduct, uterine horn and body, and cervix were affected by lipopolyasaccharide (LPS). The tissues of the lung, trachea, intestine, stomach, liver, spleen, uterine horn and body, cervix, ovary, oviduct and hypothalamus were collected from four rabbits which didn't be treated as 0 h. 16 rabbits in LPS group were injected with LPS (according to 0.5mg/kg body weight) and 16 rabbits in control group were injected with saline (LPS carrier), hereafter the tissues of the uterine horn and body, cervix, ovary and oviduct from 32 rabbits were collected after 1.5, 3, 6, and 12h (n=4 each group) postinjection. The expression profiles of TLRs were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR), and expression level of TLRs were examined using quantitative real-time PCR (qRT-PCR). The results shown: TLR2, 3, 4, 5, 6, 8 and 10 were expressed in lung, trachea, intestine, stomach, liver, spleen, uterine horn and body, cervix, ovary, oviduct and hypothalamus of female rabbits, but their expression level had great difference in the same organs, and each TLR has different expression level in the different organs. After LPS-stimulation, the expression of TLR2 in the uterine body and horn was significantly higher than that in control group by 3h and 12h of postinjection (P<0.05) respectively. The expression of TLR4 in ovary and uterine body was significantly higher than that in control group by 3 and 12h of postinjection (P<0.05), and the expression of TLR4 in uterine body was greater than that in control by 3h postinjection (P<0.05). The results suggested LPS upregulated the expression of TLR2 and 4 in uterine body and horn, and the expression of TLR4 in ovary.
Collapse
Affiliation(s)
- Chen Chen
- College of Animal Science & Technology, Sichuan Agricultural University, Yaan 625014, China
| | - He Zibiao
- College of Animal Science & Technology, Sichuan Agricultural University, Yaan 625014, China
| | - Zhang Ming
- College of Animal Science & Technology, Sichuan Agricultural University, Yaan 625014, China.
| | - Chen Shiyi
- Institute of Animal Breeding and Genetic, Sichuan Agricultural University, Chengdu 6111130, China
| | - Lan Ruixia
- College of Animal Science & Technology, Sichuan Agricultural University, Yaan 625014, China
| | - Wang Jie
- College of Animal Science & Technology, Sichuan Agricultural University, Yaan 625014, China
| | - Lai SongJia
- Institute of Animal Breeding and Genetic, Sichuan Agricultural University, Chengdu 6111130, China
| |
Collapse
|
20
|
Lai CY, Liu YL, Yu GY, Maa MC, Leu TH, Xu C, Luo Y, Xiang R, Chuang TH. TLR7/8 agonists activate a mild immune response in rabbits through TLR8 but not TLR7. Vaccine 2014; 32:5593-9. [PMID: 25131730 DOI: 10.1016/j.vaccine.2014.07.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/18/2014] [Accepted: 07/31/2014] [Indexed: 01/04/2023]
Abstract
Toll-like receptors 7 (TLR7) and 8 (TLR8) recognize viral single-stranded RNA and small molecular weight agonists to activate anti-viral immune responses. TLR8s from different species have distinct ligand recognitions. For example, human TLR8 is responsive to ligand stimulation, but mouse and rat TLR8 are activated by small molecular weight agonists only in the presence of polyT-oligodeoxynucleotides. TLR7 and TLR8 have been reported to be absent and pseudogenized, respectively, in rabbit (Oryctolagus cuniculus). In this study, we detected the expression of rabbit (rab)TLR8 in immune-cell-associated tissues. Cell proliferation and cytokine expressions in rabbit splenocytes were induced by the TLR7/8 ligand but not by the TLR7 ligands, suggesting that rabTLR8 is functional but rabTLR7 is not. In rabbits, CL075, a TLR7/8 ligand, activated an antigen-specific antibody response, although one not as potent as aluminum salt or Freund's adjuvant. Nevertheless, CL075, alone or in combination with aluminum salt, generates fewer adverse effects than Freund's adjuvant at the injection sites. To further investigate the activation of rabTLR8, we cloned its cDNA. In cell-based assay, this rabTLR8 is activated by TLR7/8 ligand but not activated by TLR7 ligand. Upon stimulation the rabTLR8 had a lower activation compared to the activation of TLR8 from other species, except the mouse and rat TLR8s. Using different deletion and human-rabbit chimeric TLR8 expressing constructs, we showed that an extra peptide in the undefined region results in reduced activity of rabTLR8. These results provide a molecular basis for the mild activities of TLR7/8 ligands in rabbits, and suggest TLR7/8 agonists may provide safer immune stimuli in rabbits than in other non-rodent species.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ming-Chei Maa
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Tzeng-Horng Leu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Congfeng Xu
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Yunping Luo
- Department of Immunology, School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Rong Xiang
- School of Medicine, University of Nankai, Tianjin 300071, PR China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
21
|
Moore JN, Vandenplas ML. Is it the systemic inflammatory response syndrome or endotoxemia in horses with colic? Vet Clin North Am Equine Pract 2014; 30:337-51, vii-viii. [PMID: 25016495 DOI: 10.1016/j.cveq.2014.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Some veterinarians describe particularly sick horses or neonatal foals as being endotoxemic, whereas others refer to the same animals as having the systemic inflammatory response syndrome. This article reviews the basis for the use of each of these terms in equine practice, and highlights the mechanisms underlying the response of the horse's innate immune system to key structural components of the microorganisms that initiate these conditions, including how some of those responses differ from other species. Current approaches used to treat horses with these conditions are summarized, and caution advised on extrapolating findings from other species to the horse.
Collapse
Affiliation(s)
- James N Moore
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602, USA; Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602, USA.
| | - Michel L Vandenplas
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, Saint Kitts, West Indies
| |
Collapse
|
22
|
Dubey PK, Goyal S, Kumari N, Mishra SK, Arora R, Kataria RS. Genetic diversity within 5'upstream region of Toll-like receptor 8 gene reveals differentiation of riverine and swamp buffaloes. Meta Gene 2013; 1:24-32. [PMID: 25606371 PMCID: PMC4205041 DOI: 10.1016/j.mgene.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022] Open
Abstract
In this study the nucleotide diversity in the 5'untranslated region (UTR) of TLR8 gene in riverine as well as swamp buffaloes has been described. Analysis of the 5'UTR of TLR8 gene showed presence of two SNPs in this region, g.-139G>T and g.-128A>G. A PCR-RFLP assay designed for genotyping of g.-139G>T SNP across 667 samples from 2 buffalo populations revealed a striking difference in allele frequency distribution across the swamp and riverine buffaloes. The frequency of T allele was higher in swamp buffalo as compared to riverine buffalo, ranging from 0.71 to 1. The G allele on the other hand exhibited a higher frequency across all the Indian riverine buffalo breeds/populations. The principal component analysis revealed separate clusters for the riverine and swamp buffaloes, as expected; however, the riverine type Assamese buffalo population of eastern India formed a distinct cluster. Since most of the buffalo populations in the eastern region are swamp type, this demarcation may be related to the difference in immune response in riverine and swamp buffaloes. These preliminary results indicate that the genetic variation observed in 5'upstream region of TLR8 gene, which differentiates swamp and riverine buffalo, needs to be further explored for association with disease susceptibility in buffalo, an important dairy and meat animal of Southeast Asia.
Collapse
Affiliation(s)
- P K Dubey
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - S Goyal
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - N Kumari
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - S K Mishra
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R Arora
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R S Kataria
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| |
Collapse
|
23
|
Novák K. Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals. Vet Immunol Immunopathol 2013; 157:1-11. [PMID: 24268689 DOI: 10.1016/j.vetimm.2013.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 01/05/2023]
Abstract
The exploitation of the genetic factors affecting the health status of farm animals represents an alternative approach to controlling the diseases caused by microbial pathogens. The determination of innate immunity based on the genotype of the germplasm cells is a constraint for specificity but becomes an advantage in breeding schemes. The structural deviations among Toll-like receptors (TLRs), as the most frequently studied innate immunity components, have been documented at all levels, i.e., interspecific, inter- and intravarietal, in the main farm species. The current computational methods facilitate the prediction of the functional consequences of the observed mutations. Subsequently, these predictions can be verified through immunological responsiveness and population-wide association studies. The frequency and haplotype grouping of individual polymorphisms are used to track the origin and selection coefficient as independent indicators of functional changes. The Toll-like receptor variants associated with mastitis and mycobacterial infection have been identified in cattle, consequently, the targeting of these proteins in breeding could contribute to disease control. The range of infections affected by TLR polymorphisms suggests that the improvement of innate resistance is feasible in more species. Thus, the traditional breeds and wild populations should be regarded as the resources of genetic variability accessible for these purposes.
Collapse
Affiliation(s)
- Karel Novák
- Department of Molecular Genetics, Institute of Animal Science, Prague-Uhříněves, Czech Republic.
| |
Collapse
|
24
|
Abrantes J, Areal H, Esteves PJ. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genet 2013; 14:73. [PMID: 23964588 PMCID: PMC3844586 DOI: 10.1186/1471-2156-14-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/12/2013] [Indexed: 11/14/2022] Open
Abstract
Background Toll-like receptors (TLRs) belong to the innate immune system and are a major class of pattern recognition receptors representing the first line of the innate immune response. The TLR molecule is structurally composed by an ectodomain that contains leucine rich repeats (LRRs) that interact with pathogen associated molecular patterns (PAMPs), a transmembrane domain and a conserved cytoplasmic domain designated TIR (Toll-IL1 receptor) that is responsible for the intracellular signaling. TLR3 has been associated with the direct recognition of double-stranded viral RNA resulting from viral replication, while TLR7 and TLR8 target single-stranded viral RNA. In the European rabbit (Oryctolagus cuniculus), TLR7 and TLR8 were reported to be absent and pseudogenised, respectively, making TLR3 the only available TLR for the recognition of viral RNA. Thus, the levels of diversity of TLR3 were evaluated in the European rabbit by analysing different genetic backgrounds and exposure to pathogen pressures. Results We detected 41 single nucleotide polymorphisms (SNPs) in the coding sequence of TLR3. The highest diversity was observed in the wild populations of Iberian Peninsula, between 22–33 polymorphic positions. In the French population, 18 SNPs were observed and only 4 polymorphic positions were detected in the domestic breeds. 14 non-synonymous substitutions were observed, most of them in the LRR molecules. The remaining were scattered across the transmembrane and TIR domains. Conclusion The study of TLR3 in European rabbit populations might be relevant to understand the interplay between RNA viruses and innate immunity. Wild rabbit populations presented more diversity than domestic breeds and other mammals previously studied. This might be linked to the absence of population bottlenecks during their evolution and to the almost inexistence of man-mediated selection. The observed variability might have also been potentiated by the contact of the wild populations with various pathogens. The study of these patterns of variability might reveal scenarios of host-pathogen interaction and identify TLR3 polymorphisms’ that arose due to viral pathogens affecting wild populations.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, InBio, Laboratorio Associado, Campus Agrario de Vairao, Rua Padre Armando Quintas, number, 7, Vairao 4485-661, Portugal.
| | | | | |
Collapse
|
25
|
Goyal S, Dubey PK, Kumari N, Niranjan SK, Kathiravan P, Mishra BP, Mahajan R, Kataria RS. Caprine Toll-like receptor 8 gene sequence characterization reveals close relationships among ruminant species. Int J Immunogenet 2013; 41:81-9. [PMID: 23829591 DOI: 10.1111/iji.12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023]
Abstract
TLR8 mediates antiviral immunity by recognizing ssRNA viruses and triggers potent antiviral and antitumor immune responses. In this study, approximately 3.5 Kb nucleotide sequence data of caprine TLR8 gene were generated from one sample each of twelve different Indian goat breeds belonging to different geographical regions. Cloning and characterization of cDNA synthesized from RNA purified from goat spleen revealed TLR8 ORF to be of 3102 nucleotides long coding for 1033 amino acids similar to other ruminant species, that is sheep, buffalo and cattle. The sequence analysis at nucleotide level revealed goat TLR8 to be closer to buffalo sharing 99.6% homology, followed by cattle and sheep. Simple Modular Architecture Research Tool (SMART) used for the structural analysis of goat TLR8 showed the presence of 16 leucine-rich repeats (LRRs) along with single Toll/interleukin-1 receptor (TIR) domain. TIR domain when compared with other livestock species was found to be conserved in ruminant species goat, sheep, cattle and buffalo. The phylogenetic analysis also revealed grouping of all ruminant species together, goat being closer to buffalo followed by cattle and sheep. Total 4 polymorphic sites were observed in TLR8 gene of one specimen goat representing each of 12 different breeds studied, all of which were synonymous and present within the coding region. Of these 4 SNPs, two were in ectodomains, one in TIR domain and one was found to be present in transmembrane domain. PCR-RFLP genotyping of two of the SNPs indicated variations in allele frequencies among different goat breeds. The expression profiling in 13 tissues of goat showed maximum expression of TLR8 gene in kidney followed by spleen, lung and lymph node. Overall, our results indicate conservation of TLR8 gene among the ruminant species and low variation within Indian goat breeds.
Collapse
Affiliation(s)
- S Goyal
- National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lichter-Peled A, Polani S, Stanyon R, Rocchi M, Kahila Bar-Gal G. Role of KCNQ2 and KCNQ3 genes in juvenile idiopathic epilepsy in Arabian foals. Vet J 2013. [DOI: 10.1016/j.tvjl.2012.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Sequence and topological characterization of Toll-like receptor 8 gene of Indian riverine buffalo (Bubalus bubalis). Trop Anim Health Prod 2012; 45:91-9. [PMID: 22622670 DOI: 10.1007/s11250-012-0178-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
In this study, buffalo (Bubalus bubalis) Toll-like receptor 8 (TLR8) gene has been characterized by sequence analysis and detecting polymorphism. Complete ORF of buffalo TLR8 gene was amplified using the RNA isolated from spleen tissue, which was found to be 3,102 nucleotides long encoding a 1,033 amino acid protein. Buffalo TLR8 had 10 nucleotide changes as compared to other livestock species resulting in six unique amino acid changes, four of them lying within leucine-rich repeat (LRR) domains. As compared to cattle (Bos indicus and Bos taurus), out of fifteen cysteine residues, fourteen were conserved and Cys at position 521 was replaced by Arg. Nine of the LRR domains had no amino acid change as compared to cattle, whereas LRR-C-terminus had maximum, five amino acid changes. Sequence characterization of 12 riverine and swamp buffaloes revealed presence of four polymorphic nucleotides, two of them were non-synonymous, one synonymous and one site in 3'UTR. PCR-RFLP genotyping of non-synonymous SNP 2758A>G (ILeu920Val) in Toll-interleukin-1 receptor domain of 463 swamp and riverine buffaloes showed a higher frequency of allele A in swamp (95 %) as compared to riverine (9.84 %) buffaloes.
Collapse
|
28
|
Lewis D, Chan D, Pinheiro D, Armitage‐Chan E, Garden O. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med 2012; 26:457-82. [PMID: 22428780 PMCID: PMC7166777 DOI: 10.1111/j.1939-1676.2012.00905.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory response to infection, represents the major cause of death in critically ill veterinary patients. Whereas important advances in our understanding of the pathophysiology of this syndrome have been made, much remains to be elucidated. There is general agreement on the key interaction between pathogen-associated molecular patterns and cells of the innate immune system, and the amplification of the host response generated by pro-inflammatory cytokines. More recently, the concept of immunoparalysis in sepsis has also been advanced, together with an increasing recognition of the interplay between regulatory T cells and the innate immune response. However, the heterogeneous nature of this syndrome and the difficulty of modeling it in vitro or in vivo has both frustrated the advancement of new therapies and emphasized the continuing importance of patient-based clinical research in this area of human and veterinary medicine.
Collapse
Affiliation(s)
- D.H. Lewis
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Present address:
Langford Veterinary ServicesSmall Animal HospitalLangford HouseLangfordBristol, BS40 5DUUK
| | - D.L. Chan
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
| | - D. Pinheiro
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| | - E. Armitage‐Chan
- Davies Veterinary SpecialistsManor Farm Business ParkHertfordshireSG5 3HR, UK (Armitage‐Chan)
| | - O.A. Garden
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| |
Collapse
|
29
|
Kannaki T, Shanmugam M, Verma P. Toll-like receptors and their role in animal reproduction. Anim Reprod Sci 2011; 125:1-12. [DOI: 10.1016/j.anireprosci.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/21/2011] [Accepted: 03/14/2011] [Indexed: 01/08/2023]
|
30
|
Quintana AM, Landolt GA, Annis KM, Hussey GS. Immunological characterization of the equine airway epithelium and of a primary equine airway epithelial cell culture model. Vet Immunol Immunopathol 2011; 140:226-36. [PMID: 21292331 DOI: 10.1016/j.vetimm.2010.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/11/2010] [Accepted: 12/20/2010] [Indexed: 01/08/2023]
Abstract
Our understanding of innate immunity within the equine respiratory tract is limited despite growing evidence for its key role in both the immediate defense and the shaping of downstream adaptive immune responses to respiratory disease. As the first interface to undergo pathogen invasion, the respiratory epithelium is a key player in these early events and our goal was to examine the innate immune characteristics of equine respiratory epithelia and compare them to an in vitro equine respiratory epithelial cell model cultured at the air-fluid interface (AFI). Respiratory epithelial tissues, isolated epithelial cells, and four-week old cultured differentiated airway epithelial cells collected from five locations of the equine respiratory tract were examined for the expression of toll-like receptors (TLRs) and host defense peptides (HDPs) using conventional polymerase chain reaction (PCR). Cultured, differentiated, respiratory epithelial cells and freshly isolated respiratory epithelial cells were also examined for the expression of TLR3, TLR9 and major histocompatibility complex (MHC) class I and class II using fluorescence-activated cell sorting (FACS) analysis. In addition, cytokine and chemokine profiles from respiratory epithelial tissues, freshly isolated respiratory epithelial cells, and cultured, differentiated, epithelial cells from the upper respiratory tract were examined using real-time PCR. We found that respiratory epithelial tissues and isolated epithelial cells expressed TLRs 1-4 and 6-10 as well as HDPs, MxA, 2'5' OAS, β-defensin-1, and lactoferrin. In contrast, epithelial cells cultured at the AFI expressed TLRs 1-4 and 6 and 7 as well as MxA, 2'5' OAS, β-defensin-1, but had lost expression of TLRs 8-10 and lactoferrin. In addition, MHC-I and MHC-II surface expression decreased in epithelial cells cultured at the AFI compared to isolated epithelial cells whereas TLR3 and TLR9 were expressed at similar levels. Lastly, we found that equine respiratory epithelial cells express an array of pro-inflammatory, antiviral and regulatory cytokines and that after four weeks of in vitro growth conditions, equine respiratory epithelial cells cultured at the AFI retained expression of GM-CSF, IL-10, IL-8, TGF-β, TNF-α, and IL-6. In summary, we describe the development of an in vitro equine respiratory epithelial cell culture model that is morphologically similar to the equine airway epithelium and retains several key immunological properties. In the future this model will be a used to study equine respiratory viral pathogenesis and cell-to-cell interactions.
Collapse
Affiliation(s)
- Ayshea M Quintana
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
| | | | | | | |
Collapse
|
31
|
Toll-like receptors in domestic animals. Cell Tissue Res 2010; 343:107-20. [DOI: 10.1007/s00441-010-1047-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/01/2010] [Indexed: 12/13/2022]
|
32
|
Liu J, Xu C, Hsu LC, Luo Y, Xiang R, Chuang TH. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol 2009; 47:1083-90. [PMID: 20004021 DOI: 10.1016/j.molimm.2009.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Toll-like receptors play important roles in regulating immunity against microbial infections. Toll-like receptor 8 (TLR8) belongs to a subfamily comprising TLR7, TLR8 and TLR9. Human TLR8 mediates anti-viral immunity by recognizing ssRNA viruses, and triggers potent anti-viral and antitumor immune responses upon ligation by synthetic small molecular weight ligands. Interestingly, distinct from human TLR8, mouse TLR8 was not responsive to ligand stimulation in the absence of polyT-oligodeoxynucleotides (polyT-ODN). The molecular basis for this distinct ligand recognition is still unclear. In the present study, we compared the activation of TLR8 from different species including mouse, rat, human, bovine, porcine, horse, sheep, and cat by ligand ligations. Only the TLR8s from the rodent species (i.e., mouse and rat TLR8s) failed to respond to ligand stimulation in the absence of polyT-ODN. Multiple sequence alignment analysis suggested that these two rodent TLR8s lack a five-amino-acid motif that is conserved in the non-rodent species with varied sequence. This small motif is located in an undefined region of the hTLR8 ectodomain, immediately following LRR-14. Deletion mutation analysis suggested that this motif is essential for the species-specific ligand recognition of hTLR8, whereas it is not required for self-dimerization and intracellular localization of this receptor.
Collapse
Affiliation(s)
- Jin Liu
- Immunology Program, Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|