1
|
Hanratty K, Finegan G, Rochfort KD, Kennedy S. Current Treatment of Uveal Melanoma. Cancers (Basel) 2025; 17:1403. [PMID: 40361330 PMCID: PMC12071000 DOI: 10.3390/cancers17091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults worldwide [...].
Collapse
Affiliation(s)
- Katie Hanratty
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland; (K.H.); (G.F.); (K.D.R.)
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, D02 XK51 Dublin, Ireland
| | - Gráinne Finegan
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland; (K.H.); (G.F.); (K.D.R.)
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, D02 XK51 Dublin, Ireland
| | - Keith D. Rochfort
- School of Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland; (K.H.); (G.F.); (K.D.R.)
- Life Sciences Institute, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, D02 XK51 Dublin, Ireland
- Life Sciences Institute, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, D09 V209 Dublin, Ireland
| |
Collapse
|
2
|
Joo JE, Viana-Errasti J, Buchanan DD, Valle L. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer 2025; 24:38. [PMID: 40237887 PMCID: PMC12003455 DOI: 10.1007/s10689-025-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Doctoral Program in Biomedicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain.
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Saldanha EF, Ribeiro MF, Hirsch I, Spreafico A, Saibil SD, Butler MO. How we treat patients with metastatic uveal melanoma. ESMO Open 2025; 10:104496. [PMID: 40112696 PMCID: PMC11979469 DOI: 10.1016/j.esmoop.2025.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Uveal melanoma is the most prevalent and aggressive intraocular malignancy affecting adults. Compared with cutaneous melanoma, uveal melanoma has distinct pathogenesis and molecular characteristics. Not surprisingly, it derives limited benefits from checkpoint inhibitors. Until recently, no systemic therapy had impacted survival outcomes for this patient population. Tebentafusp, a T-cell receptor-based molecule, is the first US Food and Drug Administration/European Medicines Agency-approved systemic therapy to improve the survival outcomes for uveal melanoma patients expressing HLA-A∗02:01. Only 45%-50% of this patient population will express the HLA-A∗02:01, however, and therefore are eligible to receive this novel treatment. Moreover, global access to tebentafusp is limited, and there are no guidelines to aid clinicians in decision-making regarding treatment. In this review, we outline our experience as Canada's largest tertiary referral centre in managing metastatic uveal melanoma patients and provide a comprehensive overview of the currently available treatment options, challenging scenarios, and ongoing clinical trials for patients with metastatic uveal melanoma.
Collapse
Affiliation(s)
- E F Saldanha
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M F Ribeiro
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - I Hirsch
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - A Spreafico
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - S D Saibil
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M O Butler
- Department of Medicine, University of Toronto, Toronto, Canada; Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
4
|
Nell RJ, Versluis M, Cats D, Mei H, Verdijk RM, Kroes WGM, Luyten GPM, Jager MJ, van der Velden PA. Identification of diagnostic and prognostic genetic alterations in uveal melanoma using RNA sequencing. Sci Rep 2025; 15:8167. [PMID: 40059100 PMCID: PMC11891316 DOI: 10.1038/s41598-025-90122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025] Open
Abstract
Uveal melanoma is a lethal intraocular tumour, in which the presence of various genetic alterations correlates with the risk of metastatic dissemination and survival. Here, we tested the detectability of all key mutations and chromosomal changes from RNA sequencing data in 80 primary uveal melanomas studied by The Cancer Genome Atlas (TCGA) initiative, and in five prospective cases. Whereas unsupervised gene expression profiling strongly indicated the presence of chromosome 3 alterations, it was not reliable in identifying other alterations. Though, the presence of both chromosome 3 and 8q copy number alterations could be successfully inferred from expressed allelic imbalances of heterozygous common single nucleotide polymorphisms. Most mutations were adequately recognised in the RNA by their nucleotide changes (all genes), alternative splicing around the mutation (BAP1) and transcriptome-wide aberrant splicing (SF3B1). Notably, in the TCGA cohort we detected previously unreported mutations in BAP1 (n = 3) and EIF1AX (n = 5), that were missed by the original DNA sequencing. In our prospective cohort, all genetic alterations were successfully identified by combining the described approaches. In conclusion, a transcriptional analysis presents insights into the expressed tumour genotype and its phenotypic consequences and may augment or even substitute DNA-based approaches, with potential applicability in research and clinical practice.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Davy Cats
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
5
|
Tran DH, Shanley R, Giubellino A, Tang PH, Koozekanani DD, Yuan J, Dusenbery K, Domingo-Musibay E. Radiation and systemic immunotherapy for metastatic uveal melanoma: a clinical retrospective review. Front Oncol 2024; 14:1406872. [PMID: 39026970 PMCID: PMC11254688 DOI: 10.3389/fonc.2024.1406872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Metastatic uveal melanoma (mUM) is a difficult to treat disease. The liver is the primary site of metastasis in most patients, though uveal melanoma spreads widely in advanced disease. The only FDA approved immunotherapy medication for metastatic uveal melanoma is the HLA-A02:01 restricted bispecific T cell engager drug, Tebentafusp. Checkpoint inhibitor strategies and combination approaches have been tried with some limited success. We describe our experience treating patients at the University of Minnesota. Methods Patients were included if they had biopsy-confirmed mUM. Twenty-five (25) patients meeting the criteria were identified. Medical records were reviewed and data extracted for patient baseline characteristics and response to treatments. Results Median time to metastasis from the time of local therapy to the eye was 14.2 months (IQR; 9.3-22.0), and first site of metastasis was liver in 92% of patients. Two patients (8%) did not receive systemic therapy or radiation therapy for metastatic disease. Twenty-three (92%) patients received systemic therapy, 13 patients (52%) received ipilimumab-nivolumab as the first-line, while 4 patients (16%) received pembrolizumab. Landmark survival analysis by receipt of systemic therapy and radiation therapy treatments within 6 months of biopsy confirmed diagnosis is shown. Twenty patients (80%) received systemic therapy within 6 months of mUM diagnosis. Thirteen patients (52%) received liver directed radiation therapy within 6 months of mUM diagnosis. Discussion Within our cohort, there was no overall survival benefit for patients receiving treatment of metastatic disease within 6 months of mUM diagnosis, versus those electing later or no treatment at all. There was remarkable clinical activity of ipilimumab and nivolumab in a subset of patients with mUM, in agreement with prior studies, and metastatic PD-L1 positive tumors were associated with a prolonged survival.
Collapse
Affiliation(s)
- Danielle H. Tran
- University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Ryan Shanley
- Biostatistics Core, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Peter H. Tang
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Dara D. Koozekanani
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Jianling Yuan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Evidio Domingo-Musibay
- Department of Medicine, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN, United States
- Department of Medical Oncology, Allina Health Cancer Institute, Minneapolis, MN, United States
| |
Collapse
|
6
|
Bellone S, Jeong K, Halle MK, Krakstad C, McNamara B, Greenman M, Mutlu L, Demirkiran C, Hartwich TMP, Yang-Hartwich Y, Zipponi M, Buza N, Hui P, Raspagliesi F, Lopez S, Paolini B, Milione M, Perrone E, Scambia G, Altwerger G, Ravaggi A, Bignotti E, Huang GS, Andikyan V, Clark M, Ratner E, Azodi M, Schwartz PE, Quick CM, Angioli R, Terranova C, Zaidi S, Nandi S, Alexandrov LB, Siegel ER, Choi J, Schlessinger J, Santin AD. Integrated mutational landscape analysis of poorly differentiated high-grade neuroendocrine carcinoma of the uterine cervix. Proc Natl Acad Sci U S A 2024; 121:e2321898121. [PMID: 38625939 PMCID: PMC11046577 DOI: 10.1073/pnas.2321898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
High-grade neuroendocrine cervical cancers (NETc) are exceedingly rare, highly aggressive tumors. We analyzed 64 NETc tumor samples by whole-exome sequencing (WES). Human papillomavirus DNA was detected in 65.6% (42/64) of the tumors. Recurrent mutations were identified in PIK3CA, KMT2D/MLL2, K-RAS, ARID1A, NOTCH2, and RPL10. The top mutated genes included RB1, ARID1A, PTEN, KMT2D/MLL2, and WDFY3, a gene not yet implicated in NETc. Somatic CNV analysis identified two copy number gains (3q27.1 and 19q13.12) and five copy number losses (1p36.21/5q31.3/6p22.2/9q21.11/11p15.5). Also, gene fusions affecting the ACLY-CRHR1 and PVT1-MYC genes were identified in one of the eight samples subjected to RNA sequencing. To resolve evolutionary history, multiregion WES in NETc admixed with adenocarcinoma cells was performed (i.e., mixed-NETc). Phylogenetic analysis of mixed-NETc demonstrated that adenocarcinoma and neuroendocrine elements derive from a common precursor with mutations typical of adenocarcinomas. Over one-third (22/64) of NETc demonstrated a mutator phenotype of C > T at CpG consistent with deficiencies in MBD4, a member of the base excision repair (BER) pathway. Mutations in the PI3K/AMPK pathways were identified in 49/64 samples. We used two patient-derived-xenografts (PDX) (i.e., NET19 and NET21) to evaluate the activity of pan-HER (afatinib), PIK3CA (copanlisib), and ATR (elimusertib) inhibitors, alone and in combination. PDXs harboring alterations in the ERBB2/PI3K/AKT/mTOR/ATR pathway were sensitive to afatinib, copanlisib, and elimusertib (P < 0.001 vs. controls). However, combinations of copanlisib/afatinib and copanlisib/elimusertib were significantly more effective in controlling NETc tumor growth. These findings define the genetic landscape of NETc and suggest that a large subset of these highly lethal malignancies might benefit from existing targeted therapies.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Kyungjo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
| | - Mari Kyllesø Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen5009, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen5009, Norway
| | - Blair McNamara
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Michelle Greenman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Margherita Zipponi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT06510
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT06510
| | - Francesco Raspagliesi
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Salvatore Lopez
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Biagio Paolini
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Massimo Milione
- First Pathology Division, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milano20133, Italy
| | - Emanuele Perrone
- Unit of Gynecologic Oncology, Department Woman and Child Health Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Giovanni Scambia
- Unit of Gynecologic Oncology, Department Woman and Child Health Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Gary Altwerger
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Antonella Ravaggi
- ”Angelo Nocivelli” Institute of Molecular Medicine, Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili and University of Brescia, Brescia25123, Italy
| | - Eliana Bignotti
- ”Angelo Nocivelli” Institute of Molecular Medicine, Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili and University of Brescia, Brescia25123, Italy
| | - Gloria S. Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Vaagn Andikyan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Mitchell Clark
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Elena Ratner
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Masoud Azodi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Peter E. Schwartz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR72205
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Università Campus Bio-Medico di Roma, Rome00128, Italy
| | - Corrado Terranova
- Department of Obstetrics and Gynecology, Università Campus Bio-Medico di Roma, Rome00128, Italy
| | - Samir Zaidi
- Department of Genitourinary Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10069
| | - Shuvro Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA92093
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA92093
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR72205
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
7
|
Villy MC, Le Ven A, Le Mentec M, Masliah-Planchon J, Houy A, Bièche I, Vacher S, Vincent-Salomon A, Dubois d'Enghien C, Schwartz M, Piperno-Neumann S, Matet A, Malaise D, Bubien V, Lortholary A, Ait Omar A, Cavaillé M, Stoppa-Lyonnet D, Cassoux N, Stern MH, Rodrigues M, Golmard L, Colas C. Familial uveal melanoma and other tumors in 25 families with monoallelic germline MBD4 variants. J Natl Cancer Inst 2024; 116:580-587. [PMID: 38060262 DOI: 10.1093/jnci/djad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Monoallelic germline MBD4 pathogenic variants were recently reported to cause a predisposition to uveal melanoma, associated with a specific tumor mutational signature and good response to immunotherapy. Monoallelic tumor pathogenic variants have also been described in brain tumors, breast cancers, and myxofibrosarcomas, whereas biallelic germline MBD4 pathogenic variants have been involved in a recessive hereditary adenomatous polyposis and a specific type of acute myeloid leukemia. METHODS We analyzed MBD4 for all patients with a diagnosis of uveal melanoma at Institut Curie since July 2021 and in the 3240 consecutive female probands explored at the Institut Curie for suspicion of predisposition to breast cancer between July 2021 and February 2023. RESULTS We describe 25 families whose probands carry a monoallelic germline pathogenic variant in MBD4. Eighteen of these families presented with uveal melanoma (including a case patient with multiple uveal melanoma), and 7 families presented with breast cancer. Family histories showed the first familial case of uveal melanoma in monoallelic MBD4 pathogenic variant carriers and other various types of cancers in relatives, especially breast, renal, and colorectal tumors. CONCLUSIONS Monoallelic MBD4 pathogenic variant may explain some cases of familial and multiple uveal melanoma as well as various cancer types, expanding the tumor spectrum of this predisposition. Further genetic testing in relatives combined with molecular tumor analyses will help define the tumor spectrum and estimate each tumor's risk.
Collapse
Affiliation(s)
- Marie-Charlotte Villy
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Anaïs Le Ven
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Marine Le Mentec
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Julien Masliah-Planchon
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Alexandre Houy
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Catherine Dubois d'Enghien
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Mathias Schwartz
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Sophie Piperno-Neumann
- Paris Sciences & Lettres Research University, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Alexandre Matet
- Université Paris Cité, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | - Denis Malaise
- Paris Sciences & Lettres Research University, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | | | - Alain Lortholary
- Department of Medical Oncology, GINECO-Hôpital Privé du Confluent, Nantes, France
| | - Amal Ait Omar
- Department of Gastroenterology, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Mathias Cavaillé
- Department of Oncogenetics, Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, AURAGEN, Clermont-Ferrand, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Nathalie Cassoux
- Université Paris Cité, Paris, France
- Department of Ocular Oncology, Institut Curie, Paris, France
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Manuel Rodrigues
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France
- Paris Sciences & Lettres Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| |
Collapse
|
8
|
Gelmi MC, Jager MJ. Uveal melanoma: Current evidence on prognosis, treatment and potential developments. Asia Pac J Ophthalmol (Phila) 2024; 13:100060. [PMID: 38641203 DOI: 10.1016/j.apjo.2024.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
Uveal Melanoma (UM) is a rare disease, yet it is the most common primary intraocular malignancy in adult patients. Despite continuous advancements and research, the risk of metastasis remains high. It is possible to stratify patients according to their risk of metastases using a variety of known risk factors. Even though there is no gold standard for the prognostication of patients with uveal melanoma, it is becoming increasingly clear that combining histo-pathological, patient-related and molecular prognostic markers allows a more accurate prediction of the metastatic risk than by using one parameter. Primary UM in the eye are treated very effectively with eye-sparing radiation-based techniques or enucleation. However, it is not yet possible to prevent or treat metastases with the current therapeutic options. Nonetheless, the efforts to find new therapeutic targets continue and progress is being made, especially in the field of targeted therapy, as exemplified by the anti-gp100 bispecific molecule Tebentafusp. This review delves into the history of uveal melanoma, its incidence, presentation and diagnosis, the known prognostic factors and the treatment options, both for the primary tumour and for metastases. We show that different populations may have different risks for developing UM, and that each country should evaluate their own patients.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
9
|
Wróblewska-Zierhoffer M, Paprzycka B, Kubiak A, Tomczyk Ł, Rospond-Kubiak I. Additional primary malignancies in a Polish cohort of uveal melanoma patients: a review of 644 patients with long-term follow-up. BMC Ophthalmol 2023; 23:506. [PMID: 38087265 PMCID: PMC10717148 DOI: 10.1186/s12886-023-03246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
AIM To investigate the frequency and location of additional primary malignancies in a Polish cohort of uveal melanoma (UM) patients registered in a single centre database. MATERIAL AND METHOD Retrospective data analysis of patients treated for uveal melanoma at the Department of Ophthalmology, Poznań University of Medical Sciences, Poland between 1991 and 2017. Data on the diagnosis of the additional malignancies were obtained during the follow-up visits in our Department and/or from the Greater Poland Cancer Registry. The exclusion criteria comprised no confirmed follow-up or incomplete clinical entry data. RESULTS Among 644 UM patients registered in the database up to 2017, the additional malignancy was diagnosed in 126 (20%) patients: 71 men, 55 women at the median age of 67 years (range: 34-94). In 48 patients (38%), the additional malignancy occurred prior to the diagnosis of UM, in 73 (58%) patients - after it. The most common locations of second cancer were skin (20 cases / 15%), breast (17 cases / 13%) and lungs (15 cases / 12%). The median follow-up was 36 months (range: 3-242). 87 patients (69%) died by the study close, 32 (37%) of them due to metastatic disease from uveal melanoma, 41 (47%) due to another cancer. CONCLUSIONS The frequency of additional primary malignancies was higher in our cohort than reported by most of other groups. If there is a certain predisposition to a specific type of additional primary carcinoma in UM patients, the analysis of larger database is required.
Collapse
Affiliation(s)
- Marta Wróblewska-Zierhoffer
- Department of Ophthalmology, Poznań University of Medical Sciences, Poznań, Poland
- Polyclinic of Plastic and Ophthalmic Surgery, Kobylniki, Poland
| | - Barbara Paprzycka
- Department of Ophthalmology, Poznań District Hospital, Poznań, Poland
| | - Anna Kubiak
- Greater Poland Cancer Registry, Greater Poland Cancer Centre, Poznań, Poland
| | - Łukasz Tomczyk
- Department of Food Safety and Quality Management, Poznań University of Life Sciences, Poznań, Poland
| | - Iwona Rospond-Kubiak
- Department of Ophthalmology, Poznań University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
10
|
Gelmi MC, Gezgin G, van der Velden PA, Luyten GPM, Luk SJ, Heemskerk MHM, Jager MJ. PRAME Expression: A Target for Cancer Immunotherapy and a Prognostic Factor in Uveal Melanoma. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 38149971 PMCID: PMC10755595 DOI: 10.1167/iovs.64.15.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose Uveal melanoma (UM) is a rare disease with a high mortality, and new therapeutic options are being investigated. Preferentially Expressed Antigen in Melanoma (PRAME) is a cancer testis antigen, expressed in the testis, but also in cancers, including uveal melanoma. PRAME is considered a target for immune therapy in several cancers, and PRAME-specific T cell clones have been shown to kill UM cells. Methods We studied the literature on PRAME expression in hematological and solid malignancies, including UM, and its role as a target for immunotherapy. The distribution of tumor features was compared between PRAME-high and PRAME-low UM in a 64-patient cohort from the Leiden University Medical Center (LUMC) and in the Cancer Genome Atlas (TCGA) cohort of 80 cases and differential gene expression analysis was performed in the LUMC cohort. Results PRAME is expressed in many malignancies, it is frequently associated with a negative prognosis, and can be the target of T cell receptor (TCR)-transduced T cells, a promising treatment option with high avidity and safety. In UM, PRAME is expressed in 26% to 45% of cases and is correlated with a worse prognosis. In the LUMC and the TCGA cohorts, high PRAME expression was associated with larger diameter, higher Tumor-Node-Metastasis (TNM) stage, more frequent gain of chromosome 8q, and an inflammatory phenotype. Conclusions We confirm that PRAME is associated with poor prognosis in UM and has a strong connection with extra copies of 8q. We show that PRAME-specific immunotherapy in an adjuvant setting is promising in treatment of malignancies, including UM.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gulçin Gezgin
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Sietse J. Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Terradas M, Gonzalez-Abuin N, García-Mulero S, Viana-Errasti J, Aiza G, Piulats JM, Brunet J, Capellá G, Valle L. MBD4-associated neoplasia syndrome: screening of cases with suggestive phenotypes. Eur J Hum Genet 2023; 31:1185-1189. [PMID: 37402954 PMCID: PMC10545785 DOI: 10.1038/s41431-023-01418-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Germline mutations in MBD4, which, like MUTYH and NTHL1, encodes a glycosylase of the DNA based excision repair system, cause an autosomal recessive syndrome characterised by increased risk of acute myeloid leukaemia, gastrointestinal polyposis, colorectal cancer (CRC) and, to a lesser extent, uveal melanoma and schwannomas. To better define the phenotypic spectrum and tumour molecular features associated with biallelic MBD4-associated cancer predisposition, and study if heterozygous variants are associated with gastrointestinal tumour predisposition, we evaluated germline MBD4 status in 728 patients with CRC, polyposis, and other suggestive phenotypes (TCGA and in-house cohorts). Eight CRC patients carried rare homozygous or heterozygous germline variants in MBD4. The information gathered on mode of inheritance, variant nature, functional effect of the variant, and tumour mutational characteristics suggested that none of the patients included in the study had an MBD4-associated hereditary syndrome and that the heterozygous variants identified were not associated with the disease.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Noemi Gonzalez-Abuin
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra García-Mulero
- Cancer Immunotherapy (CIT) Group-iPROCURE, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Programme (ODAP), Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Julen Viana-Errasti
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Piulats
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Immunotherapy (CIT) Group-iPROCURE, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Programme, Catalan Institute of Oncology; Oncobell Programme, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
12
|
Hudson KM, Klimczak LJ, Sterling JF, Burkholder AB, Kazanov M, Saini N, Mieczkowski PA, Gordenin DA. Glycidamide-induced hypermutation in yeast single-stranded DNA reveals a ubiquitous clock-like mutational motif in humans. Nucleic Acids Res 2023; 51:9075-9100. [PMID: 37471042 PMCID: PMC10516655 DOI: 10.1093/nar/gkad611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.
Collapse
Affiliation(s)
- Kathleen M Hudson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Joan F Sterling
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Natalie Saini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
13
|
Gerard C, Shum B, Nathan P, Turajlic S. Immuno-oncology approaches in uveal melanoma: tebentafusp and beyond. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 19:100386. [PMID: 37483658 PMCID: PMC10362360 DOI: 10.1016/j.iotech.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Uveal melanoma (UM) is the most common ocular malignancy in adults, associated with the poorest prognosis, with metastatic disease occurring in up to 50% of patients. In contrast to metastatic cutaneous melanoma, the use of immune checkpoint inhibitors is associated with poor outcomes in metastatic uveal melanoma (mUM). Tebentafusp, a bispecific molecule, has recently become the first treatment in decades to improve overall survival for mUM. This review summarises the existing and emerging immuno-oncology approaches for the treatment of mUM, and biomarkers of response and resistance to the same. Finally, we propose future research directions that could maximise treatment benefit to a wider pool of patients with UM.
Collapse
Affiliation(s)
- C. Gerard
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Precision Oncology Center, Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - B. Shum
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Unit, The Royal Marsden NHS Foundation Trust, London
| | - P. Nathan
- Mount Vernon Cancer Centre, East and North Herts NHS Trust, Northwood, UK
| | - S. Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Unit, The Royal Marsden NHS Foundation Trust, London
| |
Collapse
|
14
|
Groenewoud A, Yin J, Gelmi MC, Alsafadi S, Nemati F, Decaudin D, Roman-Roman S, Kalirai H, Coupland SE, Jochemsen AG, Jager MJ, Engel FB, Snaar-Jagalska BE. Patient-derived zebrafish xenografts of uveal melanoma reveal ferroptosis as a drug target. Cell Death Discov 2023; 9:183. [PMID: 37321991 DOI: 10.1038/s41420-023-01446-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Uveal melanoma (UM) has a high risk to progress to metastatic disease with a median survival of 3.9 months after metastases detection, as metastatic UM responds poorly to conventional and targeted chemotherapy and is largely refractory to immunotherapy. Here, we present a patient-derived zebrafish UM xenograft model mimicking metastatic UM. Cells isolated from Xmm66 spheroids derived from metastatic UM patient material were injected into 2 days-old zebrafish larvae resulting in micro-metastases in the liver and caudal hematopoietic tissue. Metastasis formation could be reduced by navitoclax and more efficiently by the combinations navitoclax/everolimus and flavopiridol/quisinostat. We obtained spheroid cultures from 14 metastatic and 10 primary UM tissues, which were used for xenografts with a success rate of 100%. Importantly, the ferroptosis-related genes GPX4 and SLC7A11 are negatively correlated with the survival of UM patients (TCGA: n = 80; Leiden University Medical Centre cohort: n = 64), ferroptosis susceptibility is correlated with loss of BAP1, one of the key prognosticators for metastatic UM, and ferroptosis induction greatly reduced metastasis formation in the UM xenograft model. Collectively, we have established a patient-derived animal model for metastatic UM and identified ferroptosis induction as a possible therapeutic strategy for the treatment of UM patients.
Collapse
Affiliation(s)
- Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, The Netherlands.
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Jie Yin
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, 75248 Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, 75248 Paris, France
| | - Sergio Roman-Roman
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Aart G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | | |
Collapse
|
15
|
Sah VR, Jespersen H, Karlsson J, Nilsson LM, Bergqvist M, Johansson I, Carneiro A, Helgadottir H, Levin M, Ullenhag G, Ståhlberg A, Olofsson Bagge R, Nilsson JA, Ny L. Chemokine Analysis in Patients with Metastatic Uveal Melanoma Suggests a Role for CCL21 Signaling in Combined Epigenetic Therapy and Checkpoint Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:884-895. [PMID: 37377898 PMCID: PMC10194136 DOI: 10.1158/2767-9764.crc-22-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
Purpose Patients with metastatic uveal melanoma have limited therapeutic options and high mortality rate so new treatment options are needed. Patients and Methods We previously reported that patients treated with the PD-1 inhibitor pembrolizumab and the histone deacetylase inhibitor entinostat in the PEMDAC trial, experienced clinical benefits if their tumor originated from iris or was wildtype for BAP1 tumor suppressor gene. Here we present the 2-year follow-up of the patients in the PEMDAC trial and identify additional factors that correlate with response or survival. Results Durable responses were observed in 4 patients, with additional 8 patients exhibiting a stable disease. The median overall survival was 13.7 months. Grade 3 adverse events were reported in 62% of the patients, but they were all manageable. No fatal toxicity was observed. Activity of thymidine kinase 1 in plasma was higher in patients with stable disease or who progressed on treatment, compared with those with partial response. Chemokines and cytokines were analyzed in plasma. Three chemokines were significantly different when comparing patients with and without response. One of the factors, CCL21, was higher in the plasma of responding patients before treatment initiation but decreased in the same patients upon treatment. In tumors, CCL21 was expressed in areas resembling tertiary lymphoid structures (TLS). High plasma levels of CCL21 and presence of TLS-like regions in the tumor correlated with longer survival. Conclusions This study provides insight into durable responses in the PEMDAC trial, and describes dynamic changes of chemokines and cytokines in the blood of these patients. Significance The most significant finding from the 2-year follow-up study of the PEMDAC trial was that high CCL21 levels in blood was associated with response and survival. CCL21 was also expressed in TLS-like regions and presence of these regions was associated with longer survival. These analyses of soluble and tumor markers can inform on predictive biomarkers needing validation and become hypothesis generating for experimental research.
Collapse
Affiliation(s)
- Vasu R. Sah
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Jespersen
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Joakim Karlsson
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - Lisa M. Nilsson
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | | | - Iva Johansson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ana Carneiro
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Hildur Helgadottir
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Max Levin
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gustav Ullenhag
- Department of Radiology, Oncology and Radiation Science, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jonas A. Nilsson
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Saint-Ghislain M, Derrien AC, Geoffrois L, Gastaud L, Lesimple T, Negrier S, Penel N, Kurtz JE, Le Corre Y, Dutriaux C, Gardrat S, Barnhill R, Matet A, Cassoux N, Houy A, Ramtohul T, Servois V, Mariani P, Piperno-Neumann S, Stern MH, Rodrigues M. MBD4 deficiency is predictive of response to immune checkpoint inhibitors in metastatic uveal melanoma patients. Eur J Cancer 2022; 173:105-112. [PMID: 35863105 DOI: 10.1016/j.ejca.2022.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND MBD4 mutations have been reported in uveal melanomas, acute myeloid leukemias, colorectal adenocarcinomas, gliomas, and spiradenocarcinomas and cause a hypermutated phenotype. Although metastatic uveal melanomas (mUM) are usually resistant to immune checkpoint inhibitors (ICI), the first reported MBD4-mutated (MBD4m) patient responded to ICI, suggesting that MBD4 mutation may predict response to ICI. METHODS Retrospective cohort of mUM patients treated with ICI. MBD4 was sequenced in a subset of these patients. RESULTS Three hundred mUM patients were included. Median follow-up was 17.3 months. Ten patients with an objective response and 20 cases with stable disease for >12 months were observed, corresponding to an objective response rate of 3.3% and a clinical benefit (i.e., responder patients and stable disease) rate of 10%. Of the 131 tumors sequenced for MBD4, five (3.8%) were mutated. MBD4 mutation was associated with a better objective response rate as three out of five MBD4m versus 4% of MBD4 wild-type patients responded (p < 0.001). Of these five responders, three presented progressive disease at 2.8, 13.9, and 22.3 months. Median PFS was 4.0 months in MBD4 wild-type and 22.3 months in MBD4m patients (HR = 0.22; p = 0.01). Median OS in MBD4def patients was unreached as compared to 16.6 months in MBD4pro (HR = 0.11; 95% CI: 0.02-0.86; log-rank p-test = 0.04; Fig. 2e). CONCLUSIONS In mUM patients, MBD4 mutation is highly predictive for the response, PFS, and overall survival benefit to ICI. MBD4 could be a tissue-agnostic biomarker and should be sequenced in mUM, and other tumor types where MBD4 mutations are reported.
Collapse
Affiliation(s)
- Mathilde Saint-Ghislain
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France; INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par La Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France.
| | - Anne-Céline Derrien
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par La Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France.
| | - Lionnel Geoffrois
- Department of Medical Oncology, Institut de Cancérologie de Lorraine - Alexis Vautrin Cancer, Nancy, France.
| | - Lauris Gastaud
- Department of Medical Oncology, Antoine Lacassagne Cancer Centre, 06000 Nice, France.
| | - Thierry Lesimple
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France.
| | | | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille University, Lille, France.
| | - Jean-Emmanuel Kurtz
- Department of Medical Oncology, Strasbourg University Hospital, Strasbourg, France.
| | - Yannick Le Corre
- Department of Dermatology, Angers University Hospital, UNAM, France.
| | - Caroline Dutriaux
- Dermatology Department, CHU de Bordeaux, Hôpital Saint André, Bordeaux, France.
| | - Sophie Gardrat
- Department of Biopathology, Institut Curie, PSL Research University, Paris, France.
| | - Raymond Barnhill
- Department of Biopathology, Institut Curie, PSL Research University, Paris, France; Faculty of Medicine, Université de Paris, Paris, France.
| | - Alexandre Matet
- Department of Ocular Oncology, Institut Curie, PSL Research University, Paris, France; Université de Paris, Paris, France.
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut Curie, PSL Research University, Paris, France; Université de Paris, Paris, France.
| | - Alexandre Houy
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par La Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France.
| | - Toulsie Ramtohul
- Department of Radiology, Institut Curie, PSL Research University, Paris, France.
| | - Vincent Servois
- Department of Radiology, Institut Curie, PSL Research University, Paris, France.
| | - Pascale Mariani
- Department of Surgical Oncology, Institut Curie, PSL Research University, Paris, France.
| | | | - Marc-Henri Stern
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par La Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France; Department of Genetics, Institut Curie, PSL Research University, Paris, France.
| | - Manuel Rodrigues
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France; INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par La Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
17
|
Leyvraz S, Konietschke F, Peuker C, Schütte M, Kessler T, Ochsenreither S, Ditzhaus M, Sprünken ED, Dörpholz G, Lamping M, Rieke DT, Klinghammer K, Burock S, Ulrich C, Poch G, Schäfer R, Klauschen F, Joussen A, Yaspo ML, Keilholz U. Biomarker-driven therapies for metastatic uveal melanoma: A prospective precision oncology feasibility study. Eur J Cancer 2022; 169:146-155. [DOI: 10.1016/j.ejca.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
|
18
|
Palles C, West HD, Chew E, Galavotti S, Flensburg C, Grolleman JE, Jansen EAM, Curley H, Chegwidden L, Arbe-Barnes EH, Lander N, Truscott R, Pagan J, Bajel A, Sherwood K, Martin L, Thomas H, Georgiou D, Fostira F, Goldberg Y, Adams DJ, van der Biezen SAM, Christie M, Clendenning M, Thomas LE, Deltas C, Dimovski AJ, Dymerska D, Lubinski J, Mahmood K, van der Post RS, Sanders M, Weitz J, Taylor JC, Turnbull C, Vreede L, van Wezel T, Whalley C, Arnedo-Pac C, Caravagna G, Cross W, Chubb D, Frangou A, Gruber AJ, Kinnersley B, Noyvert B, Church D, Graham T, Houlston R, Lopez-Bigas N, Sottoriva A, Wedge D, Jenkins MA, Kuiper RP, Roberts AW, Cheadle JP, Ligtenberg MJL, Hoogerbrugge N, Koelzer VH, Rivas AD, Winship IM, Ponte CR, Buchanan DD, Power DG, Green A, Tomlinson IPM, Sampson JR, Majewski IJ, de Voer RM. Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. Am J Hum Genet 2022; 109:953-960. [PMID: 35460607 PMCID: PMC9118112 DOI: 10.1016/j.ajhg.2022.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.
Collapse
Affiliation(s)
- Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Edward Chew
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Sara Galavotti
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Judith E Grolleman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Erik A M Jansen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Helen Curley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laura Chegwidden
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Edward H Arbe-Barnes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nicola Lander
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Rebekah Truscott
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Judith Pagan
- Molecular Genetics Laboratory, South East Scotland Genetic Service, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ashish Bajel
- Peter MacCallum Cancer Center and Royal Melbourne Hospital, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Kitty Sherwood
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Lynn Martin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Huw Thomas
- St Mark's Hospital, Imperial College London, London, UK
| | - Demetra Georgiou
- Genomic Medicine, Imperial College Healthcare Trust and North West Thames Regional Genetics Service, Northwick Park, Harrow, UK
| | | | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Simone A M van der Biezen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Michael Christie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Laura E Thomas
- Institute of Life Sciences, Swansea University, Swansea SA28PP, UK
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research and Molecular Medicine Research Center, University of Cyprus Medical School, Nicosia, Cyprus
| | - Aleksandar J Dimovski
- Center for Biomolecular Pharmaceutical Analyzes, UKIM Faculty of Pharmacy, 1000 Skopje, Republic of Macedonia
| | - Dagmara Dymerska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jan Lubinski
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Rachel S van der Post
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Mathijs Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jürgen Weitz
- Department of Surgical Research, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jenny C Taylor
- Oxford NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Clare Turnbull
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Lilian Vreede
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Celina Whalley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Caravagna
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - William Cross
- Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Daniel Chubb
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Anna Frangou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andreas J Gruber
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK
| | - Ben Kinnersley
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David Church
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Trevor Graham
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard Houlston
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Sottoriva
- Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - David Wedge
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Roland P Kuiper
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, the Netherlands
| | - Andrew W Roberts
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Molecular Genetics Laboratory, South East Scotland Genetic Service, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia; University of Melbourne, Department of Medical Biology, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands; Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Andres Dacal Rivas
- Servicio de Digestivo, Hospital Lucus Augusti, Instituto de Investigación Sanitaria de Santiago, Lugo, Galicia, Spain
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Medicine, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Clara Ruiz Ponte
- Fundación Pública Galega de Medicina Xenómica SERGAS, Grupo de Medicina Xenómica-USC, Instituto de Investigación Sanitaria de Santiago, Centro de Investigación Biomédica en Red de Enfermedades Raras, Santiago de Compostela, Galicia, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Derek G Power
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland, Dublin, Ireland; School of Medicine University College, Dublin, Ireland
| | - Ian P M Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK.
| | - Ian J Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| |
Collapse
|
19
|
Schank TE, Hassel JC. Tebentafusp for the treatment of metastatic uveal melanoma. Future Oncol 2022; 18:1303-1311. [PMID: 35172589 DOI: 10.2217/fon-2021-1260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma is a rare disease; nevertheless, it is the most common primary intraocular malignancy among adults. Approximately half of affected patients will suffer from metastatic disease, mostly to the liver. No standard-of-care treatment exists for these patients. Median progression-free survival and overall survival for all types of treatment, including checkpoint inhibitors, have remained poor. However, the most recent phase III study results for tebentafusp, a member of a new-in-class molecule, are raising hopes for stage IV uveal melanoma patients. In this review, we examine the current literature, focusing on the most recent trial results for this new reagent. We evaluate the latest clinical results for tebentafusp and aim to shed light on its immunological strategy.
Collapse
Affiliation(s)
- Timo E Schank
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, 69120, Germany.,National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
20
|
Rantala ES, Hernberg MM, Piperno-Neumann S, Grossniklaus HE, Kivelä TT. Metastatic uveal melanoma: The final frontier. Prog Retin Eye Res 2022; 90:101041. [PMID: 34999237 DOI: 10.1016/j.preteyeres.2022.101041] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Treatment of primary intraocular uveal melanoma has developed considerably, its driver genes are largely unraveled, and the ways to assess its risk for metastases are very precise, being based on an international staging system and genetic data. Unfortunately, the risk of distant metastases, which emerge in approximately one half of all patients, is unaltered. Metastases are the leading single cause of death after uveal melanoma is diagnosed, yet no consensus exists regarding surveillance, staging, and treatment of disseminated disease, and survival has not improved until recently. The final frontier in conquering uveal melanoma lies in solving these issues to cure metastatic disease. Most studies on metastatic uveal melanoma are small, uncontrolled, retrospective, and do not report staging. Meta-analyses confirm a median overall survival of 10-13 months, and a cure rate that approaches nil, although survival exceeding 5 years is possible, estimated 2% either with first-line treatment or with best supportive care. Hepatic ultrasonography and magnetic resonance imaging as surveillance methods have a sensitivity of 95-100% and 83-100%, respectively, to detect metastases without radiation hazard according to prevailing evidence, but computed tomography is necessary for staging. No blood-based tests additional to liver function tests are generally accepted. Three validated staging systems predict, each in defined situations, overall survival after metastasis. Their essential components include measures of tumor burden, liver function, and performance status or metastasis free interval. Age and gender may additionally influence survival. Exceptional mutational events in metastases may make them susceptible to checkpoint inhibitors. In a large meta-analysis, surgical treatment was associated with 6 months longer median overall survival as compared to conventional chemotherapy and, recently, tebentafusp as first-line treatment at the first interim analysis of a randomized phase III trial likewise provided a 6 months longer median overall survival compared to investigator's choice, mostly pembrolizumab; these treatments currently apply to selected patients. Promoting dormancy of micrometastases, harmonizing surveillance protocols, promoting staging, identifying predictive factors, initiating controlled clinical trials, and standardizing reporting will be critical steppingstones in reaching the final frontier of curing metastatic uveal melanoma.
Collapse
Affiliation(s)
- Elina S Rantala
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL 220, FI-00029, HUS, Helsinki, Finland.
| | - Micaela M Hernberg
- Comprehensive Cancer Center, Department of Oncology, Helsinki University Hospital and University of Helsinki, Paciuksenkatu 3, PL 180, FI-00029, HUS, Helsinki, Finland.
| | | | - Hans E Grossniklaus
- Section of Ocular Oncology, Emory Eye Center, 1365 Clifton Road B, Atlanta, GA, 30322, USA.
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL 220, FI-00029, HUS, Helsinki, Finland.
| |
Collapse
|
21
|
Seedor RS, Orloff M, Sato T. Genetic Landscape and Emerging Therapies in Uveal Melanoma. Cancers (Basel) 2021; 13:5503. [PMID: 34771666 PMCID: PMC8582814 DOI: 10.3390/cancers13215503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite successful treatment of primary uveal melanoma, up to 50% of patients will develop systemic metastasis. Metastatic disease portends a poor outcome, and no adjuvant or metastatic therapy has been FDA approved. The genetic landscape of uveal melanoma is unique, providing prognostic and potentially therapeutic insight. In this review, we discuss our current understanding of the molecular and cytogenetic mutations in uveal melanoma, and the importance of obtaining such information. Most of our knowledge is based on primary uveal melanoma and a better understanding of the mutational landscape in metastatic uveal melanoma is needed. Clinical trials targeting certain mutations such as GNAQ/GNA11, BAP1, and SF3B1 are ongoing and promising. We also discuss the role of liquid biopsies in uveal melanoma in this review.
Collapse
Affiliation(s)
- Rino S. Seedor
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.O.); (T.S.)
| | | | | |
Collapse
|
22
|
Wu XR, Chen Z, Liu Y, Chen ZZ, Tang F, Chen ZZ, Li JJ, Liao JL, Cao K, Chen X, Zhou J. Prognostic signature and immune efficacy of m 1 A-, m 5 C- and m 6 A-related regulators in cutaneous melanoma. J Cell Mol Med 2021; 25:8405-8418. [PMID: 34288419 PMCID: PMC8419166 DOI: 10.1111/jcmm.16800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma (CM) is an aggressive cancer; given that initial and specific signs are lacking, diagnosis is often late and the prognosis is poor. RNA modification has been widely studied in tumour progression. Nevertheless, little progress has been made in the signature of N1 -methyladenosine (m1 A), 5-methylcytosine (m5 C), N6 -methyladenosine (m6 A)-related regulators and the tumour microenvironment (TME) cell infiltration in CM. Our study identified the characteristics of m1 A-, m5 C- and m6 A-related regulators based on 468 CM samples from the public database. Using univariate, multivariate and LASSO Cox regression analysis, a risk model of regulators was established and validated by a nomogram on independent prognostic factors. The gene set variation analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) clarified the involved functional pathways. A combined single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT approach revealed TME of regulator-related prognostic signature. The nine-gene signature stratified the patients into distinct risk subgroups for personalized prognostic assessment. Additionally, functional enrichment, immune infiltration and immunotherapy response analysis indicated that the high-risk group was correlated with T-cell suppression, while the low-risk group was more sensitive to immunotherapy. The findings presented here contribute to our understanding of the TME molecular heterogeneity in CM. Nine m1 A-, m5 C- and m6 A-related regulators may also be promising biomarkers for future research.
Collapse
Affiliation(s)
- Xian rui Wu
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zheng Chen
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yang Liu
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zi zi Chen
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fengjie Tang
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi zhao Chen
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing jing Li
- Department of Plastic Surgery of Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jun lin Liao
- Departments of Medical CosmetologyThe First Affiliated HospitalUniversity of South ChinaHengyangHunanChina
| | - Ke Cao
- Department of Oncology of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiang Chen
- Department of DermatologyThe Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jianda Zhou
- Department of Plastic Surgery of Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
23
|
Ny L, Jespersen H, Karlsson J, Alsén S, Filges S, All-Eriksson C, Andersson B, Carneiro A, Helgadottir H, Levin M, Ljuslinder I, Olofsson Bagge R, Sah VR, Stierner U, Ståhlberg A, Ullenhag G, Nilsson LM, Nilsson JA. The PEMDAC phase 2 study of pembrolizumab and entinostat in patients with metastatic uveal melanoma. Nat Commun 2021; 12:5155. [PMID: 34453044 PMCID: PMC8397717 DOI: 10.1038/s41467-021-25332-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies have suggested that epigenetic therapy could enhance immunogenicity of cancer cells. We report the results of the PEMDAC phase 2 clinical trial (n = 29; NCT02697630) where the HDAC inhibitor entinostat was combined with the PD-1 inhibitor pembrolizumab in patients with metastatic uveal melanoma (UM). The primary endpoint was objective response rate (ORR), and was met with an ORR of 14%. The clinical benefit rate at 18 weeks was 28%, median progression free survival was 2.1 months and the median overall survival was 13.4 months. Toxicities were manageable, and there were no treatment-related deaths. Objective responses and/or prolonged survival were seen in patients with BAP1 wildtype tumors, and in one patient with an iris melanoma that exhibited a UV signature. Longer survival also correlated with low baseline ctDNA levels or LDH. In conclusion, HDAC inhibition and anti-PD1 immunotherapy results in durable responses in a subset of patients with metastatic UM.Trial registration ClinicalTrials.gov registration number: NCT02697630 (registered 3 March 2016). EudraCT registration number: 2016-002114-50.
Collapse
Affiliation(s)
- Lars Ny
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Henrik Jespersen
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Joakim Karlsson
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Samuel Alsén
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefan Filges
- Department of Laboratory Medicine, Wallenberg Centre for Molecular and Translational Medicine, Department of Clinical Genetics and Genomics, Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Bengt Andersson
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ana Carneiro
- Department of Hematology Oncology and Radiation Physics, Skåne University Hospital, and Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Hildur Helgadottir
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Max Levin
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Roger Olofsson Bagge
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Vasu R Sah
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Stierner
- Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Wallenberg Centre for Molecular and Translational Medicine, Department of Clinical Genetics and Genomics, Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gustav Ullenhag
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Lisa M Nilsson
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Jonas A Nilsson
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
24
|
Derrien AC, Rodrigues M, Eeckhoutte A, Dayot S, Houy A, Mobuchon L, Gardrat S, Lequin D, Ballet S, Pierron G, Alsafadi S, Mariani O, El-Marjou A, Matet A, Colas C, Cassoux N, Stern MH. Germline MBD4 Mutations and Predisposition to Uveal Melanoma. J Natl Cancer Inst 2021; 113:80-87. [PMID: 32239153 PMCID: PMC7781447 DOI: 10.1093/jnci/djaa047] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Uveal melanoma (UM) arises from malignant transformation of melanocytes in the uveal tract of the eye. This rare tumor has a poor outcome with frequent chemo-resistant liver metastases. BAP1 is the only known predisposing gene for UM. UMs are generally characterized by low tumor mutation burden, but some UMs display a high level of CpG>TpG mutations associated with MBD4 inactivation. Here, we explored the incidence of germline MBD4 variants in a consecutive series of 1093 primary UM case patients and a series of 192 UM tumors with monosomy 3 (M3). Methods We performed MBD4 targeted sequencing on pooled germline (n = 1093) and tumor (n = 192) DNA samples of UM patients. MBD4 variants (n = 28) were validated by Sanger sequencing. We performed whole-exome sequencing on available tumor samples harboring MBD4 variants (n = 9). Variants of unknown pathogenicity were further functionally assessed. Results We identified 8 deleterious MBD4 mutations in the consecutive UM series, a 9.15-fold (95% confidence interval = 4.24-fold to 19.73-fold) increased incidence compared with the general population (Fisher exact test, P = 2.00 × 10–5, 2-sided), and 4 additional deleterious MBD4 mutations in the M3 cohort, including 3 germline and 1 somatic mutations. Tumors carrying deleterious MBD4 mutations were all associated with high tumor mutation burden and a CpG>TpG hypermutator phenotype. Conclusions We demonstrate that MBD4 is a new predisposing gene for UM associated with hypermutated M3 tumors. The tumor spectrum of this predisposing condition will likely expand with the addition of MBD4 to diagnostic panels. Tumors arising in such a context should be recognized because they may respond to immunotherapy.
Collapse
Affiliation(s)
- Anne-Céline Derrien
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France
| | - Manuel Rodrigues
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France.,Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Alexandre Eeckhoutte
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France
| | - Stéphane Dayot
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France
| | - Alexandre Houy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France
| | - Lenha Mobuchon
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France
| | - Sophie Gardrat
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France.,Department of Biopathology, Institut Curie, PSL Research University, Paris, France
| | - Delphine Lequin
- Department of Biopathology, Institut Curie, PSL Research University, Paris, France
| | - Stelly Ballet
- Department of Biopathology, Institut Curie, PSL Research University, Paris, France
| | - Gaëlle Pierron
- Department of Biopathology, Institut Curie, PSL Research University, Paris, France
| | - Samar Alsafadi
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France.,Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Odette Mariani
- Biological Resource Center, Institut Curie, PSL Research University, Paris, France
| | - Ahmed El-Marjou
- Institut Curie, PSL Research University, UMR144, Recombinant Protein Facility, Paris, France
| | - Alexandre Matet
- Department of Ocular Oncology, Institut Curie, Paris, France.,Faculty of Medicine, University of Paris Descartes, Paris, France
| | | | - Nathalie Cassoux
- Department of Ocular Oncology, Institut Curie, Paris, France.,Faculty of Medicine, University of Paris Descartes, Paris, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée Par la Ligue Nationale Contre le Cancer, Paris, France.,Department of Genetics, Institut Curie, Paris, France
| |
Collapse
|
25
|
Rantala ES, Kivelä TT, Hernberg MM. Impact of staging on survival outcomes: a nationwide real-world cohort study of metastatic uveal melanoma. Melanoma Res 2021; 31:224-231. [PMID: 33595243 PMCID: PMC8081447 DOI: 10.1097/cmr.0000000000000728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
No data exist regarding whether any first-line treatment for metastatic uveal melanoma provides overall survival (OS) benefit, if staged and compared to best supportive care (BSC). We analyzed OS in a nationwide, consecutive cohort diagnosed with metastatic uveal melanoma between January 1999 and December 2016. The Helsinki University Hospital Working Formulation was used to assign patients to stage IVa, IVb and IVc, corresponding to predicted median OS ≥12, <12-6 and <6 months, respectively. OS of 216 actively treated patients was compared by treatment and working formulation stage against 108 similarly staged, concurrent patients managed with BSC using Kaplan-Meier analysis and Cox regression. The median OS with active treatment was 18 (range, 0.7-162), 6.9 (range, 1.3-30) and 1.9 (range, 0.2-18) months in working formulation stage IVa, IVb and IVc, respectively. Patients who received chemoimmunotherapy, selective internal radiation therapy, or underwent surgical resection survived longer - median OS 13, 16 and 24 months, respectively - than those receiving conventional chemotherapy - median OS 5.1 months - but only with surgical resection their OS exceeded that with BSC, both overall and in stage IVa (P < 0.001, P = 0.010). In stage IVb and IVc, no difference in OS was observed in any comparison. Staging of patients is crucial when comparing survival after metastatic uveal melanoma. Only surgical resection for stage IVa disease provided longer OS in our national cohort. We additionally recommend stage-specific comparison of novel treatments against available BSC data.
Collapse
Affiliation(s)
- Elina S. Rantala
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital
| | - Tero T. Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital
| | - Micaela M. Hernberg
- Comprehensive Cancer Center, Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Sander MS, Stukalin I, Vallerand IA, Goutam S, Ewanchuk BW, Meyers DE, Pabani A, Morris DG, Heng DYC, Cheng T. Evaluation of the modified immune prognostic index to prognosticate outcomes in metastatic uveal melanoma patients treated with immune checkpoint inhibitors. Cancer Med 2021; 10:2618-2626. [PMID: 33724676 PMCID: PMC8026925 DOI: 10.1002/cam4.3784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Metastatic uveal melanoma (MUM) is associated with poor survival and inferior response to immune checkpoint inhibitor (ICI) therapy when compared with metastatic cutaneous melanoma. Currently, prognostic biomarkers are lacking to guide treatment decisions. Patients and Methods We conducted a multicenter, retrospective cohort study using a centralized, province‐wide cancer database in Alberta, Canada. We identified 37 patients with histologically confirmed MUM who received at least one dose of single‐agent pembrolizumab or nivolumab, or combination therapy nivolumab and ipilimumab. A modified immune prognostic index (IPI), based on the previously reported lung immune prognostic index, was used to stratify patients into favorable and poor IPI groups. Survival analyses were conducted using the Kaplan–Meier method and Cox proportional hazards models, adjusting for baseline age (≥60) and ECOG performance status, to assess the associations between IPI and overall survival (OS). Time to treatment failure (TTF) was also assessed using the Kaplan–Meier method. The association between IPI and objective response rate was examined using chi‐squared tests. Logistic regression was used to determine the association between IPI and immune‐related adverse events (irAEs). Results Median OS was 15.6 (range 0.6–57.6) months with 45.9% 1‐year survival rate at a median follow‐up of 11.8 months. We found that a favorable IPI was significantly associated with OS [median 30.5 (12.0‐not reached) months in the favorable IPI group compared with 4.6 (2.1–16.0) months in the poor IPI group (p = 0.001)] (HR=4.81, 95% CI; 1.64–14.10, p = 0.004), TTF [median 5.1 (95% CI; 2.1–10.4) months in the favorable IPI group compared with 3.7 (95% CI; 1.4–6.4) months in the poor IPI group (p = 0.0191)], and irAE (HR=6.67, 95% CI; 1.32–33.69, p = 0.0220). Conclusions The modified IPI may be a useful tool in clinical practice for identifying MUM patients who are more likely to experience irAEs and realize a survival benefit from ICI treatment.
Collapse
Affiliation(s)
- Michael S Sander
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Igor Stukalin
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Isabelle A Vallerand
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Section of Dermatology, University of Calgary, Calgary, AB, Canada
| | - Siddhartha Goutam
- Faculty of Medicine and Dentistry, University of Alberta, Calgary, AB, Canada
| | | | - Daniel E Meyers
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Aliyah Pabani
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Don G Morris
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Daniel Y C Heng
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Tina Cheng
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Masaoutis C, Kokkali S, Theocharis S. Immunotherapy in uveal melanoma: novel strategies and opportunities for personalized treatment. Expert Opin Investig Drugs 2021; 30:555-569. [PMID: 33650931 DOI: 10.1080/13543784.2021.1898587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) is the most common intraocular cancer and represents a discrete subtype of melanoma. Metastatic disease, which occurs in half of patients, has a dismal prognosis. Immunotherapy with immune checkpoint inhibitors has produced promising results in cutaneous melanoma but has failed to show analogous efficacy in metastatic UM. This is attributable to UM's distinct genetics and its complex interaction with the immune system. Hence, more efficacious immunotherapeutic approaches are under investigation. AREAS COVERED We discuss those novel immunotherapeutic strategies in clinical and preclinical studies for advanced disease and which are thought to overcome the hurdles set by UM in terms of immune recognition. We also highlight the need to determine predictive markers in relation to these strategies to improve clinical outcomes. We used a simple narrative analysis to summarize the data. The search methodology is located in the Introduction. EXPERT OPINION Novel immunotherapeutic strategies focus on transforming immune excluded tumor microenvironment in metastatic UM to T cell inflamed. Preliminary results of approaches such as vaccines, adoptive cell transfer and other novel molecules are encouraging. Factors such as HLA compatibility and expression level of targeted antigens should be considered to optimize personalized management.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Medical Oncology Clinic, Saint-Savvas Anticancer Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Prasad R, Yen TJ, Bellacosa A. Active DNA demethylation-The epigenetic gatekeeper of development, immunity, and cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10033. [PMID: 36618446 PMCID: PMC9744510 DOI: 10.1002/ggn2.10033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023]
Abstract
DNA methylation is a critical process in the regulation of gene expression with dramatic effects in development and continually expanding roles in oncogenesis. 5-Methylcytosine was once considered to be an inherited and stably repressive epigenetic mark, which can be only removed by passive dilution during multiple rounds of DNA replication. However, in the past two decades, physiologically controlled DNA demethylation and deamination processes have been identified, thereby revealing the function of cytosine methylation as a highly regulated and complex state-not simply a static, inherited signature or binary on-off switch. Alongside these fundamental discoveries, clinical studies over the past decade have revealed the dramatic consequences of aberrant DNA demethylation. In this review we discuss DNA demethylation and deamination in the context of 5-methylcytosine as critical processes for physiological and physiopathological transitions within three states-development, immune maturation, and oncogenic transformation; and we describe the expanding role of DNA demethylating drugs as therapeutic agents in cancer.
Collapse
Affiliation(s)
- Rahul Prasad
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Yen
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
29
|
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Mol Cancer 2020; 19:170. [PMID: 33276788 PMCID: PMC7718690 DOI: 10.1186/s12943-020-01290-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.
Collapse
Affiliation(s)
- Robert Ballotti
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Yann Cheli
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
30
|
Rodrigues M, Ait Rais K, Salviat F, Algret N, Simaga F, Barnhill R, Gardrat S, Servois V, Mariani P, Piperno-Neumann S, Roman-Roman S, Delattre O, Cassoux N, Savignoni A, Stern MH, Pierron G. Association of Partial Chromosome 3 Deletion in Uveal Melanomas With Metastasis-Free Survival. JAMA Ophthalmol 2020; 138:182-188. [PMID: 31895446 DOI: 10.1001/jamaophthalmol.2019.5403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Importance Studies on uveal melanomas (UMs) have demonstrated the prognostic value of 8q gain and monosomy 3, but the prognosis of UMs with partial deletion of chromosome 3 remains to be defined. Objective To examine the association of partial chromosome 3 deletion in UMs with metastasis-free survival. Design, Setting, and Participants This retrospective cohort study of 1088 consecutive comparative genomic hybridization arrays performed from May 1, 2006, to July 31, 2015, assessed patients presenting with UMs with and without partial loss of chromosome 3 at a referral center. Data analysis was performed from September 1, 2017, to November 30, 2017. Exposure Uveal melanoma with or without partial loss of chromosome 3. Main Outcomes and Measures Metastasis-free survival and overall survival at 60 months. Results Of the 1088 consecutive comparative genomic hybridization arrays that were performed, 43 UMs (4.0%) in 43 patients (median age, 58 years [range, 12-79 years]; 22 [51%] female) carried partial deletions of chromosome 3. Median follow-up was 66 months (range, 1.2-126.2 months). Metastasis-free survival at 60 months was 33.6% (95% CI, 15.8%-71.4%) for UMs that carried a deletion of the BAP1 (BRCA1 associated protein 1) locus (BAP1del; 24 tumors) and 80.5% (95% CI, 64.8%-100%) for UMs without the loss of the BAP1 locus (BAP1 normal [BAP1nl]; 19 tumors) (log-rank P = .001). Overall survival at 60 months was 64.5% (95% CI, 43.5%-95.8%) in the BAP1del group vs 84.1% (95% CI, 69.0%-100%) in the BAP1nl group (log-rank P < .001). In these 43 cases, metastasis-free survival at 60 months was 100% for UMs without loss of the BAP1 locus or 8q gain, 70.0% (95% CI, 50.5%-96.9%) for UMs that carried 1 of these alterations, and 12.5% (95% CI, 2.1%-73.7%) for those that carried both (log-rank P < .001). Similarly, overall survival at 60 months was 100% for UMs without loss of the BAP1 locus or 8q gain, 80.8% (95% CI, 63.3%-100%) for UMs that carried 1 of these alterations, and 46.7% (95% CI, 23.3%-93.6%) for those that carried both (log-rank P < .001). Conclusions and Relevance These findings suggest that partial deletion of chromosome 3 encompassing the BAP1 locus is associated with poor prognosis. A cytogenetic classification of UMs could be proposed based on the status of the BAP1 locus instead of the chromosome 3 locus, while also taking chromosome 8q into account.
Collapse
Affiliation(s)
- Manuel Rodrigues
- Unit 830 (Cancer, Heterogeneity, Instability and Plasticity) INSERM, Institut Curie, PSL Research University, Paris, France.,Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Khadija Ait Rais
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Flore Salviat
- Department of Biometry, Institut Curie, PSL Research University, Paris, France
| | - Nathalie Algret
- Department of Biometry, Institut Curie, PSL Research University, Paris, France
| | - Fatoumata Simaga
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Raymond Barnhill
- Department of Biopathology, Institut Curie, PSL Research University, Paris, France.,Faculty of Medicine, University of Paris Descartes, Paris, France
| | - Sophie Gardrat
- Unit 830 (Cancer, Heterogeneity, Instability and Plasticity) INSERM, Institut Curie, PSL Research University, Paris, France.,Department of Biopathology, Institut Curie, PSL Research University, Paris, France
| | - Vincent Servois
- Department of Medical Imaging, Institut Curie, PSL Research University, Paris, France
| | - Pascale Mariani
- Department of Surgical Oncology, Institut Curie, PSL Research University, Paris, France
| | | | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Olivier Delattre
- Unit 830 (Cancer, Heterogeneity, Instability and Plasticity) INSERM, Institut Curie, PSL Research University, Paris, France.,Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Nathalie Cassoux
- Faculty of Medicine, University of Paris Descartes, Paris, France.,Department of Ocular Oncology, Institut Curie, PSL Research University, Paris, France
| | - Alexia Savignoni
- Department of Biometry, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- Unit 830 (Cancer, Heterogeneity, Instability and Plasticity) INSERM, Institut Curie, PSL Research University, Paris, France.,Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Gaëlle Pierron
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
31
|
Qin Y, Bollin K, de Macedo MP, Carapeto F, Kim KB, Roszik J, Wani KM, Reuben A, Reddy ST, Williams MD, Tetzlaff MT, Wang WL, Gombos DS, Esmaeli B, Lazar AJ, Hwu P, Patel SP. Immune profiling of uveal melanoma identifies a potential signature associated with response to immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000960. [PMID: 33203661 PMCID: PMC7674090 DOI: 10.1136/jitc-2020-000960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background To date, no systemic therapy, including immunotherapy, exists to improve clinical outcomes in metastatic uveal melanoma (UM) patients. To understand the role of immune infiltrates in the genesis, metastasis, and response to treatment for UM, we systematically characterized immune profiles of UM primary and metastatic tumors, as well as samples from UM patients treated with immunotherapies. Methods Relevant immune markers (CD3, CD8, FoxP3, CD68, PD-1, and PD-L1) were analyzed by immunohistochemistry on 27 primary and 31 metastatic tumors from 47 patients with UM. Immune gene expression profiling was conducted by NanoString analysis on pre-treatment and post-treatment tumors from patients (n=6) receiving immune checkpoint blockade or 4-1BB and OX40 dual costimulation. The immune signature of UM tumors responding to immunotherapy was further characterized by Ingenuity Pathways Analysis and validated in The Cancer Genome Atlas data set. Results Both primary and metastatic UM tumors showed detectable infiltrating lymphocytes. Compared with primary tumors, treatment-naïve metastatic UM showed significantly higher levels of CD3+, CD8+, FoxP3+ T cells, and CD68+ macrophages. Notably, levels of PD-1+ infiltrates and PD-L1+ tumor cells were low to absent in primary and metastatic UM tumors. No metastatic organ-specific differences were seen in immune infiltrates. Our NanoString analysis revealed significant differences in a set of immune markers between responders and non-responders. A group of genes relevant to the interferon-γ signature was differentially up-expressed in the pre-treatment tumors of responders. Among these genes, suppressor of cytokine signaling 1 was identified as a marker potentially contributing to the response to immunotherapy. A panel of genes that encoded pro-inflammatory cytokines and molecules were expressed significantly higher in pre-treatment tumors of non-responders compared with responders. Conclusion Our study provides critical insight into immune profiles of UM primary and metastatic tumors, which suggests a baseline tumor immune signature predictive of response and resistance to immunotherapy in UM.
Collapse
Affiliation(s)
- Yong Qin
- Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Kathryn Bollin
- Medical Oncology, Scripps MD Anderson Cancer Center, San Diego, California, USA
| | | | - Fernando Carapeto
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Jason Roszik
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khalida M Wani
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sujan T Reddy
- Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michelle D Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei-Lien Wang
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dan S Gombos
- Department of Head and Neck Surgery, Section of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sapna P Patel
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
32
|
Hoyek S, Kourie HR, Labaki C, Antoun J. Immune checkpoint inhibitors in ocular melanomas: contrasting efficacy with cutaneous melanomas. Immunotherapy 2020; 12:1149-1152. [PMID: 33076742 DOI: 10.2217/imt-2020-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sandra Hoyek
- Ophtalmology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Chris Labaki
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Joelle Antoun
- Ophtalmology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| |
Collapse
|
33
|
Repo P, Jäntti JE, Järvinen R, Rantala ES, Täll M, Raivio V, Kivelä TT, Turunen JA. Germline loss‐of‐function variants in
MBD4
are rare in Finnish patients with uveal melanoma. Pigment Cell Melanoma Res 2020; 33:756-762. [DOI: 10.1111/pcmr.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Pauliina Repo
- Folkhälsan Research Center Biomedicum Helsinki Helsinki Finland
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | | | - Reetta‐Stiina Järvinen
- Folkhälsan Research Center Biomedicum Helsinki Helsinki Finland
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Elina S. Rantala
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Martin Täll
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Virpi Raivio
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Tero T. Kivelä
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Joni A. Turunen
- Folkhälsan Research Center Biomedicum Helsinki Helsinki Finland
- Ocular Oncology Service Department of Ophthalmology Helsinki University Hospital University of Helsinki Helsinki Finland
| |
Collapse
|
34
|
Johansson PA, Brooks K, Newell F, Palmer JM, Wilmott JS, Pritchard AL, Broit N, Wood S, Carlino MS, Leonard C, Koufariotis LT, Nathan V, Beasley AB, Howlie M, Dawson R, Rizos H, Schmidt CW, Long GV, Hamilton H, Kiilgaard JF, Isaacs T, Gray ES, Rolfe OJ, Park JJ, Stark A, Mann GJ, Scolyer RA, Pearson JV, van Baren N, Waddell N, Wadt KW, McGrath LA, Warrier SK, Glasson W, Hayward NK. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat Commun 2020; 11:2408. [PMID: 32415113 PMCID: PMC7229209 DOI: 10.1038/s41467-020-16276-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular tumour in adults and despite surgical or radiation treatment of primary tumours, ~50% of patients progress to metastatic disease. Therapeutic options for metastatic UM are limited, with clinical trials having little impact. Here we perform whole-genome sequencing (WGS) of 103 UM from all sites of the uveal tract (choroid, ciliary body, iris). While most UM have low tumour mutation burden (TMB), two subsets with high TMB are seen; one driven by germline MBD4 mutation, and another by ultraviolet radiation (UVR) exposure, which is restricted to iris UM. All but one tumour have a known UM driver gene mutation (GNAQ, GNA11, BAP1, PLCB4, CYSLTR2, SF3B1, EIF1AX). We identify three other significantly mutated genes (TP53, RPL5 and CENPE). Uveal melanoma has a propensity to metastasise. Here, the authors report the whole genome sequence of 103 uveal melanomas and find that the tumour mutational burden is variable and that two subsets of tumours are characterised by MBD4 mutations and a UV exposure signature.
Collapse
Affiliation(s)
| | - Kelly Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of the Highlands and Island, Inverness, UK
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of Queensland, Brisbane, QLD, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of Queensland, Brisbane, QLD, Australia
| | - Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca Dawson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chris W Schmidt
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Mater Research, Woolloongabba, QLD, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Hayley Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Jens F Kiilgaard
- Department of Ophthalmology, Rigshospitalet-Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Timothy Isaacs
- Perth Retina, Perth, WA, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA, Australia
| | - Olivia J Rolfe
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - John J Park
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew Stark
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karin W Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lindsay A McGrath
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Sunil K Warrier
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - William Glasson
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | | |
Collapse
|
35
|
Dalmasso B, Ghiorzo P. Evolution of approaches to identify melanoma missing heritability. Expert Rev Mol Diagn 2020; 20:523-531. [PMID: 32124637 DOI: 10.1080/14737159.2020.1738221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Around 10% of melanoma patients have a positive family history of melanoma and/or related cancers. Although a germline pathogenic variant in a high-risk gene can be identified in up to 40% of these patients, the remaining part of melanoma heritability remains largely unexplained.Areas covered: The aim of this review is to provide an overview of the impact that new technologies and new research approaches had and are having on finding more efficient ways to unravel the missing heritability in melanoma.Expert opinion: High-throughput sequencing technologies have been crucial in increasing the number of genes/loci that might be implicated in melanoma predisposition. However, results from these approaches may have been inferior to the expectations, due to an increase in quantitative information which hasn't been followed at the same speed by an improvement of the methods to correctly interpret these data. Optimal approaches for improving our knowledge on melanoma heritability are currently based on segregation analysis coupled with functional assessment of candidate genes. An improvement of computational methods to infer genotype-phenotype correlations could help address the issue of missing heritability.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| |
Collapse
|
36
|
Abdel-Rahman MH, Sample KM, Pilarski R, Walsh T, Grosel T, Kinnamon D, Boru G, Massengill JB, Schoenfield L, Kelly B, Gordon D, Johansson P, DeBenedictis MJ, Singh A, Casadei S, Davidorf FH, White P, Stacey AW, Scarth J, Fewings E, Tischkowitz M, King MC, Hayward NK, Cebulla CM. Whole Exome Sequencing Identifies Candidate Genes Associated with Hereditary Predisposition to Uveal Melanoma. Ophthalmology 2020; 127:668-678. [PMID: 32081490 PMCID: PMC7183432 DOI: 10.1016/j.ophtha.2019.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/13/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To identify susceptibility genes associated with hereditary predisposition to uveal melanoma (UM) in patients with no detectable germline BAP1 alterations. DESIGN Retrospective case series from academic referral centers. PARTICIPANTS Cohort of 154 UM patients with high risk of hereditary cancer defined as patients with 1 or more of the following: (1) familial UM, (2) young age (<35 years) at diagnosis, (3) personal history of other primary cancers, and (4) family history of 2 or more primary cancers with no detectable mutation or deletion in BAP1 gene. METHODS Whole exome sequencing, a cancer gene panel, or both were carried out. Probands included 27 patients with familial UM, 1 patient with bilateral UM, 1 patient with congenital UM, and 125 UM patients with strong personal or family histories, or both, of cancer. Functional validation of variants was carried out by immunohistochemistry, reverse-transcriptase polymerase chain reaction, and genotyping. MAIN OUTCOME MEASURES Clinical characterization of UM patients with germline alterations in known cancer genes. RESULTS We identified actionable pathogenic variants in 8 known hereditary cancer predisposition genes (PALB2, MLH1, MSH6, CHEK2, SMARCE1, ATM, BRCA1, and CTNNA1) in 9 patients, including 3 of 27 patients (11%) with familial UM and 6 of 127 patients (4.7%) with a high risk for cancer. Two patients showed pathogenic variants in CHEK2 and PALB2, whereas variants in the other genes each occurred in 1 patient. Biallelic inactivation of PALB2 and MLH1 was observed in tumors from the respective patients. The frequencies of pathogenic variants in PALB2, MLH1, and SMARCE1 in UM patients were significantly higher than the observed frequencies in noncancer controls (PALB2: P = 0.02; odds ratio, 8.9; 95% confidence interval, 1.5-30.6; MLH1: P = 0.04; odds ratio, 25.4; 95% confidence interval, 1.2-143; SMARCE1: P = 0.001; odds ratio, 2047; 95% confidence interval, 52-4.5e15, respectively). CONCLUSIONS The study provided moderate evidence of gene and disease association of germline mutations in PALB2 and MLH1 with hereditary predisposition to UM. It also identified several other candidate susceptibility genes. The results suggest locus heterogeneity in predisposition to UM. Genetic testing for hereditary predisposition to cancer is warranted in UM patients with strong personal or family history of cancers, or both.
Collapse
Affiliation(s)
- Mohamed H Abdel-Rahman
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio; Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| | - Klarke M Sample
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Robert Pilarski
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Tomas Walsh
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Timothy Grosel
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Daniel Kinnamon
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Getachew Boru
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - James B Massengill
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Lynn Schoenfield
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Ben Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - David Gordon
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Peter Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Meghan J DeBenedictis
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Arun Singh
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Frederick H Davidorf
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Andrew W Stacey
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - James Scarth
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ellie Fewings
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marc Tischkowitz
- Academic Laboratory of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Colleen M Cebulla
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
37
|
TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther 2020; 27:841-853. [PMID: 32341410 DOI: 10.1038/s41417-020-0174-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
Immune checkpoint inhibition (ICI) has revolutionized cancer treatment, and produced durable responses in many cancer types. However, there remains a subset of patients that do not respond despite their tumors exhibiting PD-L1 expression, which highlights the need for additional biomarkers relevant to response. Here, we review checkpoint inhibitor signal pathways, resistance and sensitivity mechanisms, as well as response rates. We also investigate the correlation and response to ICI with BRCA1/2 mutation status and homologous recombination deficient tumors. Collectively we show that the use of tumor mutational burden may be effective as an emerging biomarker.
Collapse
|
38
|
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. UMs are usually initiated by a mutation in GNAQ or GNA11, unlike cutaneous melanomas, which usually harbour a BRAF or NRAS mutation. The annual incidence in Europe and the USA is ~6 per million population per year. Risk factors include fair skin, light-coloured eyes, congenital ocular melanocytosis, ocular melanocytoma and the BAP1-tumour predisposition syndrome. Ocular treatment aims at preserving the eye and useful vision and, if possible, preventing metastases. Enucleation has largely been superseded by various forms of radiotherapy, phototherapy and local tumour resection, often administered in combination. Ocular outcomes are best with small tumours not extending close to the optic disc and/or fovea. Almost 50% of patients develop metastatic disease, which usually involves the liver, and is usually fatal within 1 year. Although UM metastases are less responsive than cutaneous melanoma to chemotherapy or immune checkpoint inhibitors, encouraging results have been reported with partial hepatectomy for solitary metastases, with percutaneous hepatic perfusion with melphalan or with tebentafusp. Better insight into tumour immunology and metabolism may lead to new treatments.
Collapse
|
39
|
Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21030879. [PMID: 32013269 PMCID: PMC7037664 DOI: 10.3390/ijms21030879] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) represents the most common intraocular malignancy in adults and accounts for about 5% of all melanomas. Primary disease can be effectively controlled by several local therapy options, but UM has a high potential for metastatic spread, especially to the liver. Despite its clinical and genetic heterogeneity, therapy of metastatic UM has largely been adopted from cutaneous melanoma (CM) with discouraging results until now. The introduction of antibodies targeting CTLA-4 and PD-1 for immune checkpoint blockade (ICB) has revolutionized the field of cancer therapy and has achieved pioneering results in metastatic CM. Thus, expectations were high that patients with metastatic UM would also benefit from these new therapy options. This review provides a comprehensive and up-to-date overview on the role of ICB in UM. We give a summary of UM biology, its clinical features, and how it differs from CM. The results of several studies that have been investigating ICB in metastatic UM are presented. We discuss possible reasons for the lack of efficacy of ICB in UM compared to CM, highlight the pitfalls of ICB in this cancer entity, and explain why other immune-modulating therapies could still be an option for future UM therapies.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Michael Erdmann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
40
|
Gaudy-Marqueste C. Quoi de neuf en oncodermatologie ? Ann Dermatol Venereol 2019; 146:12S39-12S45. [DOI: 10.1016/s0151-9638(20)30105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Uveal melanoma: Towards a molecular understanding. Prog Retin Eye Res 2019; 75:100800. [PMID: 31563544 DOI: 10.1016/j.preteyeres.2019.100800] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
Uveal melanoma is an aggressive malignancy that originates from melanocytes in the eye. Even if the primary tumor has been successfully treated with radiation or surgery, up to half of all UM patients will eventually develop metastatic disease. Despite the common origin from neural crest-derived cells, uveal and cutaneous melanoma have few overlapping genetic signatures and uveal melanoma has been shown to have a lower mutational burden. As a consequence, many therapies that have proven effective in cutaneous melanoma -such as immunotherapy- have little or no success in uveal melanoma. Several independent studies have recently identified the underlying genetic aberrancies in uveal melanoma, which allow improved tumor classification and prognostication of metastatic disease. In most cases, activating mutations in the Gα11/Q pathway drive uveal melanoma oncogenesis, whereas mutations in the BAP1, SF3B1 or EIF1AX genes predict progression towards metastasis. Intriguingly, the composition of chromosomal anomalies of chromosome 3, 6 and 8, shown to correlate with an adverse outcome, are distinctive in the BAP1mut, SF3B1mut and EIF1AXmut uveal melanoma subtypes. Expression profiling and epigenetic studies underline this subdivision in high-, intermediate-, or low-metastatic risk subgroups and suggest a different approach in the future towards prevention and/or treatment based on the specific mutation present in the tumor of the patients. In this review we discuss the current knowledge of the underlying genetic events that lead to uveal melanoma, their implication for the disease course and prognosis, as well as the therapeutic possibilities that arise from targeting these different aberrant pathways.
Collapse
|
42
|
Chau C, van Doorn R, van Poppelen NM, van der Stoep N, Mensenkamp AR, Sijmons RH, van Paassen BW, van den Ouweland AMW, Naus NC, van der Hout AH, Potjer TP, Bleeker FE, Wevers MR, van Hest LP, Jongmans MCJ, Marinkovic M, Bleeker JC, Jager MJ, Luyten GPM, Nielsen M. Families with BAP1-Tumor Predisposition Syndrome in The Netherlands: Path to Identification and a Proposal for Genetic Screening Guidelines. Cancers (Basel) 2019; 11:cancers11081114. [PMID: 31382694 PMCID: PMC6721807 DOI: 10.3390/cancers11081114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Germline pathogenic variants in the BRCA1-associated protein-1 (BAP1) gene cause the BAP1-tumor predisposition syndrome (BAP1-TPDS, OMIM 614327). BAP1-TPDS is associated with an increased risk of developing uveal melanoma (UM), cutaneous melanoma (CM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), meningioma, cholangiocarcinoma, multiple non-melanoma skin cancers, and BAP1-inactivated nevi. Because of this increased risk, it is important to identify patients with BAP1-TPDS. The associated tumors are treated by different medical disciplines, emphasizing the need for generally applicable guidelines for initiating genetic analysis. In this study, we describe the path to identification of BAP1-TPDS in 21 probands found in the Netherlands and the family history at the time of presentation. We report two cases of de novo BAP1 germline mutations (2/21, 9.5%). Findings of this study combined with previously published literature, led to a proposal of guidelines for genetic referral. We recommend genetic analysis in patients with ≥2 BAP1-TPDS-associated tumors in their medical history and/or family history. We also propose to test germline BAP1 in patients diagnosed with UM <40 years, CM <18 years, MMe <50 years, or RCC <46 years. Furthermore, other candidate susceptibility genes for tumor types associated with BAP1-TPDS are discussed, which can be included in gene panels when testing patients.
Collapse
Affiliation(s)
- Cindy Chau
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Natasha M van Poppelen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Arjen R Mensenkamp
- Department of Clinical Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rolf H Sijmons
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Barbara W van Paassen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Nicole C Naus
- Department of Ophthalmology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marijke R Wevers
- Department of Clinical Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Liselotte P van Hest
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Clinical Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Clinical Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jaco C Bleeker
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
43
|
Schank TE, Hassel JC. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers (Basel) 2019; 11:cancers11081048. [PMID: 31344957 PMCID: PMC6721437 DOI: 10.3390/cancers11081048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/06/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Uveal melanoma is the most common primary intraocular malignancy among adults. It is, nevertheless, a rare disease, with an incidence of approximately one case per 100,000 individuals per year in Europe. Approximately half of tumors will eventually metastasize, and the liver is the organ usually affected. No standard-of-care treatment exists for metastasized uveal melanoma. Chemotherapies or liver-directed treatments do not usually result in long-term tumor control. Immunotherapies are currently the most promising therapy option available. Methods: We reviewed both relevant recent literature on PubMed concerning the treatment of uveal melanoma with immunotherapies, and currently investigated drugs on ClinicalTrials.gov. Our own experiences with immune checkpoint blockers are included in a case series of 20 patients. Results: Because few clinical trials have been conducted for metastasized uveal melanoma, no definitive treatment strategy exists for this rare disease. The outcomes of most immunotherapies are poor, especially compared with cutaneous melanoma. However, encouraging results have been found for some very recently investigated agents such as the bispecific tebentafusp, for which a remarkably increased one-year overall survival rate, and similarly increased disease control rate, were observed in early phase studies. Conclusions: The treatment of metastatic uveal melanoma remains challenging, and almost all patients still die from the disease. Long-term responses might be achievable by means of new immunological strategies. Patients should therefore be referred to large medical centers where they can take part in controlled clinical studies.
Collapse
Affiliation(s)
- Timo E Schank
- Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Rodrigues M, Koning LD, Coupland SE, Jochemsen AG, Marais R, Stern MH, Valente A, Barnhill R, Cassoux N, Evans A, Galloway I, Jager MJ, Kapiteijn E, Romanowska-Dixon B, Ryll B, Roman-Roman S, Piperno-Neumann S. So Close, yet so Far: Discrepancies between Uveal and Other Melanomas. A Position Paper from UM Cure 2020. Cancers (Basel) 2019; 11:E1032. [PMID: 31336679 PMCID: PMC6678543 DOI: 10.3390/cancers11071032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Despite much progress in our understanding of uveal melanoma (UM) over the past decades, this rare tumour is still often misclassified. Although UM, like other melanomas, is very probably derived from melanocytes, it is drastically different from cutaneous melanoma and most other melanoma subtypes in terms of epidemiology, aetiology, biology and clinical features, including an intriguing metastatic hepatotropism. UM carries distinctive prognostic chromosome alterations, somatic mutations and gene expression profiles, allowing an active tailored surveillance strategy and dedicated adjuvant clinical trials. There is no standard systemic treatment for disseminated UM at present. In contrast to cutaneous melanoma, UMs are not BRAF-mutated, thus curtailing the use of B-Raf inhibitors. Although these tumours are characterised by some immune infiltrates, immune checkpoint inhibitors are rarely effective, possibly due to a low mutation burden. UM patients across the world not only face rare cancer-related issues (e.g., specific management strategies, access to information and to expert centres), but also specific UM problems, which can be exacerbated by the common misconception that it is a subtype of cutaneous melanoma. As a European Consortium dedicated to research on UM and awareness on the disease, "UM Cure 2020" participants urge medical oncologists, pharmaceutical companies, and regulatory agencies to acknowledge UM as a melanoma with specific issues, in order to accelerate the development of new therapies for patients.
Collapse
Affiliation(s)
- Manuel Rodrigues
- Department of Medical Oncology and INSERM U830, Institut Curie, PSL Research University, 75005 Paris, France.
| | - Leanne de Koning
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Aart G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M13 9PL, UK
| | - Marc-Henri Stern
- Department of Genetics, Institut Curie, PSL Research University, 75005 Paris, France
| | | | - Raymond Barnhill
- Department of Biopathology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Andrew Evans
- Melanoma Patient Network Europe, 75597 Uppsala, Sweden
| | - Iain Galloway
- Melanoma Patient Network Europe, 75597 Uppsala, Sweden
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Jagiellonian University Medical 31007 Krakow, Poland
| | - Bettina Ryll
- Melanoma Patient Network Europe, 75597 Uppsala, Sweden
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Sophie Piperno-Neumann
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
45
|
Vivet-Noguer R, Tarin M, Roman-Roman S, Alsafadi S. Emerging Therapeutic Opportunities Based on Current Knowledge of Uveal Melanoma Biology. Cancers (Basel) 2019; 11:E1019. [PMID: 31330784 PMCID: PMC6678734 DOI: 10.3390/cancers11071019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Uveal Melanoma (UM) is a rare and malignant intraocular tumor with dismal prognosis. Despite the efficient control of the primary tumor by radiation or surgery, up to 50% of patients subsequently develop metastasis, mainly in the liver. Once the tumor has spread from the eye, the treatment is challenging and the median survival is only nine months. UM represents an intriguing model of oncogenesis that is characterized by a relatively homogeneous histopathological architecture and a low burden of genetic alterations, in contrast to other melanomas. UM is driven by recurrent activating mutations in Gαq pathway, which are associated with a second mutation in BRCA1 associated protein 1 (BAP1), splicing factor 3b subunit 1 (SF3B1), or eukaryotic translation initiation factor 1A X-linked (EIF1AX), occurring in an almost mutually exclusive manner. The monosomy of chromosome 3 is also a recurrent feature that is associated with high metastatic risk. These events driving UM oncogenesis have been thoroughly investigated over the last decade. However, no efficient related therapeutic strategies are yet available and the metastatic disease remains mostly incurable. Here, we review current knowledge regarding the molecular biology and the genetics of uveal melanoma and highlight the related therapeutic applications and perspectives.
Collapse
Affiliation(s)
- Raquel Vivet-Noguer
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Malcy Tarin
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Sergio Roman-Roman
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France.
| |
Collapse
|
46
|
Rodrigues M, Mobuchon L, Houy A, Alsafadi S, Baulande S, Mariani O, Marande B, Ait Rais K, Van der Kooij MK, Kapiteijn E, Gassama S, Gardrat S, Barnhill RL, Servois V, Dendale R, Putterman M, Tick S, Piperno-Neumann S, Cassoux N, Pierron G, Waterfall JJ, Roman-Roman S, Mariani P, Stern MH. Evolutionary Routes in Metastatic Uveal Melanomas Depend on MBD4 Alterations. Clin Cancer Res 2019; 25:5513-5524. [DOI: 10.1158/1078-0432.ccr-19-1215] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
|
47
|
Uveal Melanoma: A European Network to Face the Many Challenges of a Rare Cancer. Cancers (Basel) 2019; 11:cancers11060817. [PMID: 31200439 PMCID: PMC6628377 DOI: 10.3390/cancers11060817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Uveal melanoma (UM) is the most frequent primary ocular cancer in adults, accounting for 5% of all melanomas. Despite effective treatments for the primary tumour, up to 50% of UM patients will develop metastasis, leading to a very poor prognosis and a median overall survival of 6 to 12 months, with no major improvements in the last 30 years. There is no standard oncological treatment available for metastatic UM patients, and BRAF/MEK and immune checkpoint inhibitors show disappointing results when compared to cutaneous melanoma (CM). Recent advances in biology, however, identified specific gene and chromosome alterations, potentially permitting an actively tailored surveillance strategy, and dedicated clinical studies. Being a rare cancer, UM patients have to overcome issues such as identifying referral centres, having access to information, and partnering with oncologists for specific management strategies and research priorities. Here, we describe how the European Rare Adult solid Cancer Network (EURACAN) will help in addressing these challenges and accelerating international collaborations to enhance the development of innovative treatments in UM.
Collapse
|
48
|
Violanti SS, Bononi I, Gallenga CE, Martini F, Tognon M, Perri P. New Insights into Molecular Oncogenesis and Therapy of Uveal Melanoma. Cancers (Basel) 2019; 11:E694. [PMID: 31109147 PMCID: PMC6562554 DOI: 10.3390/cancers11050694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM), which is the most common cancer of the eye, was investigated in recent years by many teams in the field of biomedical sciences and eye clinicians. New knowledge was acquired on molecular pathways found to be dysregulated during the multistep process of oncogenesis, whereas novel therapeutic approaches gave significant results in the clinical applications. Uveal melanoma-affected patients greatly benefited from recent advances of the research in this eye cancer. Tumour biology, genetics, epigenetics and immunology contributed significantly in elucidating the role of different genes and related pathways during uveal melanoma onset/progression and UM treatments. Indeed, these investigations allowed identification of new target genes and to develop new therapeutic strategies/compounds to cure this aggressive melanoma of the eye. Unfortunately, the advances reported in the treatment of cutaneous melanoma have not produced analogous benefits in metastatic uveal melanoma. Nowadays, no systemic adjuvant therapy has been shown to improve overall survival or reduce the risk of metastasis. However, the increasing knowledge of this disease, and the encouraging results seen in clinical trials, offer promise for future effective therapies. Herein, different pathways/genes involved in uveal melanoma onset/progression were taken into consideration, together with novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Silvia Violanti
- Department of Biomedical Sciences and Specialized Surgeries, School of Medicine, University of Ferrara and Eye Unit of University Hospital of Ferrara, 44124 Ferrara, Italy.
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Carla Enrica Gallenga
- Department of Biomedical Sciences and Specialized Surgeries, School of Medicine, University of Ferrara and Eye Unit of University Hospital of Ferrara, 44124 Ferrara, Italy.
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Paolo Perri
- Department of Biomedical Sciences and Specialized Surgeries, School of Medicine, University of Ferrara and Eye Unit of University Hospital of Ferrara, 44124 Ferrara, Italy.
| |
Collapse
|