1
|
Shahid M, Khan MS, Singh UB. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. ENVIRONMENTAL RESEARCH 2023; 236:116724. [PMID: 37500042 DOI: 10.1016/j.envres.2023.116724] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reclamation of pesticide-polluted lands has long been a difficult endeavour. The use of synthetic pesticides could not be restricted due to rising agricultural demand. Pesticide toxicity has become a pressing agronomic problem due to its adverse impact on agroecosystems, agricultural output, and consequently food security and safety. Among different techniques used for the reclamation of pesticide-polluted sites, microbial bioremediation is an eco-friendly approach, which focuses on the application of resilient plant growth promoting rhizobacteria (PGPR) that may transform or degrade chemical pesticides to innocuous forms. Such pesticide-resilient PGPR has demonstrated favourable effects on soil-plant systems, even in pesticide-contaminated environments, by degrading pesticides, providing macro-and micronutrients, and secreting active but variable secondary metabolites like-phytohormones, siderophores, ACC deaminase, etc. This review critically aims to advance mechanistic understanding related to the reduction of phytotoxicity of pesticides via the use of microbe-mediated remediation techniques leading to crop optimization in pesticide-stressed soils. The literature surveyed and data presented herein are extremely useful, offering agronomists-and crop protectionists microbes-assisted remedial strategies for affordably enhancing crop productivity in pesticide-stressed soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India; Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India.
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University (A.M.U.), Aligarh, 202001, UP, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau Nath Bhanjan, 275103, UP, India
| |
Collapse
|
2
|
Heshammuddin NA, Al-Gheethi A, Saphira Radin Mohamed RM, Bin Khamidun MH. Eliminating xenobiotics organic compounds from greywater through green synthetic nanoparticles. ENVIRONMENTAL RESEARCH 2023; 222:115316. [PMID: 36669587 DOI: 10.1016/j.envres.2023.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.
Collapse
Affiliation(s)
- Nurul Atikah Heshammuddin
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Adel Al-Gheethi
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Mohd Hairul Bin Khamidun
- Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
3
|
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022; 12:818. [PMID: 36144222 PMCID: PMC9505297 DOI: 10.3390/metabo12090818] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of microorganisms to detoxify xenobiotic compounds allows them to thrive in a toxic environment using carbon, phosphorus, sulfur, and nitrogen from the available sources. Biotransformation is the most effective and useful metabolic process to degrade xenobiotic compounds. Microorganisms have an exceptional ability due to particular genes, enzymes, and degradative mechanisms. Microorganisms such as bacteria and fungi have unique properties that enable them to partially or completely metabolize the xenobiotic substances in various ecosystems.There are many cutting-edge approaches available to understand the molecular mechanism of degradative processes and pathways to decontaminate or change the core structure of xenobiotics in nature. These methods examine microorganisms, their metabolic machinery, novel proteins, and catabolic genes. This article addresses recent advances and current trends to characterize the catabolic genes, enzymes and the techniques involved in combating the threat of xenobiotic compounds using an eco-friendly approach.
Collapse
Affiliation(s)
- Rashi Miglani
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Nagma Parveen
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Ankit Kumar
- Department of Pharmaceutical Sciences, Sir J. C Bose Technical Campus, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Mohd. Arif Ansari
- Department of Forestry and Environmental Science, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Soumya Khanna
- Department of Anatomy, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Rawat
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Amrita Kumari Panda
- Department of Biotechnology, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India
| | - Satpal Singh Bisht
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Kontomina E, Garefalaki V, Fylaktakidou KC, Evmorfidou D, Eleftheraki A, Avramidou M, Udoh K, Panopoulou M, Felföldi T, Márialigeti K, Fakis G, Boukouvala S. A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria. PLoS One 2022; 17:e0271125. [PMID: 35834592 PMCID: PMC9282458 DOI: 10.1371/journal.pone.0271125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria employ secondary metabolism to combat competitors, and xenobiotic metabolism to survive their chemical environment. This project has aimed to introduce a bacterial collection enabling comprehensive comparative investigations of those functions. The collection comprises 120 strains (Proteobacteria, Actinobacteria and Firmicutes), and was compiled on the basis of the broad taxonomic range of isolates and their postulated biosynthetic and/or xenobiotic detoxification capabilities. The utility of the collection was demonstrated in two ways: first, by performing 5144 co-cultures, recording inhibition between isolates and employing bioinformatics to predict biosynthetic gene clusters in sequenced genomes of species; second, by screening for xenobiotic sensitivity of isolates against 2-benzoxazolinone and 2-aminophenol. The co-culture medium of Bacillus siamensis D9 and Lysinibacillus sphaericus DSM 28T was further analysed for possible antimicrobial compounds, using liquid chromatography-mass spectrometry (LC-MS), and guided by computational predictions and the literature. Finally, LC-MS analysis demonstrated N-acetylation of 3,4-dichloroaniline (a toxic pesticide residue of concern) by the actinobacterium Tsukamurella paurometabola DSM 20162T which is highly tolerant of the xenobiotic. Microbial collections enable "pipeline" comparative screening of strains: on the one hand, bacterial co-culture is a promising approach for antibiotic discovery; on the other hand, bioremediation is effective in combating pollution, but requires knowledge of microbial xenobiotic metabolism. The presented outcomes are anticipated to pave the way for studies that may identify bacterial strains and/or metabolites of merit in biotechnological applications.
Collapse
Affiliation(s)
- Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasiliki Garefalaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Dorothea Evmorfidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Eleftheraki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Avramidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen Udoh
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Giannoulis Fakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
5
|
Lu Z, Su H. Employing gene chip technology for monitoring and assessing soil heavy metal pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:2. [PMID: 34862584 DOI: 10.1007/s10661-021-09650-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Soil heavy metals pollution can cause many serious environment problems because of involving a very complex pollution process for soil health. Therefore, it is very important to explore methods that can effectively evaluate heavy metal pollution. Researchers were actively looking for new ideas and new methods for evaluating and predicting levels of soil heavy metal pollution. The study on microbial communities is one of the effective methods using gene chip technology. Gene chip technology, as a high-throughput metagenomics analysis technique, has been widely used for studying the structure and function of complex microbial communities in different polluted environments from different pollutants, including the soil polluted by heavy metals. However, there is still a lack of a systematic summarization for the polluted soil by heavy metals. This paper systematically analyzed soil heavy metals pollution via reviewing previous studies on applying gene chip technology, including single species, tolerance mechanisms, enrichment mechanisms, anticipation and evaluation of soil remediation, and multi-directional analysis. The latest gene chip technologies and corresponding application cases for discovering critical species and functional genes via analyzing microbial communities and evaluating heavy metal pollution of soil were also introduced in this paper. This article can provide scientific guidance for researchers actively investigating the soil polluted by heavy metals.
Collapse
Affiliation(s)
- ZiChun Lu
- College of Hehai, Chongqing University of Technology, Chongqing, 400717, China
| | - HaiFeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Xi'an, Shanxi, 710075, China.
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| |
Collapse
|
6
|
Akan OD, Udofia GE, Okeke ES, Mgbechidinma CL, Okoye CO, Zoclanclounon YAB, Atakpa EO, Adebanjo OO. Plastic waste: Status, degradation and microbial management options for Africa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112758. [PMID: 34030015 DOI: 10.1016/j.jenvman.2021.112758] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.
Collapse
Affiliation(s)
- Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 41004, China; Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Mkpat Enin LGA, Uyo P.M.B., 1167, Akwa-Ibom State, Nigeria.
| | - Godwin Evans Udofia
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo PMB, 1017, Nigeria
| | - Emmanuel Sunday Okeke
- Environmental Chemistry and Toxicology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies University of Nigeria, Nsukka, 410001, Nigeria.
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Yedomon Ange Bovys Zoclanclounon
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea; Department of Management of Environment, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 POB 2009, Cotonou, Benin
| | | | | |
Collapse
|
7
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
8
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Sangannavar PA, Kumar JS, Subrahmanyam G, Kutala S. Genomics and omics tools to assess complex microbial communities in silkworms: A paradigm shift towards translational research. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Ridl J, Suman J, Fraraccio S, Hradilova M, Strejcek M, Cajthaml T, Zubrova A, Macek T, Strnad H, Uhlik O. Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Stand Genomic Sci 2018; 13:3. [PMID: 29435100 PMCID: PMC5796565 DOI: 10.1186/s40793-017-0306-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022] Open
Abstract
In this study, following its isolation from contaminated soil, the genomic sequence of Pseudomonas alcaliphila strain JAB1 (=DSM 26533), a biphenyl-degrading bacterium, is reported and analyzed in relation to its extensive degradative capabilities. The P. alcaliphila JAB1 genome (GenBank accession no. CP016162) consists of a single 5.34 Mbp-long chromosome with a GC content of 62.5%. Gene function was assigned to 3816 of the 4908 predicted genes. The genome harbors a bph gene cluster, permitting degradation of biphenyl and many congeners of polychlorinated biphenyls (PCBs), a ben gene cluster, enabling benzoate and its derivatives to be degraded, and phe gene cluster, which permits phenol degradation. In addition, P. alcaliphila JAB1 is capable of cometabolically degrading cis-1,2-dichloroethylene (cDCE) when grown on phenol. The strain carries both catechol and protocatechuate branches of the β-ketoadipate pathway, which is used to funnel the pollutants to the central metabolism. Furthermore, we propose that clustering of MALDI-TOF MS spectra with closest phylogenetic relatives should be used when taxonomically classifying the isolated bacterium; this, together with 16S rRNA gene sequence and chemotaxonomic data analyses, enables more precise identification of the culture at the species level.
Collapse
Affiliation(s)
- Jakub Ridl
- 1Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jachym Suman
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Serena Fraraccio
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Miluse Hradilova
- 1Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Cajthaml
- 3Laboratory of Environmental Biotechnology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Zubrova
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Macek
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Hynek Strnad
- 1Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondrej Uhlik
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
11
|
Advanced microbial analysis for wastewater quality monitoring: metagenomics trend. Appl Microbiol Biotechnol 2017; 101:7445-7458. [DOI: 10.1007/s00253-017-8490-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022]
|
12
|
Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. FRONTIERS IN PLANT SCIENCE 2017; 8:172. [PMID: 28232845 PMCID: PMC5299014 DOI: 10.3389/fpls.2017.00172] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding of plant-microbe interactions that modulate cellular mechanisms in plants under extreme external conditions and help to optimize abiotic stresses. Vigilant amalgamation of these high-throughput approaches supports a higher level of knowledge generation about root-level mechanisms involved in the alleviation of abiotic stresses in organisms.
Collapse
Affiliation(s)
- Kamlesh K. Meena
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Ajay M. Sorty
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Utkarsh M. Bitla
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Khushboo Choudhary
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Priyanka Gupta
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Dhananjaya P. Singh
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Ratna Prabha
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Pramod K. Sahu
- Department of Biotechnology, National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural ResearchKushmaur, India
| | - Vijai K. Gupta
- Molecular Glyco-Biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of TechnologyTallinn, Estonia
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu UniversityVaranasi, India
| | - Kishor K. Krishanani
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| | - Paramjit S. Minhas
- Department of Microbiology, School of Edaphic Stress Management, National Institute of Abiotic Stress Management, Indian Council of Agricultural ResearchBaramati, India
| |
Collapse
|
13
|
Degenerate primers as biomarker for gene-targeted metagenomics of the catechol 1, 2-dioxygenase-encoding gene in microbial populations of petroleum-contaminated environments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1197-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Pivetal J, Frénéa-Robin M, Haddour N, Vézy C, Zanini LF, Ciuta G, Dempsey NM, Dumas-Bouchiat F, Reyne G, Bégin-Colin S, Felder-Flesh D, Ghobril C, Pourroy G, Simonet P. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20322-20327. [PMID: 26498963 DOI: 10.1007/s11356-015-5614-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil.
Collapse
|
15
|
Ufarté L, Laville É, Duquesne S, Potocki-Veronese G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 2015; 33:1845-54. [DOI: 10.1016/j.biotechadv.2015.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
|
16
|
Sierra-García IN, Correa Alvarez J, Pantaroto de Vasconcellos S, Pereira de Souza A, dos Santos Neto EV, de Oliveira VM. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 2014; 9:e90087. [PMID: 24587220 PMCID: PMC3935994 DOI: 10.1371/journal.pone.0090087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/29/2014] [Indexed: 12/19/2022] Open
Abstract
Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.
Collapse
Affiliation(s)
- Isabel Natalia Sierra-García
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
- * E-mail:
| | - Javier Correa Alvarez
- Laboratory of Genomics and Expression, University of Campinas - UNICAMP, Campinas, Brazil
| | | | - Anete Pereira de Souza
- Center of Molecular Biology and Genetic Engineering – CBMEG/UNICAMP, Rio de Janeiro, Brazil
| | | | - Valéria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
17
|
Akondi K, Lakshmi V. Emerging Trends in Genomic Approaches for Microbial Bioprospecting. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:61-70. [DOI: 10.1089/omi.2012.0082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- K.B. Akondi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| | - V.V. Lakshmi
- Department of Applied Microbiology, Sri Padmavati Women's University, Tirupati, India
| |
Collapse
|
18
|
Ekkers DM, Cretoiu MS, Kielak AM, van Elsas JD. The great screen anomaly--a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 2011; 93:1005-20. [PMID: 22189864 PMCID: PMC3264863 DOI: 10.1007/s00253-011-3804-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022]
Abstract
Functional metagenomics, the study of the collective genome of a microbial community by expressing it in a foreign host, is an emerging field in biotechnology. Over the past years, the possibility of novel product discovery through metagenomics has developed rapidly. Thus, metagenomics has been heralded as a promising mining strategy of resources for the biotechnological and pharmaceutical industry. However, in spite of innovative work in the field of functional genomics in recent years, yields from function-based metagenomics studies still fall short of producing significant amounts of new products that are valuable for biotechnological processes. Thus, a new set of strategies is required with respect to fostering gene expression in comparison to the traditional work. These new strategies should address a major issue, that is, how to successfully express a set of unknown genes of unknown origin in a foreign host in high throughput. This article is an opinionating review of functional metagenomic screening of natural microbial communities, with a focus on the optimization of new product discovery. It first summarizes current major bottlenecks in functional metagenomics and then provides an overview of the general metagenomic assessment strategies, with a focus on the challenges that are met in the screening for, and selection of, target genes in metagenomic libraries. To identify possible screening limitations, strategies to achieve optimal gene expression are reviewed, examining the molecular events all the way from the transcription level through to the secretion of the target gene product.
Collapse
Affiliation(s)
- David Matthias Ekkers
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mariana Silvia Cretoiu
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna Maria Kielak
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
19
|
Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. DIALOGUES IN CLINICAL NEUROSCIENCE 2011. [PMID: 21485746 PMCID: PMC3139398 DOI: 10.31887/dcns.2011.13.1/agonzalez] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Our understanding of the vast collection of microbes that live on and inside us (microbiota) and their collective genes (microbiome) has been revolutionized by culture-independent "metagenomic" techniques and DNA sequencing technologies. Most of our microbes live in our gut, where they function as a metabolic organ and provide attributes not encoded in our human genome. Metagenomic studies are revealing shared and distinctive features of microbial communities inhabiting different humans. A central question in psychiatry is the relative role of genes and environment in shaping behavior. The human microbiome serves as the interface between our genes and our history of environmental exposures; explorations of our microbiomes thus offer the possibility of providing new insights into our neurodevelopment and our behavioral phenotypes by affecting complex processes such as inter- and intra personal variations in cognition, personality, mood, sleep, and eating behavior, and perhaps even a variety of neuropsychiatric diseases ranging from affective disorders to autism. Better understanding of microbiome-encoded pathways for xenobiotic metabolism also has important implications for improving the efficacy of pharmacologic interventions with neuromodulatory agents.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rosen GL, Sokhansanj BA, Polikar R, Bruns MA, Russell J, Garbarine E, Essinger S, Yok N. Signal processing for metagenomics: extracting information from the soup. Curr Genomics 2009; 10:493-510. [PMID: 20436876 PMCID: PMC2808676 DOI: 10.2174/138920209789208255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/31/2009] [Accepted: 04/25/2009] [Indexed: 11/08/2022] Open
Abstract
Traditionally, studies in microbial genomics have focused on single-genomes from cultured species, thereby limiting their focus to the small percentage of species that can be cultured outside their natural environment. Fortunately, recent advances in high-throughput sequencing and computational analyses have ushered in the new field of metagenomics, which aims to decode the genomes of microbes from natural communities without the need for cultivation. Although metagenomic studies have shed a great deal of insight into bacterial diversity and coding capacity, several computational challenges remain due to the massive size and complexity of metagenomic sequence data. Current tools and techniques are reviewed in this paper which address challenges in 1) genomic fragment annotation, 2) phylogenetic reconstruction, 3) functional classification of samples, and 4) interpreting complementary metaproteomics and metametabolomics data. Also surveyed are important applications of metagenomic studies, including microbial forensics and the roles of microbial communities in shaping human health and soil ecology.
Collapse
Affiliation(s)
- Gail L. Rosen
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA, USA
| | - Bahrad A. Sokhansanj
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Robi Polikar
- Electrical and Computer Engineering Department, Rowan University, Glassboro, NJ, USA
| | - Mary Ann Bruns
- Soil Science/Microbial Ecology, Pennsylvania State University, University Park, PA, USA
| | - Jacob Russell
- Biology Department, Drexel University, Philadelphia, PA, USA
| | - Elaine Garbarine
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA, USA
| | - Steve Essinger
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA, USA
| | - Non Yok
- Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Ye Y, Tang H. An ORFome assembly approach to metagenomics sequences analysis. J Bioinform Comput Biol 2009; 7:455-71. [PMID: 19507285 DOI: 10.1142/s0219720009004151] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/18/2022]
Abstract
Metagenomics is an emerging methodology for the direct genomic analysis of a mixed community of uncultured microorganisms. The current analyses of metagenomics data largely rely on the computational tools originally designed for microbial genomics projects. The challenge of assembling metagenomic sequences arises mainly from the short reads and the high species complexity of the community. Alternatively, individual (short) reads will be searched directly against databases of known genes (or proteins) to identify homologous sequences. The latter approach may have low sensitivity and specificity in identifying homologous sequences, which may further bias the subsequent diversity analysis. In this paper, we present a novel approach to metagenomic data analysis, called Metagenomic ORFome Assembly (MetaORFA). The whole computational framework consists of three steps. Each read from a metagenomics project will first be annotated with putative open reading frames (ORFs) that likely encode proteins. Next, the predicted ORFs are assembled into a collection of peptides using an EULER assembly method. Finally, the assembled peptides (i.e. ORFome) are used for database searching of homologs and subsequent diversity analysis. We applied MetaORFA approach to several metagenomics datasets with low coverage short reads. The results show that MetaORFA can produce long peptides even when the sequence coverage of reads is extremely low. Hence, the ORFome assembly significantly increases the sensitivity of homology searching, and may potentially improve the diversity analysis of the metagenomic data. This improvement is especially useful for metagenomic projects when the genome assembly does not work because of the low sequence coverage.
Collapse
Affiliation(s)
- Yuzhen Ye
- School of Informatics, Indiana University, Bloomington, IN 47408, USA.
| | | |
Collapse
|
22
|
Stenuit B, Eyers L, Schuler L, George I, Agathos SN. Molecular Tools for Monitoring and Validating Bioremediation. SOIL BIOLOGY 2009. [DOI: 10.1007/978-3-540-89621-0_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Tzeneva VA, Salles JF, Naumova N, de Vos WM, Kuikman PJ, Dolfing J, Smidt H. Effect of soil sample preservation, compared to the effect of other environmental variables, on bacterial and eukaryotic diversity. Res Microbiol 2008; 160:89-98. [PMID: 19111612 DOI: 10.1016/j.resmic.2008.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 11/25/2022]
Abstract
Archived soil samples are a valuable source for retrospective ecological studies, and their recent analysis using molecular ecological approaches has drawn significant attention within the scientific community. However, the possibility of addressing ecological questions regarding detectable microbiota in dried and extensively stored soils has not yet been fully evaluated. To achieve this, soil samples collected from two long-term grassland experiments in the United Kingdom and The Netherlands were subjected to air-drying at 40-42 degrees C and stored at room temperature. Total bacterial, Bacillus benzoevorans-related and eukaryotic communities associated with these samples were analyzed by DGGE-fingerprinting of PCR-amplified ribosomal RNA gene fragments. Changes in microbial community structure due to drying and storage were evaluated by multivariate analysis in relation to changes caused by other environmental conditions, such as soil pH, type of fertilizer and vegetation. Soil drying and storage affected the detectable community structure, but did not materially impair our capacity to identify the effect of soil parameters studied in long-term grassland experiments. Although, in some cases, the amplitude of the influence of a given parameter changed due to sample preservation, analyses revealed that pH, fertilization and soil type significantly influenced microbial community structure in the analyzed samples.
Collapse
Affiliation(s)
- Vesela A Tzeneva
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Stenuit B, Eyers L, Schuler L, Agathos SN, George I. Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 2008; 26:561-75. [DOI: 10.1016/j.biotechadv.2008.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 07/27/2008] [Accepted: 07/28/2008] [Indexed: 12/01/2022]
|
25
|
Botton S, van Heusden M, Parsons JR, Smidt H, van Straalen N. Resilience of Microbial Systems Towards Disturbances. Crit Rev Microbiol 2008; 32:101-12. [PMID: 16850561 DOI: 10.1080/10408410600709933] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper we aim at summarizing the current definitions of resilience in systems ecology with particular attention towards microbial systems. The recent advances of biomolecular techniques have provided scientists with new tools to investigate these systems in greater detail and with higher resolution. Therefore existing concepts and hypotheses have been revisited and discussed with respect to their applicability for ecosystems ruled by microbial processes. This review has also led to some reflections on the suitability of the term "resilience" as a general goal in environmental policies.
Collapse
Affiliation(s)
- S Botton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
van Elsas JD, Costa R, Jansson J, Sjöling S, Bailey M, Nalin R, Vogel TM, van Overbeek L. The metagenomics of disease-suppressive soils - experiences from the METACONTROL project. Trends Biotechnol 2008; 26:591-601. [PMID: 18774191 DOI: 10.1016/j.tibtech.2008.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/14/2008] [Accepted: 07/22/2008] [Indexed: 11/29/2022]
Abstract
Soil teems with microbial genetic information that can be exploited for biotechnological innovation. Because only a fraction of the soil microbiota is cultivable, our ability to unlock this genetic complement has been hampered. Recently developed molecular tools, which make it possible to utilize genomic DNA from soil, can bypass cultivation and provide information on the collective soil metagenome with the aim to explore genes that encode functions of key interest to biotechnology. The metagenome of disease-suppressive soils is of particular interest given the expected prevalence of antibiotic biosynthetic clusters. However, owing to the complexity of soil microbial communities, deciphering this key genetic information is challenging. Here, we examine crucial issues and challenges that so far have hindered the metagenomic exploration of soil by drawing on experience from a trans-European project on disease-suppressive soils denoted METACONTROL.
Collapse
Affiliation(s)
- Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9750AA Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jørgensen KS. Advances in monitoring of catabolic genes during bioremediation. Indian J Microbiol 2008; 48:152-5. [PMID: 23100709 DOI: 10.1007/s12088-008-0021-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/27/2008] [Indexed: 11/26/2022] Open
Abstract
Biodegradation of xenobiotic compounds by microbes is exploited in the clean up of contaminated environments by bioremediation. Catabolic (or functional) genes encode for specific enzymes in catabolic pathways such as key enzymes in xenobiotic degradation pathways. By assessing the abundance or the expression of key genes in environmental samples one can get a potential measure of the degradation activity. One way of assessing the abundance and expression of specific catabolic genes is by analyzing the metagenomic DNA and RNA from environmental samples. Three major challenges in the detection and quantification of catabolic genes in bioremediation studies are 1) the accurate and sensitive quantification from environmental samples 2) the coverage of the enzymatic potential by the targeted genes 3) the validation of the correlation with actual observed degradation activities in field cases. New advances in realtime PCR, functional gene arrays and meta-transcriptomics have improved the applicability of catabolic gene assessment during bioremediation.
Collapse
|
28
|
Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. ENVIRONMENT INTERNATIONAL 2008; 34:265-276. [PMID: 18083233 DOI: 10.1016/j.envint.2007.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/16/2007] [Accepted: 09/02/2007] [Indexed: 05/25/2023]
Abstract
Traditionally, the identification and characterization of microbial communities in contaminated soil and water has previously been limited to those microorganisms that are culturable. The application of molecular techniques to study microbial populations at contaminated sites without the need for culturing has led to the discovery of unique and previously unrecognized microorganisms as well as complex microbial diversity in contaminated soil and water which shows an exciting opportunity for bioremediation strategies. Nucleic acid extraction from contaminated sites and their subsequent amplification by polymerase chain reaction (PCR) has proved extremely useful in assessing the changes in microbial community structure by several microbial community profiling techniques. This review examines the current application of molecular techniques for the characterization of microbial communities in contaminated soil and water. Techniques that identify and quantify microbial population and catabolic genes involved in biodegradation are examined. In addition, methods that directly link microbial phylogeny to its ecological function at contaminated sites as well as high throughput methods for complex microbial community studies are discussed.
Collapse
Affiliation(s)
- Seidu Malik
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
29
|
Doyle E, Muckian L, Hickey AM, Clipson N. Microbial PAH Degradation. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:27-66. [DOI: 10.1016/s0065-2164(08)00602-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Dupré J, O'Malley MA. Metagenomics and biological ontology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2007; 38:834-846. [PMID: 18053937 DOI: 10.1016/j.shpsc.2007.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metagenomics is an emerging microbial systems science that is based on the large-scale analysis of the DNA of microbial communities in their natural environments. Studies of metagenomes are revealing the vast scope of biodiversity in a wide range of environments, as well as new functional capacities of individual cells and communities, and the complex evolutionary relationships between them. Our examination of this science focuses on the ontological implications of these studies of metagenomes and metaorganisms, and what they mean for common sense and philosophical understandings of multicellularity, individuality and organism. We show how metagenomics requires us to think in different ways about what human beings are and what their relation to the microbial world is. Metagenomics could also transform the way in which evolutionary processes are understood, with the most basic relationship between cells from both similar and different organisms being far more cooperative and less antagonistic than is widely assumed. In addition to raising fundamental questions about biological ontology, metagenomics generates possibilities for powerful technologies addressed to issues of climate, health and conservation. We conclude with reflections about process-oriented versus entity-oriented analysis in light of current trends towards systems approaches.
Collapse
Affiliation(s)
- John Dupré
- Egenis, ESRC Centre for Genomics in Society, University of Exeter, Byrne House, St Germans Road, Exeter EX4 4PJ, UK.
| | | |
Collapse
|
31
|
Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R. Metabolic Diversity in Bacterial Degradation of Aromatic Compounds. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:252-79. [PMID: 17883338 DOI: 10.1089/omi.2007.0004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aromatic compounds pose a major threat to the environment, being mutagenic, carcinogenic, and recalcitrant. Microbes, however, have evolved the ability to utilize these highly reduced and recalcitrant compounds as a potential source of carbon and energy. Aerobic degradation of aromatics is initiated by oxidizing the aromatic ring, making them more susceptible to cleavage by ring-cleaving dioxygenases. A preponderance of aromatic degradation genes on plasmids, transposons, and integrative genetic elements (and their shuffling through horizontal gene transfer) have lead to the evolution of novel aromatic degradative pathways. This enables the microorganisms to utilize a multitude of aromatics via common routes of degradation leading to metabolic diversity. In this review, we emphasize the exquisiteness and relevance of bacterial degradation of aromatics, interlinked degradative pathways, genetic and metabolic regulation, carbon source preference, and biosurfactant production. We have also explored the avenue of metagenomics, which opens doors to a plethora of uncultured and uncharted microbial genetics and metabolism that can be used effectively for bioremediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Biotechnology Group, School of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India.
| | | | | | | | | | | |
Collapse
|
32
|
Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 2007; 6:4. [PMID: 17254338 PMCID: PMC1796898 DOI: 10.1186/1475-2859-6-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 01/25/2007] [Indexed: 01/02/2023] Open
Abstract
With advances in robotics, computational capabilities, and the fabrication of high quality glass slides coinciding with increased genomic information being available on public databases, microarray technology is increasingly being used in laboratories around the world. In fact, fields as varied as: toxicology, evolutionary biology, drug development and production, disease characterization, diagnostics development, cellular physiology and stress responses, and forensics have benefiting from its use. However, for many researchers not familiar with microarrays, current articles and reviews often address neither the fundamental principles behind the technology nor the proper designing of experiments. Although, microarray technology is relatively simple, conceptually, its practice does require careful planning and detailed understanding of the limitations inherently present. Without these considerations, it can be exceedingly difficult to ascertain valuable information from microarray data. Therefore, this text aims to outline key features in microarray technology, paying particular attention to current applications as outlined in recent publications, experimental design, statistical methods, and potential uses. Furthermore, this review is not meant to be comprehensive, but rather substantive; highlighting important concepts and detailing steps necessary to conduct and interpret microarray experiments. Collectively, the information included in this text will highlight the versatility of microarray technology and provide a glimpse of what the future may hold.
Collapse
Affiliation(s)
- Pratik Jaluria
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
- National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Biotechnology Unit, 9000 Rockville Pike, Building 14A, Room 170, Bethesda, MD 20892, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joseph Shiloach
- National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Biotechnology Unit, 9000 Rockville Pike, Building 14A, Room 170, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Shiu SH, Borevitz JO. The next generation of microarray research: applications in evolutionary and ecological genomics. Heredity (Edinb) 2006; 100:141-9. [PMID: 17091126 DOI: 10.1038/sj.hdy.6800916] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microarray technology is one of the key developments in recent years that has propelled biological research into the post-genomic era. With the ability to assay thousands to millions of features at the same time, microarray technology has fundamentally changed how biological questions are addressed, from examining one or a few genes to a collection of genes or the whole genome. This technology has much to offer in the study of genome evolution. After a brief introduction on the technology itself, we then focus on the use of microarrays to examine genome dynamics, to uncover novel functional elements in genomes, to unravel the evolution of regulatory networks, to identify genes important for behavioral and phenotypic plasticity, and to determine microbial community diversity in environmental samples. Although there are still practical issues in using microarrays, they will be alleviated by rapid advances in array technology and analysis methods, the availability of many genome sequences of closely related species and flexibility in array design. It is anticipated that the application of microarray technology will continue to better our understanding of evolution and ecology through the examination of individuals, populations, closely related species or whole microbial communities.
Collapse
Affiliation(s)
- S-H Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
34
|
el Fantroussi S, Agathos SN, Pieper DH, Witzig R, Cámara B, Gabriel-Jürgens L, Junca H, Zanaroli G, Fava F, Pérez-Jiménez JR, Young LY, Hamonts K, Lookman R, Maesen M, Diels L, Dejonghe W, Dijk J, Springael D. Biological Assessment and Remediation of Contaminated Sediments. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/978-1-4020-4959-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
35
|
Steele HL, Streit WR. Metagenomics: advances in ecology and biotechnology. FEMS Microbiol Lett 2005; 247:105-11. [PMID: 15936897 DOI: 10.1016/j.femsle.2005.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022] Open
Abstract
This review highlights the significant advances which have been made in prokaryotic ecology and biotechnology due to the application of metagenomic techniques. It is now possible to link processes to specific microorganisms in the environment, such as the detection of a new phototrophic process in marine bacteria, and to characterise the metabolic cooperation which takes place in mixed species biofilms. The range of prokaryote derived products available for biotechnology applications is increasing rapidly. The knowledge gained from analysis of biosynthetic pathways provides valuable information about enzymology and allows engineering of biocatalysts for specific processes. The expansion of metagenomic techniques to include alternative heterologous hosts for gene expression and the development of sophisticated assays which enable screening of thousands of clones offers the possibility to find out even more valuable information about the prokaryotic world.
Collapse
Affiliation(s)
- Helen L Steele
- Biofilm-Centre--Molecular Enzyme Technology, University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | | |
Collapse
|
36
|
Urisman A, Fischer KF, Chiu CY, Kistler AL, Beck S, Wang D, DeRisi JL. E-Predict: a computational strategy for species identification based on observed DNA microarray hybridization patterns. Genome Biol 2005; 6:R78. [PMID: 16168085 PMCID: PMC1242213 DOI: 10.1186/gb-2005-6-9-r78] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/23/2005] [Accepted: 07/26/2005] [Indexed: 11/10/2022] Open
Abstract
DNA microarrays may be used to identify microbial species present in environmental and clinical samples. However, automated tools for reliable species identification based on observed microarray hybridization patterns are lacking. We present an algorithm, E-Predict, for microarray-based species identification. E-Predict compares observed hybridization patterns with theoretical energy profiles representing different species. We demonstrate the application of the algorithm to viral detection in a set of clinical samples and discuss its relevance to other metagenomic applications.
Collapse
Affiliation(s)
- Anatoly Urisman
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kael F Fischer
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Charles Y Chiu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Infectious Diseases, University of California San Francisco, San Francisco, CA 94143, USA
| | - Amy L Kistler
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shoshannah Beck
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
37
|
Abstract
It is possible to reconstruct near-complete, and possibly complete, genomes of the dominant members of microbial communities from DNA that is extracted directly from the environment. Genome sequences from environmental samples capture the aggregate characteristics of the strain population from which they were derived. Comparison of the sequence data within and among natural populations can reveal the evolutionary processes that lead to genome diversification and speciation. Community genomic datasets can also enable subsequent gene expression and proteomic studies to determine how resources are invested and functions are distributed among community members. Ultimately, genomics can reveal how individual species and strains contribute to the net activity of the community.
Collapse
Affiliation(s)
- Eric E Allen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
38
|
El Fantroussi S, Agathos SN. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 2005; 8:268-75. [PMID: 15939349 DOI: 10.1016/j.mib.2005.04.011] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/25/2005] [Indexed: 11/29/2022]
Abstract
Microorganisms can degrade numerous organic pollutants owing to their metabolic machinery and to their capacity to adapt to inhospitable environments. Thus, microorganisms are major players in site remediation. However, their efficiency depends on many factors, including the chemical nature and the concentration of pollutants, their availability to microorganisms, and the physicochemical characteristics of the environment. The capacity of a microbial population to degrade pollutants within an environmental matrix (e.g. soil, sediment, sludge or wastewater) can be enhanced either by stimulation of the indigenous microorganisms by addition of nutrients or electron acceptors (biostimulation) or by the introduction of specific microorganisms to the local population (bioaugmentation). Although it has been practiced in agriculture and in wastewater treatment for years, bioaugmentation is still experimental. Many factors (e.g. predation, competition or sorption) conspire against it. However, several strategies are currently being explored to make bioaugmentation a successful technology in sites that lack significant populations of biodegrading microorganisms. Under optimal local conditions, the rate of pollutant degradation might increase upon addition of an inoculant to remediate a chemical spill; however, the most successful cases of bioaugmentation occur in confined systems, such as bioreactors in which the conditions can be controlled to favour survival and prolonged activity of the exogenous microbial population.
Collapse
Affiliation(s)
- Saïd El Fantroussi
- Unit of Bioengineering, Catholic University of Louvain, Place Croix du Sud 2/19, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
39
|
Parales RE, Ditty JL. Laboratory evolution of catabolic enzymes and pathways. Curr Opin Biotechnol 2005; 16:315-25. [PMID: 15961033 DOI: 10.1016/j.copbio.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/15/2005] [Accepted: 03/23/2005] [Indexed: 11/25/2022]
Abstract
The laboratory evolution of environmentally relevant enzymes and proteins has resulted in the generation of optimized and stabilized enzymes, as well as enzymes with activity against new substrates. Numerous methods, including random mutagenesis, site-directed mutagenesis and DNA shuffling, have been widely used to generate variants of existing enzymes. These evolved catabolic enzymes have application for improving biodegradation pathways, generating engineered pathways for the degradation of particularly recalcitrant compounds, and for the development of biocatalytic processes to produce useful compounds. Regulatory proteins associated with catabolic pathways have been utilized to generate biosensors for the detection of bioavailable concentrations of environmentally relevant chemicals.
Collapse
Affiliation(s)
- Rebecca E Parales
- Section of Microbiology, 226 Briggs Hall, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
40
|
Scow KM, Hicks KA. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 2005; 16:246-53. [PMID: 15961025 DOI: 10.1016/j.copbio.2005.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/15/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.
Collapse
Affiliation(s)
- Kate M Scow
- Land, Air and Water Resources, University of California, 1 Shields Avenue Davis, California 95616, USA
| | | |
Collapse
|
41
|
Marsh TL. Culture-independent microbial community analysis with terminal restriction fragment length polymorphism. Methods Enzymol 2005; 397:308-29. [PMID: 16260299 DOI: 10.1016/s0076-6879(05)97018-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Terminal restriction fragment length polymorphism is a polymerase chain reaction (PCR)-based technique that has been used to effectively interrogate microbial communities to determine the diversity of both phylogenetic and functional markers. It requires the isolation of community DNA and knowledge of the target sequence. PCR amplification, performed with fluorescently labeled primers, is followed with restriction digestion and size selection on automated sequencing systems. The fluorescent tag identifies the terminal fragment, and the length polymorphism of the terminal fragments reveals a fraction of the phylogenetic diversity within the target sequence. Because the technique has high-throughput capabilities, it performs well in surveys where a large number of samples must be interrogated to ascertain spatial or temporal changes in community structure.
Collapse
Affiliation(s)
- Terence L Marsh
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing 48824, USA
| |
Collapse
|
42
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447482 DOI: 10.1002/cfg.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|