1
|
Reddy V C, Srivatsa K, Vajpai N, R G, Upadhya A, Srivastava A, B P S, Tetala KKR, Kumar A, Hazra P. Simplified purification process of AsnB3 deamidated insulin variant and its comparison with human insulin. Protein Expr Purif 2025; 229:106665. [PMID: 39875009 DOI: 10.1016/j.pep.2025.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/01/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Affiliation(s)
- Chinnappa Reddy V
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Koduru Srivatsa
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Navratna Vajpai
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Ganeshan R
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Aditya Upadhya
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Apoorva Srivastava
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Somesh B P
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Kishore K R Tetala
- CBST, Vellore institute to technology, VIT, Vellore, 632 014, Tamilnadu, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT Bombay), Powai, Mumbai, Maharashtra, 400076, India
| | - Partha Hazra
- Biocon Biologics Limited (BBL), Biocon Research Center (BRC), Biocon Park, Bommasandra Jigani Link Road, Bangalore, 560 099, India.
| |
Collapse
|
2
|
Maki Y, Mong SK, Chandrashekar C, Forbes BE, Hossain MA, Yamaguchi S, Fadzen CM, Kajihara Y, Pentelute BL. Rapid synthesis of glycosylated insulins by flow-based peptide synthesis. Chem Sci 2025:d5sc01670c. [PMID: 40191128 PMCID: PMC11969719 DOI: 10.1039/d5sc01670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Insulin is a key life-saving drug for patients with diabetes and is used clinically worldwide. To address the physicochemical challenges of insulin, such as low solubility and aggregation, glycosylated insulins have been chemically synthesized, exhibiting improved stability due to the hydration effect of glycans. In this work, we demonstrated the rapid synthesis of glycosylated insulins (glycoinsulins) using flow-based solid-phase peptide synthesis (SPPS). The insulin A-chain and glycosylated B-chain were synthesized by flow-based SPPS, with each elongation cycle completed in just 3 minutes. Through our investigations, the glycosylation step was successfully performed within 10 minutes under optimized flow-based conditions. Additionally, we examined the incorporation of dipeptide units (isoacyl dipeptide and pseudoproline) under flow conditions and demonstrated efficient peptide elongation by combining flow-based SPPS with these dipeptide units. The synthesized A- and B-chains were subsequently used for the stepwise formation of disulfide bond linkages. The resulting glycoinsulins exhibited comparable binding affinities to insulin receptors. These findings highlight a novel flow-based approach for the rapid synthesis of glycosylated peptide and protein drugs.
Collapse
Affiliation(s)
- Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Surin K Mong
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Chaitra Chandrashekar
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Victoria 3010 Australia
| | - Briony E Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University Bedford Park South Australia 5042 Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Victoria 3010 Australia
| | - Shintaro Yamaguchi
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Colin M Fadzen
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge Massachusetts 02142 USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
- Broad Institute of MIT and Harvard Cambridge Massachusetts 02142 USA
| |
Collapse
|
3
|
Kastberg LLB, Jacobsen IH, Özdemir E, Workman CT, Jensen MK, Förster J. Characterizing heterologous protein burden in Komagataella phaffii. FEMS Yeast Res 2025; 25:foaf007. [PMID: 39971732 PMCID: PMC11881926 DOI: 10.1093/femsyr/foaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/26/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025] Open
Abstract
Yeast is a widely utilized chassis for heterologous protein production, with Komagataella phaffii well-established as a prominent nonconventional yeast in this field. Despite its widespread recognition, there remains considerable potential to further optimize these cell factories to meet high production demands in a cost-effective and sustainable manner. Understanding the cellular response to the challenges of heterologous protein production can equip genetic engineers with crucial knowledge to develop enhanced strategies for constructing more efficient cell factories. In this study, we explore the molecular response of various K. phaffii strains that produce either the human insulin precursor or Mambalgin-1, examining changes in transcription and changes in intra- and extracellular protein levels. Our findings provide valuable insights into the molecular mechanisms that regulate the behaviour of K. phaffii production strains under the stress of producing different heterologous proteins. We believe that these results will serve as a foundation for identifying new genetic targets to improve strain robustness and productivity. In conclusion, we present new cellular and molecular insights into the response of K. phaffii cell factories to the challenges of burdensome heterologous protein production and our findings point to different engineering strategies for improved cell factory performance.
Collapse
Affiliation(s)
- Louise La Barbera Kastberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs. Lyngby, Denmark
| | - Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Emre Özdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs. Lyngby, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Förster
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Kim MJ, Park SL, Kim HJ, Sung BH, Sohn JH, Bae JH. Functional expression of recombinant insulins in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:302. [PMID: 39529045 PMCID: PMC11552327 DOI: 10.1186/s12934-024-02571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Since 1982, recombinant insulin has been used as a substitute for pancreatic insulin from animals. However, increasing demand in medical and food industries warrants the development of more efficient production methods. In this study, we aimed to develop a novel and efficient method for insulin production using a yeast secretion system. METHODS Here, insulin C-peptide was replaced with a hydrophilic fusion partner (HL18) containing an affinity tag for the hypersecretion and easy purification of proinsulin. The HL18 fusion partner was then removed by in vitro processing with the Kex2 endoprotease (Kex2p), and authentic insulin was recovered via affinity chromatography. To improve the insulin functions, molecular chaperones of the host strain were reinforced via the constitutive expression of HAC1. RESULTS The developed method was successfully applied for the expression of cow, pig, and chicken insulins in yeast. Moreover, biological activity of recombinant insulins was confirmed by growth stimulation of cell line. CONCLUSIONS Therefore, replacement of the C-peptide of insulin with the HL18 fusion partner and use of Kex2p for in vitro processing of proinsulin guarantees the economic production of animal insulins in yeast.
Collapse
Affiliation(s)
- Mi-Jin Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Se-Lin Park
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Cellapy Bio Inc. Bio-Venture Center, #211, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Cellapy Bio Inc. Bio-Venture Center, #211, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jung-Hoon Bae
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
6
|
Ma X, Aminov R, Franco OL, de la Fuente-Nunez C, Wang G, Wang J. Editorial: Antimicrobial peptides and their druggability, bio-safety, stability, and resistance. Front Microbiol 2024; 15:1425952. [PMID: 38846567 PMCID: PMC11154904 DOI: 10.3389/fmicb.2024.1425952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Octavio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
7
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
8
|
Valiant WG, Cai K, Vallone PM. A history of adventitious agent contamination and the current methods to detect and remove them from pharmaceutical products. Biologicals 2022; 80:6-17. [DOI: 10.1016/j.biologicals.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
|
9
|
Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F. Media optimization for SHuffle T7 Escherichia coli expressing SUMO-Lispro proinsulin by response surface methodology. BMC Biotechnol 2022; 22:1. [PMID: 34980082 PMCID: PMC8722112 DOI: 10.1186/s12896-021-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SHuffle is a suitable Escherichia coli (E. coli) strain for high yield cytoplasmic soluble expression of disulfide-bonded proteins such as Insulin due to its oxidative cytoplasmic condition and the ability to correct the arrangement of disulfide bonds. Lispro is an Insulin analog that is conventionally produced in E. coli as inclusion bodies (IBs) with prolonged production time and low recovery. Here in this study, we aimed to optimize cultivation media composition for high cell density fermentation of SHuffle T7 E. coli expressing soluble Lispro proinsulin fused to SUMO tag (SU-INS construct) to obtain high cell density fermentation. RESULTS Factors including carbon and nitrogen sources, salts, metal ions, and pH were screened via Plackett-Burman design for their effectiveness on cell dry weight (CDW) as a measure of cell growth. The most significant variables of the screening experiment were Yeast extract and MgCl2 concentration, as well as pH. Succeedingly, The Central Composite Design was utilized to further evaluate and optimize the level of significant variables. The Optimized media (OM-I) enhanced biomass by 2.3 fold in the shake flask (2.5 g/L CDW) that reached 6.45 g/L (2.6 fold increase) when applied in batch culture fermentation. The efficacy of OM-I media for soluble expression was confirmed in both shake flask and fermentor. CONCLUSION The proposed media was suitable for high cell density fermentation of E. coli SHuffle T7 and was applicable for high yield soluble expression of Lispro proinsulin.
Collapse
Affiliation(s)
- Aida Bakhshi Khalilvand
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mohammad Hossein Sanati
- Medical Genetics Group, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
10
|
Siew YY, Rai A, Pek HB, Ow DSW, Zhang W. New and efficient purification process for recombinant human insulin produced in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:9137-9151. [PMID: 34821966 DOI: 10.1007/s00253-021-11697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023]
Abstract
A new and efficient purification process for recombinant human insulin production was developed by exploring new resins and optimizing purification steps from E. coli inclusion body washing to insulin polishing. A combined additives inclusion body wash protocol drastically improved efficiency in clarifying ZZ-proinsulin samples. ZZ-proinsulin recovery increased three-fold under optimized solubilization and sulfitolysis incubation temperature and duration. Desalting with Bio-Gel P4 and P6 resulted in higher sample loading and product recovery compared to conventional resins. A higher recovery (96%) and purity (81%) of ZZ-proinsulin were achievable with the Nuvia S cation exchanger for proinsulin purification compared to a reported process using expensive affinity chromatography resin. As the first step for insulin purification, process scale-up is more economical and practical when Nuvia HR-S cation exchanger was used instead of commonly used reversed-phase chromatography. Nuvia HR-S was highly effective in removing ZZ fusion protein (90% removal) after enzymatic cleavage, although ZZ fusion protein has a very close theoretical pI to human insulin, which was supposedly challenging to be removed by cation exchange chromatography. Also, insulin can be eluted at a lower ethanol % using Nuvia HR-S compared to other reported processes and is thus more environmentally sustainable. Recombinant human insulin was obtained with over 98% purity in just a single reversed-phase polishing step, which is comparable to the reference standard. The process workflow presented here can be potentially applied for the development of purification workflow for insulin analogs or other peptide products derived from E. coli inclusion body.Key points• Drastic efficiency improvement for inclusion body wash with combined additives.• High recovery of proinsulin purification with high capacity cation exchange resin.• Effective removal of fusion tag at lower ethanol % with high-resolution resin.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Amrita Rai
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Han Bin Pek
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore.
| |
Collapse
|
11
|
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021; 51:128-152. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.
Collapse
Affiliation(s)
- Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. .,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Siew YY, Zhang W. Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. BIORESOUR BIOPROCESS 2021; 8:65. [PMID: 34336550 PMCID: PMC8313369 DOI: 10.1186/s40643-021-00419-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
The Global Diabetes Compact was launched by the World Health Organization in April 2021 with one of its important goals to increase the accessibility and affordability of life-saving medicine-insulin. The rising prevalence of diabetes worldwide is bound to escalate the demand for recombinant insulin therapeutics, and currently, the majority of recombinant insulin therapeutics are produced from E. coli inclusion bodies. Here, a comprehensive review of downstream processing of recombinant human insulin/analogue production from E. coli inclusion bodies is presented. All the critical aspects of downstream processing, starting from proinsulin recovery from inclusion bodies, inclusion body washing, inclusion body solubilization and oxidative sulfitolysis, cyanogen bromide cleavage, buffer exchange, purification by chromatography, pH precipitation and zinc crystallization methods, proinsulin refolding, enzymatic cleavage, and formulation, are explained in this review. Pertinent examples are summarized and the practical aspects of integrating every procedure into a multimodal purification scheme are critically discussed. In the face of increasing global demand for insulin product, there is a pressing need to develop a more efficient and economical production process. The information presented would be insightful to all the manufacturers and stakeholders for the production of human insulins, insulin analogues or biosimilars, as they strive to make further progresses in therapeutic recombinant insulin development and production.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
13
|
Parker MT, Kunjapur AM. Deployment of Engineered Microbes: Contributions to the Bioeconomy and Considerations for Biosecurity. Health Secur 2021; 18:278-296. [PMID: 32816583 DOI: 10.1089/hs.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.
Collapse
Affiliation(s)
- Michael T Parker
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Aditya M Kunjapur
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
14
|
Large scale purification and characterization of A21 deamidated variant-most prominent post translational modification (PTM) for insulins which is also widely observed in insulins pharmaceutical manufacturing and storage. Protein Expr Purif 2021; 185:105895. [PMID: 33957255 DOI: 10.1016/j.pep.2021.105895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Biopharmaceutical development demands appropriate understanding of product related variants, which are formed due to post-translational modification and during downstream processing. These variants can lead to low yield, reduced biological activity, and suboptimal product quality. In addition, these variants may undergo immune reactions, henceforth need to be appropriately controlled to ensure consistent product quality and patient safety. Deamidation of insulin is the most common post-translational modification occurring in insulin and insulin analogues. AsnA21 desamido variant is also the most prominent product variant formed during human insulin manufacturing process and/or during the storage. Often, this deamidated variant is used as an impurity standard during in-process and final product analysis in the QC system. However, purification of large quantity of purified deamidated material is always being challenging due to highly similar mass, ionic, hydrophobic properties, and high structural similarity of the variant compared to the parent product. Present work demonstrates the simplified and efficient scalable process for generation of AsnA21 deamidated variant in powder form with ~96% purity. The mixed-mode property of anion exchange resin PolyQuat was utilized to purify the deamidated impurity with high recovery. Subsequent reversed-phase high performance liquid chromatography (RP-HPLC) step was introduced for concentration of product in bind elute mode. Elution pool undergone isoelectric precipitation and lyophilisation. The lyophilized product allows users for convenient use of the deamidated impurity for intended purposes. Detailed characterization by Mass spectrometry revealed deamidation is at AsnA21 and further confirmed that, structural and functional characterization as well as the biological activity of isolated variant is equivalent to insulin.
Collapse
|
15
|
A novel peptide design aids in the expression and its simplified process of manufacturing of Insulin Glargine in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:3061-3074. [PMID: 33821296 DOI: 10.1007/s00253-021-11224-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Manufacturing of insulin and its analogues relied upon in vitro enzymatic cleavages of its precursor forms (single chain precursor, SCP) at both ends of a connecting peptide (C-peptide) that links the respective B-chain and A-chains to corresponding final forms. We have demonstrated a simplified approach of cleaving P. pastoris expressed SCP, distinctly at one site for conversion to insulin glargine. The design of the precursor was made in such a way that there is no C-peptide in the precursor which needs to be removed in the final product. Instead of traditional both side cleavage of the C-peptide and removing the C-peptide (by trypsin), followed by 2nd enzyme reaction (typically carboxipeptidase B), present work established only one side cleavage of the sequence by only trypsin converts the precursor to final insulin glargine product. The novel design of the precursor helped in producing insulin glargine in a single step with an application of single enzyme brought high degree of process efficiencies. Highly purified product was generated through two reversed phase high pressure chromatographic steps. Purified product was compared with the reference product Lantus®, for various physico-chemical and biological properties. Primary, secondary and tertiary structures as well as biological pharmaco-dynamic effects were found comparable. High cell density fermentation that gave a good yield of the SCP, a single step conversion to insulin glargine, enabled by a unique design of SCP and a distinct purification approach, has led to a simplified and economical manufacturing process of this important drug used to treat diabetes. KEY POINTS: • Novel concept for processing single chain precursor of insulin glargine • Simple and economic process for insulin glargine • Physicochemical characterization and animal Pharmacodynamics show similarity to Lantus.
Collapse
|
16
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
17
|
Knowledge and attitude regarding insulin self-administration among diabetic patients: a cross-sectional study in a teaching hospital of Khyber-Pakhtunkhwa, Pakistan. DRUGS & THERAPY PERSPECTIVES 2020. [DOI: 10.1007/s40267-020-00719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Govender K, Naicker T, Lin J, Baijnath S, Chuturgoon AA, Abdul NS, Docrat T, Kruger HG, Govender T. A novel and more efficient biosynthesis approach for human insulin production in Escherichia coli (E. coli). AMB Express 2020; 10:43. [PMID: 32152803 PMCID: PMC7062966 DOI: 10.1186/s13568-020-00969-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Insulin has captured researchers' attention worldwide. There is a rapid global rise in the number of diabetic patients, which increases the demand for insulin. Current methods of insulin production are expensive and time-consuming. A PCR-based strategy was employed for the cloning and verification of human insulin. The human insulin protein was then overexpressed in E. coli on a laboratory scale. Thereafter, optimisation of human insulin expression was conducted. The yield of human insulin produced was approximately 520.92 (mg/L), located in the intracellular fraction. Human insulin was detected using the MALDI-TOF-MS and LC-MS methods. The crude biosynthesised protein sequence was verified using protein sequencing, which had a 100% similarity to the human insulin sequence. The biological activity of human insulin was tested in vitro using a MTT assay, which revealed that the crude biosynthesised human insulin displayed a similar degree of efficacy to the standard human insulin. This study eliminated the use of affinity tags since an untagged pET21b expression vector was employed. Tedious protein renaturation, inclusion body recovery steps, and the expensive enzymatic cleavage of the C-peptide of insulin were eliminated, thereby making this method of biosynthesising human insulin a novel and more efficient method.
Collapse
|
19
|
Bernson D, Mecinovic A, Abed MT, Limé F, Jageland P, Palmlöf M, Esbjörner EK. Amyloid formation of bovine insulin is retarded in moderately acidic pH and by addition of short-chain alcohols. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:145-153. [PMID: 31901953 PMCID: PMC7069927 DOI: 10.1007/s00249-019-01420-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/24/2022]
Abstract
Protein aggregation and amyloid formation are associated with multiple human diseases, but are also a problem in protein production. Understanding how aggregation can be modulated is therefore of importance in both medical and industrial contexts. We have used bovine insulin as a model protein to explore how amyloid formation is affected by buffer pH and by the addition of short-chain alcohols. We find that bovine insulin forms amyloid fibrils, albeit with different rates and resulting fibril morphologies, across a wide pH range (2–7). At pH 4.0, bovine insulin displayed relatively low aggregation propensity in combination with high solubility; this condition was therefore chosen as basis for further exploration of how bovine insulin’s native state can be stabilized in the presence of short-chain alcohols that are relevant because of their common use as eluents in industrial-scale chromatography purification. We found that ethanol and isopropanol are efficient modulators of bovine insulin aggregation, providing a three to four times retardation of the aggregation kinetics at 30–35% (vol/vol) concentration; we attribute this to the formation of oligomers, which we detected by AFM. We discuss this effect in terms of reduced solvent polarity and show, by circular dichroism recordings, that a concomitant change in α-helical packing of the insulin monomer occurs in ethanol. Our results extend current knowledge of how insulin aggregates, and may, although bovine insulin serves as a simplistic model, provide insights into how buffers and additives can be fine-tuned in industrial production of proteins in general and pharmaceutical insulin in particular.
Collapse
Affiliation(s)
- David Bernson
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Almedina Mecinovic
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Md Tuhin Abed
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Fredrik Limé
- Nouyron Pulp and Performance Chemicals AB, Separation Products, 445 80, Bohus, Sweden
| | - Per Jageland
- Nouyron Pulp and Performance Chemicals AB, Separation Products, 445 80, Bohus, Sweden
| | - Magnus Palmlöf
- Nouyron Pulp and Performance Chemicals AB, Separation Products, 445 80, Bohus, Sweden
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
20
|
Glucose-responsive insulin by molecular and physical design. Nat Chem 2019; 9:937-943. [PMID: 28937662 DOI: 10.1038/nchem.2857] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
The concept of a glucose-responsive insulin (GRI) has been a recent objective of diabetes technology. The idea behind the GRI is to create a therapeutic that modulates its potency, concentration or dosing relative to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. From the perspective of the medicinal chemist, the GRI is also important as a generalized model of a potentially new generation of therapeutics that adjust potency in response to a critical therapeutic marker. The aim of this Perspective is to highlight emerging concepts, including mathematical modelling and the molecular engineering of insulin itself and its potency, towards a viable GRI. We briefly outline some of the most important recent progress toward this goal and also provide a forward-looking viewpoint, which asks if there are new approaches that could spur innovation in this area as well as to encourage synthetic chemists and chemical engineers to address the challenges and promises offered by this therapeutic approach.
Collapse
|
21
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
22
|
Slouka C, Kopp J, Spadiut O, Herwig C. Perspectives of inclusion bodies for bio-based products: curse or blessing? Appl Microbiol Biotechnol 2019; 103:1143-1153. [PMID: 30569219 PMCID: PMC6394472 DOI: 10.1007/s00253-018-9569-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
The bacterium Escherichia coli is a major host for recombinant protein production of non-glycosylated products. Depending on the expression strategy, the recombinant protein can be located intracellularly, which often leads to protein aggregates inside of the cytoplasm, forming so the called inclusion bodies (IBs). When compared to other protein expression strategies, inclusion body formation allows high product titers and also the possibility of expressing proteins being toxic for the host. In the past years, the comprehension of inclusion bodies being only inactive protein aggregates changed, and the new term of non-classical inclusion bodies emerged. These inclusion bodies are believed to contain a reasonable amount of active protein within their structure. However, subsequent downstream processing, such as homogenisation of cells, centrifugation or solubilisation of IBs, is prone to variable process performance and is often known to result in low extraction yields. It is hypothesised that variations in IB quality attributes are responsible for those effects and that such attributes can be controlled by upstream process conditions. In this review, we address the impact of process design (process parameters) in the upstream on defined inclusion body quality attributes. The following topics are therefore addressed: (i) an overview of the range of inclusion body applications (including emerging technologies); (ii) analytical methods to determine quality attributes; and (iii) screws in process engineering to achieve the desired quality attributes for different inclusion body-based applications. Process parameters in the upstream can be used to trigger different quality attributes including protein activity, but are not exploited to a satisfying content yet. Design by quality approaches in the upstream are already considered for a multitude of existing processes. Further intensifying this approach may pave the industrial application for new IB-based products and improves IB processing, as discussed within this review.
Collapse
Affiliation(s)
- Christoph Slouka
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria.
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria.
| |
Collapse
|
23
|
Mueller P, Gauttam R, Raab N, Handrick R, Wahl C, Leptihn S, Zorn M, Kussmaul M, Scheffold M, Eikmanns B, Elling L, Gaisser S. High level in vivo mucin-type glycosylation in Escherichia coli. Microb Cell Fact 2018; 17:168. [PMID: 30367634 PMCID: PMC6202839 DOI: 10.1186/s12934-018-1013-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/19/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Increasing efforts have been made to assess the potential of Escherichia coli strains for the production of complex recombinant proteins. Since a considerable part of therapeutic proteins are glycoproteins, the lack of the post-translational attachment of sugar moieties in standard E. coli expression strains represents a major caveat, thus limiting the use of E. coli based cell factories. The establishment of an E. coli expression system capable of protein glycosylation could potentially facilitate the production of therapeutics with a putative concomitant reduction of production costs. RESULTS The previously established E. coli strain expressing the soluble form of the functional human-derived glycosyltransferase polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2) was further modified by co-expressing the UDP-GlcNAc 4-epimerase WbgU derived from Plesiomonas shigelloides. This enables the conversion of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) to the sugar donor uridine 5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in the bacterial cytoplasm. Initially, the codon-optimised gene wbgU was inserted into a pET-derived vector and a Tobacco Etch Virus (TEV) protease cleavable polyhistidine-tag was translationally fused to the C- terminus of the amino acid sequence. The 4-epimerase was subsequently expressed and purified. Following the removal of the polyhistidine-tag, WbgU was analysed by circular dichroism spectroscopy to determine folding state and thermal transitions of the protein. The in vitro activity of WbgU was validated by employing a modified glycosyltransferase assay. The conversion of UDP-GlcNAc to UDP-GalNAc was shown by capillary electrophoresis analysis. Using a previously established chaperone pre-/co- expression platform, the in vivo activity of both glycosyltransferase GalNAc-T2 and 4-epimerase WbgU was assessed in E. coli, in combination with a mucin 10-derived target protein. Monitoring glycosylation by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), the results clearly indicated the in vivo glycosylation of the mucin-derived acceptor peptide. CONCLUSION In the present work, the previously established E. coli- based expression system was further optimized and the potential for in vivo O-glycosylation was shown by demonstrating the transfer of sugar moieties to a mucin-derived acceptor protein. The results offer the possibility to assess the practical use of the described expression platform for in vivo glycosylations of important biopharmaceutical compounds in E. coli.
Collapse
Affiliation(s)
- Phillipp Mueller
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| | - Rahul Gauttam
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Nadja Raab
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| | - René Handrick
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| | - Claudia Wahl
- Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sebastian Leptihn
- Zhejiang University-Edinburgh University Institute, School of Medicine, Zhejiang University, Zhejiang, China
| | - Michael Zorn
- Boehringer Ingelheim Pharma GmbH and Co.KG, Analytical Development Biologics, Biberach, Germany
| | - Michaela Kussmaul
- Boehringer Ingelheim Pharma GmbH and Co.KG, Analytical Development Biologics, Biberach, Germany
| | - Marianne Scheffold
- Boehringer Ingelheim Pharma GmbH and Co.KG, Analytical Development Biologics, Biberach, Germany
| | - Bernhard Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Lothar Elling
- Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sabine Gaisser
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| |
Collapse
|
24
|
Baram M, Gilead S, Gazit E, Miller Y. Mechanistic perspective and functional activity of insulin in amylin aggregation. Chem Sci 2018; 9:4244-4252. [PMID: 29780554 PMCID: PMC5944211 DOI: 10.1039/c8sc00481a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/14/2018] [Indexed: 11/21/2022] Open
Abstract
This work provides the first-ever complete atomic model of insulin–amylin aggregates, identifying the specific interactions that stabilize the insulin–amylin complex.
Insulin is a key regulatory polypeptide that is secreted from pancreatic β-cells and has several important effects on the synthesis of lipids, regulation of enzymatic activities, blood glucose levels and the prevention of hyperglycemia. Insulin was demonstrated to self-assemble into ordered amyloid fibrils upon repeated injections, although the possible biological significance of the supramolecular structures is enigmatic. Amylin is also an amyloidogenic polypeptide that is secreted from pancreatic β-cells and plays an important role in glycemic regulation preventing post-prandial spikes in blood glucose levels. These two amyloidogenic proteins are secreted together from the pancreas and have the ability to interact and produce insulin–amylin aggregates. So far, the molecular architecture of insulin–amylin complexes at the atomic resolution has been unknown. The current work identifies for the first time the specific π–π interactions between Y16 in insulin and F19 in amylin that contribute to the stability of the insulin–amylin complex, by using experimental and molecular modeling techniques. We performed additional experiments that verify the functional activity of insulin in amylin aggregation. Our findings illustrate for the first time the specific interactions between insulin and amylin aggregates at the atomic resolution and provide a new mechanistic perspective on the effect of insulin on amylin aggregation and may pave the way towards pharmacological intervention in this process.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel . .,The Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel
| | - Sharon Gilead
- Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology , Tel Aviv University , Tel Aviv 69978 , Israel . .,Department of Materials Science and Engineering , Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Yifat Miller
- Department of Chemistry , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel . .,The Ilse Katz Institute for Nanoscale Science & Technology , Ben-Gurion University of the Negev , Be'er Sheva 84105 , Israel
| |
Collapse
|
25
|
Wei Y, Silke JR, Xia X. Elucidating the 16S rRNA 3' boundaries and defining optimal SD/aSD pairing in Escherichia coli and Bacillus subtilis using RNA-Seq data. Sci Rep 2017; 7:17639. [PMID: 29247194 PMCID: PMC5732282 DOI: 10.1038/s41598-017-17918-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Bacterial translation initiation is influenced by base pairing between the Shine-Dalgarno (SD) sequence in the 5' UTR of mRNA and the anti-SD (aSD) sequence at the free 3' end of the 16S rRNA (3' TAIL) due to: 1) the SD/aSD sequence binding location and 2) SD/aSD binding affinity. In order to understand what makes an SD/aSD interaction optimal, we must define: 1) terminus of the 3' TAIL and 2) extent of the core aSD sequence within the 3' TAIL. Our approach to characterize these components in Escherichia coli and Bacillus subtilis involves 1) mapping the 3' boundary of the mature 16S rRNA using high-throughput RNA sequencing (RNA-Seq), and 2) identifying the segment within the 3' TAIL that is strongly preferred in SD/aSD pairing. Using RNA-Seq data, we resolve previous discrepancies in the reported 3' TAIL in B. subtilis and recovered the established 3' TAIL in E. coli. Furthermore, we extend previous studies to suggest that both highly and lowly expressed genes favor SD sequences with intermediate binding affinity, but this trend is exclusive to SD sequences that complement the core aSD sequences defined herein.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada
| | - Jordan R Silke
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
26
|
Simultaneous production of intracellular triacylglycerols and extracellular polyol esters of fatty acids by Rhodotorula babjevae and Rhodotorula aff. paludigena. J Ind Microbiol Biotechnol 2017; 44:1397-1413. [PMID: 28681129 DOI: 10.1007/s10295-017-1964-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/17/2017] [Indexed: 12/11/2022]
Abstract
Microbial oils have been analyzed as alternatives to petroleum. However, just a handful of microbes have been successfully adapted to produce chemicals that can compete with their petroleum counterparts. One of the reasons behind the low success rate is the overall economic inefficiency of valorizing a single product. This study presents a lab-scale analysis of two yeast species that simultaneously produce multiple high-value bioproducts: intracellular triacylglycerols (TG) and extracellular polyol esters of fatty acids (PEFA), two lipid classes with immediate applications in the biofuels and surfactant industries. At harvest, the yeast strain Rhodotorula aff. paludigena UCDFST 81-84 secreted 20.9 ± 0.2 g L-1 PEFA and produced 8.8 ± 1.0 g L-1 TG, while the yeast strain Rhodotorula babjevae UCDFST 04-877 secreted 11.2 ± 1.6 g L-1 PEFA and 18.5 ± 1.7 g L-1 TG. The overall glucose conversion was 0.24 and 0.22 g(total lipid) g (glucose)-1 , respectively. The results present a stable and scalable microbial growth platform yielding multiple co-products.
Collapse
|
27
|
Kim D, Park S, Jo I, Kim SM, Kang DH, Cho SP, Park JB, Hong BH, Yoon MH. Multiscale Modulation of Nanocrystalline Cellulose Hydrogel via Nanocarbon Hybridization for 3D Neuronal Bilayer Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700331. [PMID: 28544680 DOI: 10.1002/smll.201700331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Indexed: 05/19/2023]
Abstract
Bacterial biopolymers have drawn much attention owing to their unconventional three-dimensional structures and interesting functions, which are closely integrated with bacterial physiology. The nongenetic modulation of bacterial (Acetobacter xylinum) cellulose synthesis via nanocarbon hybridization, and its application to the emulation of layered neuronal tissue, is reported. The controlled dispersion of graphene oxide (GO) nanoflakes into bacterial cellulose (BC) culture media not only induces structural changes within a crystalline cellulose nanofibril, but also modulates their 3D collective association, leading to substantial reduction in Young's modulus (≈50%) and clear definition of water-hydrogel interfaces. Furthermore, real-time investigation of 3D neuronal networks constructed in this GO-incorporated BC hydrogel with broken chiral nematic ordering revealed the vertical locomotion of growth cones, the accelerated neurite outgrowth (≈100 µm per day) with reduced backward travel length, and the efficient formation of synaptic connectivity with distinct axonal bifurcation abundancy at the ≈750 µm outgrowth from a cell body. In comparison with the pristine BC, GO-BC supports the formation of well-defined neuronal bilayer networks with flattened interfacial profiles and vertical axonal outgrowth, apparently emulating the neuronal development in vivo. We envisioned that our findings may contribute to various applications of engineered BC hydrogel to fundamental neurobiology studies and neural engineering.
Collapse
Affiliation(s)
- Dongyoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 65001, Republic of Korea
| | - Subeom Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Insu Jo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 65001, Republic of Korea
| | - Dong Hee Kang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 65001, Republic of Korea
| | - Sung-Pyo Cho
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- National Center for Inter-University Research Facilities, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Bo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 65001, Republic of Korea
| |
Collapse
|
28
|
Affiliation(s)
- Cristina M. Alcántara
- Organic & Pharmaceutical Chemistry Department, Complutense University of Madrid, Madrid, Spain
| | - Andrés R. Alcántara
- Biotransformations Group, Organic & Pharmaceutical Chemistry Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
29
|
Davis D, Doloman A, Podgorski GJ, Vargis E, Flann NS. Exploiting Self-organization in Bioengineered Systems: A Computational Approach. Front Bioeng Biotechnol 2017; 5:27. [PMID: 28503548 PMCID: PMC5408088 DOI: 10.3389/fbioe.2017.00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/03/2017] [Indexed: 11/13/2022] Open
Abstract
The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates de novo vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate that at least an order of magnitude increase in production is possible, the system can be scaled up, and the self-organization of an efficient vascular network is robust. The work suggests that bioengineered multicellularity may offer efficiency improvements difficult to achieve with physical engineering approaches.
Collapse
Affiliation(s)
- Delin Davis
- Computer Science Department, Utah State University, Logan, UT, USA
| | - Anna Doloman
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | | | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | | |
Collapse
|
30
|
Polez S, Origi D, Zahariev S, Guarnaccia C, Tisminetzky SG, Skoko N, Baralle M. A Simplified and Efficient Process for Insulin Production in Pichia pastoris. PLoS One 2016; 11:e0167207. [PMID: 27907132 PMCID: PMC5131935 DOI: 10.1371/journal.pone.0167207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023] Open
Abstract
A significant barrier to insulin is affordability. In this manuscript we describe improvements to key steps in the insulin production process in Pichia pastoris that reduce cost and time. The strategy for recovery and processing of human insulin precursor has been streamlined to two steps from bioreactor to the transpeptidation reaction. In the first step the insulin precursor secreted during the methanol induction phase is recovered directly from the culture broth using Tangential Flow Filtration with a Prostak™ module eliminating the laborious and time-consuming multi-step clarification, including centrifugation. In the second step the protein is applied at very high loadings on a cation exchange resin and eluted in a mixture of water and ethanol to obtain a concentrated insulin precursor, suitable for use directly in the transpeptidation reaction. Overall the yield from insulin precursor to human insulin was 51% and consisted of three purification chromatography steps. In addition we describe a method for recovery of the excess of H-Thr(tBu)-OtBu from the transpeptidation reaction mixture, one of the more costly reagents in the process, along with its successful reuse.
Collapse
Affiliation(s)
| | - Domenico Origi
- Biomanufacturing Sciences Network, Process Solutions, Merck SpA, Vimodrone (Milan), Italy
| | | | | | | | | | | |
Collapse
|
31
|
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Comput Struct Biotechnol J 2016; 14:404-410. [PMID: 27872686 PMCID: PMC5107644 DOI: 10.1016/j.csbj.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Area of Neuroscience, SISSA, Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
32
|
Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3423685. [PMID: 27579308 PMCID: PMC4989069 DOI: 10.1155/2016/3423685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Abstract
Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.
Collapse
|
33
|
The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology. RESEARCH POLICY 2016. [DOI: 10.1016/j.respol.2016.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Rzymski P, Królczyk A. Attitudes toward genetically modified organisms in Poland: to GMO or not to GMO? Food Secur 2016. [DOI: 10.1007/s12571-016-0572-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Abstract
Insulin remains indispensable in the treatment of diabetes, but its use is hampered by its narrow therapeutic index. Although advances in peptide chemistry and recombinant DNA-based macromolecule synthesis have enabled the synthesis of structurally optimized insulin analogues, the growing epidemics of obesity and diabetes have emphasized the need for diabetes therapies that are more efficacious, safe and convenient. Accordingly, a broad set of drug candidates, targeting hyperglycaemia plus other disease abnormalities, is now progressing through the clinic. The development of an insulin therapy that is responsive to glucose concentration remains an ultimate goal, with initial prototypes now reaching the proof-of-concept stage. Simultaneously, the first alternatives to injectable delivery have progressed to registration.
Collapse
|
36
|
Landgraf W, Sandow J. Recombinant Human Insulins - Clinical Efficacy and Safety in Diabetes Therapy. EUROPEAN ENDOCRINOLOGY 2016; 12:12-17. [PMID: 29632581 PMCID: PMC5813452 DOI: 10.17925/ee.2016.12.01.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/02/2015] [Indexed: 01/26/2023]
Abstract
Insulin replacement therapy is the standard of care for patients with type 1 and advanced type 2 diabetes mellitus. Porcine and bovine pancreatic tissue was the source of the hormone for many years, followed by semisynthetic human insulin obtained by modification of animal insulin. With the development of recombinant DNA technology, recombinant (biosynthetic) human insulin became available in large amounts by biosynthesis in microorganisms (Escherichia coli, yeast) providing reliable supplies of the hormone worldwide at affordable costs. The purity and pharmaceutical quality of recombinant human insulin was demonstrated to be superior to animal and semisynthetic insulin and patients with diabetes could be safely and effectively transferred from animal or semisynthetic human insulin to recombinant human insulin with no change expected in insulin dose. The decision for change remains a clinical objective, follow-up after any change of insulin product is recommended to confirm clinical efficacy. This review provides a summary and retrospective assessment of early clinical studies with recombinant insulins (Insuman®, Humulin®, Novolin®).
Collapse
Affiliation(s)
- Wolfgang Landgraf
- Medical Affairs Diabetes Division, Sanofi-Aventis Frankfurt, Germany
| | - Juergen Sandow
- Professor, Centre of Pharmacology, Johann-Wolfgang-Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
37
|
Chen Y, Wang Q, Zhang C, Li X, Gao Q, Dong C, Liu Y, Su Z. Improving the refolding efficiency for proinsulin aspart inclusion body with optimized buffer compositions. Protein Expr Purif 2016; 122:1-7. [PMID: 26826314 DOI: 10.1016/j.pep.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 01/22/2023]
Abstract
Successfully recovering proinsulin's native conformation from inclusion body is the crucial step to guarantee high efficiency for insulin's manufacture. Here, two by-products of disulfide-linked oligomers and disulfide-isomerized monomers were clearly identified during proinsulin aspart's refolding through multiple analytic methods. Arginine and urea are both used to assist in proinsulin refolding, however the efficacy and possible mechanism was found to be different. The oligomers formed with urea were of larger size than with arginine. With the urea concentrations increasing from 2 M to 4 M, the content of oligomers decreased greatly, but simultaneously the refolding yield at the protein concentration of 0.5 mg/mL decreased from 40% to 30% due to the increase of disulfide-isomerized monomers. In contrast, with arginine concentrations increasing up to 1 M, the refolding yield gradually increased to 50% although the content for oligomers also decreased. Moreover, it was demonstrated that not redox pairs but only oxidant was necessary to facilitate the native disulfide bonds formation for the reduced denatured proinsulin. An oxidative agent of selenocystamine could increase the yield up to 80% in the presence of 0.5 M arginine. Further study demonstrated that refolding with 2 M urea instead of 0.5 M arginine could achieve similar yield as protein concentration is slightly reduced to 0.3 mg/mL. In this case, refolded proinsulin was directly purified through one-step of anionic exchange chromatography, with a recovery of 32% and purity up to 95%. All the results could be easily adopted in insulin's industrial manufacture for improving the production efficiency.
Collapse
Affiliation(s)
- Ying Chen
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiang Gao
- Novo Nordisk Research Center China, Beijing 102206, PR China
| | - Changqing Dong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
38
|
Stefanski KM, Gardner GE, Seipelt-Thiemann RL. Development of a Lac Operon Concept Inventory (LOCI). CBE LIFE SCIENCES EDUCATION 2016; 15:15/2/ar24. [PMID: 27252300 PMCID: PMC4909346 DOI: 10.1187/cbe.15-07-0162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 05/24/2023]
Abstract
Concept inventories (CIs) are valuable tools for educators that assess student achievement and identify misconceptions held by students. Results of student responses can be used to adjust or develop new instructional methods for a given topic. The regulation of gene expression in both prokaryotes and eukaryotes is an important concept in genetics and one that is particularly challenging for undergraduate students. As part of a larger study examining instructional methods related to gene regulation, the authors developed a 12-item CI assessing student knowledge of the lac operon. Using an established protocol, the authors wrote open-ended questions and conducted in-class testing with undergraduate microbiology and genetics students to discover common errors made by students about the lac operon and to determine aspects of item validity. Using these results, we constructed a 12-item multiple-choice lac operon CI called the Lac Operon Concept Inventory (LOCI), The LOCI was reviewed by two experts in the field for content validity. The LOCI underwent item analysis and was assessed for reliability with a sample of undergraduate genetics students (n = 115). The data obtained were found to be valid and reliable (coefficient alpha = 0.994) with adequate discriminatory power and item difficulty.
Collapse
Affiliation(s)
| | - Grant E Gardner
- Biology Department, Middle Tennessee State University, Murfreesboro, TN 37132 Math and Science Education Program, Middle Tennessee State University, Murfreesboro, TN 37132
| | - Rebecca L Seipelt-Thiemann
- Biology Department, Middle Tennessee State University, Murfreesboro, TN 37132 Math and Science Education Program, Middle Tennessee State University, Murfreesboro, TN 37132 Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN 37132
| |
Collapse
|
39
|
Polimeni G, Trifirò G, Ingrasciotta Y, Caputi AP. The advent of biosimilars for the treatment of diabetes: current status and future directions. Acta Diabetol 2015; 52:423-31. [PMID: 25990669 DOI: 10.1007/s00592-015-0771-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
Abstract
Biosimilar insulins are likely to enter the market of diabetes therapies as patents for major branded insulin products start to expire in the next few years (on June 2014, the European Medicines Agency authorized the first biosimilar of insulin glargine, Abasria, 100 Units/ml, for the treatment of diabetes mellitus). This would allow providing comparable clinical benefits of the current available insulins at a significantly lower cost, thus increasing the affordability and access of insulin treatment for patients with diabetes. Biosimilars are approved via a stringent regulatory pathway demonstrating quality, safety, and efficacy comparable to the reference product. However, the production complexities of such products raise important considerations for treatment efficacy and patient safety, including naming and product tracking, substitution practices, and pharmacovigilance. Additionally, as practitioners' knowledge regarding the differences about pharmacological, clinical, and regulatory aspects between biosimilars and generic small molecules is often suboptimal, specific education on biosimilar prescribing, dispensing, and administering is critical for ensuring patients' benefit and safety. This article discusses all the issues concerning biosimilar, especially biosimilar insulins.
Collapse
Affiliation(s)
- Giovanni Polimeni
- Unit of Clinical Pharmacology, Sicilian Regional Centre of Pharmacovigilance, A.U.O. Policlinico "G. Martino", Torre Biologica, Via Consolare Valeria, 98125, Gazzi, Messina, Italy,
| | | | | | | |
Collapse
|
40
|
Milne N, Luttik MAH, Cueto Rojas HF, Wahl A, van Maris AJA, Pronk JT, Daran JM. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae. Metab Eng 2015; 30:130-140. [PMID: 26037463 DOI: 10.1016/j.ymben.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae.
Collapse
Affiliation(s)
- N Milne
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - M A H Luttik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - H F Cueto Rojas
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J M Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| |
Collapse
|
41
|
Sandow J, Landgraf W, Becker R, Seipke G. Equivalent Recombinant Human Insulin Preparations and their Place in Therapy. EUROPEAN ENDOCRINOLOGY 2015; 11:10-16. [PMID: 29632560 DOI: 10.17925/ee.2015.11.01.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023]
Abstract
Recombinant human insulin was one of the first products of biotechnology. It was developed in response to the need for a consistent and sufficient worldwide supply. Recombinant human insulin replaced the animal insulins and semisynthetic insulins obtained by modification of animal insulins. Bioequivalence studies were required for regulatory approval. Three reference products were independently established during these procedures: Humulin® (Eli Lilly and Co), Novolin® (NovoNordisk) and Insuman® (Sanofi). Numerous brand names have been used during the commercial development of recombinant human insulin formulations. In this review, three current brand names are used for consistent identification. Human insulin for Humulin and Insuman are produced by fermentation in bacteria (Escherichia coli) and for Novolin in yeast (Saccharomyces cerevisiae). The bioequivalence of recombinant human insulin products was investigated in euglycaemic clamp studies. An overview of such bioequivalence studies is provided here. This paper will consider the relevance of human insulin formulations today and their place in therapy.
Collapse
Affiliation(s)
- Juergen Sandow
- Professor, Centre of Pharmacology, Johann-Wolfgang-Goethe University, Frankfurt-Main, Germany
| | | | | | - Gerhard Seipke
- Chemistry and Biotechnology Development, Sanofi-Aventis, Frankfurt, Germany
| |
Collapse
|
42
|
Abstract
When formulated as liquid dosage forms, therapeutic proteins and peptides often show instability during handling as a result of chemical degradation. Solid formulations are frequently required to maintain protein stability during storage, transport and upon administration. Herein we highlight current strategies used to formulate pharmaceutical proteins in the solid form. An overview of the physical instabilities which can arise with proteins is first described. The key solidification techniques of crystallization, freeze-drying and particle forming technologies are then discussed. Examples of current commercial products that are formulated in the solid state are provided and include neutral protamine Hagedorn – insulin crystal suspensions, freeze-dried monoclonal antibodies and leuproride polylactide-co-glycolide microparticles. Finally, future perspectives in solid-state protein formulation are described.
Collapse
|
43
|
Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Redwan EM. Cell factories for insulin production. Microb Cell Fact 2014; 13:141. [PMID: 25270715 PMCID: PMC4203937 DOI: 10.1186/s12934-014-0141-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022] Open
Abstract
The rapid increase in the number of diabetic patients globally and exploration of alternate insulin delivery methods such as inhalation or oral route that rely on higher doses, is bound to escalate the demand for recombinant insulin in near future. Current manufacturing technologies would be unable to meet the growing demand of affordable insulin due to limitation in production capacity and high production cost. Manufacturing of therapeutic recombinant proteins require an appropriate host organism with efficient machinery for posttranslational modifications and protein refolding. Recombinant human insulin has been produced predominantly using E. coli and Saccharomyces cerevisiae for therapeutic use in human. We would focus in this review, on various approaches that can be exploited to increase the production of a biologically active insulin and its analogues in E. coli and yeast. Transgenic plants are also very attractive expression system, which can be exploited to produce insulin in large quantities for therapeutic use in human. Plant-based expression system hold tremendous potential for high-capacity production of insulin in very cost-effective manner. Very high level of expression of biologically active proinsulin in seeds or leaves with long-term stability, offers a low-cost technology for both injectable as well as oral delivery of proinsulin.
Collapse
Affiliation(s)
- Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohammed N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Sheikh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Roop S Bora
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohamed Morsi M Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, Alexandria, Egypt.
| | - Hassan A I Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Tahrir St. Dokki, Cairo, 12311, Egypt.
| | - Kulvinder Singh Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Applied Technology, New Borg AL-Arab, Alexandria, Egypt.
| |
Collapse
|
44
|
Vrabelova D, Adin C, Gilor C, Rajab A. Pancreatic islet transplantation: from dogs to humans and back again. Vet Surg 2014; 43:631-41. [PMID: 24909456 DOI: 10.1111/j.1532-950x.2014.12224.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/01/2014] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation is a cell-based therapy that provides a potential cure for type 1 diabetes mellitus. After the introduction of an automated method for islet isolation and steroid-free immunosuppressive protocols, reversal of diabetes by islet transplantation is now performed at major human medical centers around the world. Despite extensive use of animal models in islet transplantation research, practical concerns have slowed the introduction of the technique into clinical veterinary practice and only a small number of studies have reported results of transplantation in dogs with spontaneously occurring diabetes mellitus; however, recent advances in islet isolation and encapsulation may make it possible to perform islet transplantation without immunosuppression in companion animals. This review summarizes experimental and clinical studies of pancreatic islet transplantation in dogs, including future directions for cell therapy in animals with naturally occurring disease.
Collapse
Affiliation(s)
- Daniela Vrabelova
- Department of Veterinary Clinical Sciences, Ohio State University, Columbus, Ohio
| | | | | | | |
Collapse
|
45
|
Jin X, Kang S, Kwon H, Park S. Heteronuclear NMR As a 4-in-1 Analytical Platform for Detecting Modification-Specific Signatures of Therapeutic Insulin Formulations. Anal Chem 2014; 86:2050-6. [DOI: 10.1021/ac403218f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xing Jin
- College of Pharmacy, Natural
Product Research Institute, Seoul National University, Seoul, Shilim-dong, Kwanak-gu, 151-742, Korea
| | - Sunmi Kang
- College of Pharmacy, Natural
Product Research Institute, Seoul National University, Seoul, Shilim-dong, Kwanak-gu, 151-742, Korea
| | - Hyuknam Kwon
- College of Pharmacy, Natural
Product Research Institute, Seoul National University, Seoul, Shilim-dong, Kwanak-gu, 151-742, Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural
Product Research Institute, Seoul National University, Seoul, Shilim-dong, Kwanak-gu, 151-742, Korea
| |
Collapse
|
46
|
Liu H, Zhou X, Tian S, Hao X, You J, Zhang Y. Two-step transpeptidation of the insulin precursor expressed in Pichia pastoris to insulin ester via trypsin-catalyzed cleavage and coupling. Biotechnol Appl Biochem 2013; 61:408-17. [PMID: 24325254 DOI: 10.1002/bab.1186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/05/2013] [Indexed: 11/07/2022]
Abstract
Insulin precursor fusion protein expressed in Pichia pastoris is a single-chain protein with a spacer peptide (EEAEAEAEPK) localized at its N-terminal. Currently, the one-step transpeptidation reaction with low yield and high cost is generally employed to convert the insulin precursor fusion protein into human insulin ester. In this study, a two-step transpeptidation reaction was proposed separating the cleavage step from the coupling step so that each reaction was performed under its optimal conditions. Using this method, the total efficiency doubled and the reaction time was shortened compared with the one-step method. In addition, the amount of O-t-butyl-l-threonine t-butyl ester and trypsin dosages were reduced by 50% and 75%, respectively. This two-step transpeptidation strategy was simple and efficient and could be used for the pharmaceutical production of human insulin.
Collapse
Affiliation(s)
- Haifeng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,Shandong Dong-e E-Jiao Co., Ltd., Shandong, People's Republic of China.,Shandong Ehua Biopharmaceutical Co., Ltd., Shandong, People's Republic of China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shousheng Tian
- Shandong Dong-e E-Jiao Co., Ltd., Shandong, People's Republic of China
| | - Xianghui Hao
- Shandong Dong-e E-Jiao Co., Ltd., Shandong, People's Republic of China
| | - Jinhua You
- Shandong Dong-e E-Jiao Co., Ltd., Shandong, People's Republic of China.,Shandong Ehua Biopharmaceutical Co., Ltd., Shandong, People's Republic of China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Kazemi Seresht A, Cruz AL, de Hulster E, Hebly M, Palmqvist EA, van Gulik W, Daran JM, Pronk J, Olsson L. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production. Biotechnol Bioeng 2013; 110:2749-63. [PMID: 23568816 DOI: 10.1002/bit.24927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 12/28/2022]
Abstract
High-level production of heterologous proteins is likely to impose a metabolic burden on the host cell and can thus affect various aspects of cellular physiology. A data-driven approach was applied to study the secretory production of a human insulin analog precursor (IAP) in Saccharomyces cerevisiae during prolonged cultivation (80 generations) in glucose-limited aerobic chemostat cultures. Physiological characterization of the recombinant cells involved a comparison with cultures of a congenic reference strain that did not produce IAP, and time-course analysis of both strains aimed at identifying the metabolic adaptation of the cells towards the burden of IAP production. All cultures were examined at high cell density conditions (30 g/L dry weight) to increase the industrial relevance of the results. The burden of heterologous protein production in the recombinant strain was explored by global transcriptome analysis and targeted metabolome analysis, including the analysis of intracellular amino acid pools, glycolytic metabolites, and TCA intermediates. The cellular re-arrangements towards IAP production were categorized in direct responses, for example, enhanced metabolism of amino acids as precursors for the formation of IAP, as well as indirect responses, for example, changes in the central carbon metabolism. As part of the long-term adaptation, a metabolic re-modeling of the IAP-expressing strain was observed, indicating an augmented negative selection pressure on glycolytic overcapacity, and the emergence of mitochondrial dysfunction. The evoked metabolic re-modeling of the cells led to less optimal conditions with respect to the expression and processing of the target protein and thus decreased the cellular expression capacity for the secretory production of IAP during prolonged cultivation.
Collapse
Affiliation(s)
- Ali Kazemi Seresht
- Industrial Biotechnology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivaegen 10, 41296, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kazemi Seresht A, Palmqvist EA, Schluckebier G, Pettersson I, Olsson L. The challenge of improved secretory production of active pharmaceutical ingredients inSaccharomyces cerevisiae: A case study on human insulin analogs. Biotechnol Bioeng 2013; 110:2764-74. [DOI: 10.1002/bit.24928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | - Eva A. Palmqvist
- Diabetes Protein Engineering, Diabetes Research Unit; Novo Nordisk A/S; DK-2780; Måløv; Denmark
| | - Gerd Schluckebier
- Diabetes Protein Engineering, Diabetes Research Unit; Novo Nordisk A/S; DK-2780; Måløv; Denmark
| | - Ingrid Pettersson
- Diabetes Protein Engineering, Diabetes Research Unit; Novo Nordisk A/S; DK-2780; Måløv; Denmark
| | - Lisbeth Olsson
- Industrial Biotechnology, Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| |
Collapse
|
49
|
Gao M, Tong Y, Gao X, Yao W. A mutated glucagon-like peptide-1 with improved glucose-lowering activity in diabetic mice. J Pharm Pharmacol 2013; 65:539-46. [PMID: 23488782 DOI: 10.1111/jphp.12011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/11/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the conformation and potency of a mutated glucagon-like peptide-1 (mGLP-1), and evaluate its glucose-lowering activity in diabetic mice. METHODS Spectroscopy techniques were employed to characterize the conformation of mGLP-1. Glucose tolerance test was performed to determine the potency of mGLP-1 in vivo. A mouse model in which diabetes was induced by multiple low doses of streptozotocin was established to evaluate the glucose-lowering activity of mGLP-1. KEY FINDINGS Compared with native GLP-1, mGLP-1 had a similar conformation and an enhanced potency in vivo. In diabetic mice, mGLP-1 displayed a significantly improved glucose-lowering activity as judged by fasting glucose and insulin, oral glucose tolerance test, beta cell function analysis and histochemical analysis. CONCLUSIONS Collectively, mGLP-1 possesses an improved glucose-lowering activity in vivo and therefore can be recognized as a potential candidate for the future development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Mingming Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | | | | |
Collapse
|
50
|
Feng F, Hu P, Chen L, Tang Q, Lian C, Yao Q, Chen K. Display of Human Proinsulin on the Bacillus subtilis Spore Surface for Oral Administration. Curr Microbiol 2013; 67:1-8. [DOI: 10.1007/s00284-013-0325-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
|