1
|
Ramamurthy K, Thomas NP, Gopi S, Sudhakaran G, Haridevamuthu B, Namasivayam KR, Arockiaraj J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A critical review of current progress, challenges, and future prospects. Int J Biol Macromol 2024; 276:133971. [PMID: 39032890 DOI: 10.1016/j.ijbiomac.2024.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Exploration of Pleurotus ostreatus as a biological agent in the degradation of persistent plastics like polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, revealing a promising avenue toward mitigating the environmental impacts of plastic pollution. Leveraging the intrinsic enzymatic capabilities of this fungus, mainly its production of laccase, presents a sustainable and eco-friendly approach to breaking down complex polymer chains into less harmful constituents. This review focused on enhancements in the strain's efficiency through genetic engineering, optimized culture conditions, and enzyme immobilization to underscore the potential for scalability and practical application of this bioremediation process. The utilization of laccase from P. ostreatus in plastic waste management demonstrates a vital step forward in pursuing sustainable environmental solutions. By using the potential of fungal bioremediation, researchers can move closer to a future in which the adverse effects of plastic pollution are significantly mitigated, benefiting the health of our planet and future generations.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - N Paul Thomas
- Department of Biochemistry, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Sanjay Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Instituite of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Instituite of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Bao C, Liu Y, Li F, Cao H, Dong B, Cao Y. Expression and Characterization of Laccase Lac1 from Coriolopsis trogii Strain Mafic-2001 in Pichia pastoris and Its Degradation of Lignin. Appl Biochem Biotechnol 2023; 195:6150-6167. [PMID: 36847985 DOI: 10.1007/s12010-023-04390-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The laccase gene (Lac1) was cloned from Coriolopsis trogii strain Mafic-2001. Full-length sequence of Lac1 containing 11 exons and 10 introns is composed of 2140 nucleotides (nts). mRNA of Lac1 encoded for a protein of 517 aa. Nucleotide sequence of the laccase was optimized and expressed in Pichia pastoris X-33. SDS-PAGE analysis showed that the molecular weight of the purified recombinant laccase rLac1 was about 70 kDa. The optimum temperature and pH of rLac1 were 40 ℃ and 3.0, respectively. rLac1 showed high residual activity (90%) in the solutions after 1 h incubation at the pH ranging from 2.5 to 8.0. rLac1 maintained over 60% of laccase activity at the temperatures ranging from 20 to 60 °C, and kept higher than 50% of its activity at 40 °C for 2 h. The activity of rLac1 was promoted by Cu2+ and inhibited by Fe2+. Under optimal conditions, lignin degradation rates of rLac1 on the substrates of rice straw, corn stover, and palm kernel cake were 50.24%, 55.49%, and 24.43% (the lignin contents of substrates untreated with rLac1 were 100%), respectively. Treated with rLac1, the structures of agricultural residues (rice straw, corn stover, and palm kernel cake) were obviously loosened which was reflected by the analysis of scanning electron microscopy and Fourier transform infrared spectroscopy. Based on the specific activity of rLac1 on the degradation of lignin, rLac1 from Coriolopsis trogii strain Mafic-2001 has the potential for in-depth utilization of agricultural residues.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Asemoloye MD, Marchisio MA. Synthetic Saccharomyces cerevisiae tolerate and degrade highly pollutant complex hydrocarbon mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113768. [PMID: 35724516 DOI: 10.1016/j.ecoenv.2022.113768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Fungal laccase (Lac) has become a very useful biocatalyst in different industries, bio-refineries and, most importantly, bioremediation. Many reports have also linked hydrocarbon tolerance and degradation by various microorganisms with Lac secretion. In this study, Trametes trogii Lac (Ttlcc1) was engineered into Saccharomyces cerevisiae strain CEN.PK2-1 C under the constitutive GPD promoter (pGPD) for multi-fold synthesis with efficient hydrocarbon tolerance and degradation. Protein expression in heterologous hosts is strictly strain-specific, it can also be influenced by the synthetic design and culture conditions. We compared synthetic designs with different shuttle vectors for the yeast strains and investigated the best culture conditions by varying the pH, temperature, carbon, nitrogen sources, and CuSO4 amount. Two S. cerevisiae strains were built in this study: byMM935 and byMM938. They carry the transcription unit pGPD-Ttlcc1-CYC1t either inside the pRSII406 integrative plasmid (byMM935) or the pRSII426 multicopy plasmid (byMM938). The performance of these two synthetic strains were studied by comparing them to the wild-type strain (byMM584). Both byMM935 and byMM938 showed significant response to different carbon sources (glucose, galactose, lactose, maltose, and sucrose), nitrogen sources (NH4Cl, NH4NO3, KNO3, malt extract, peptone, and yeast extract), and solid state fermentation of different plant biomasses (bagasse, banana peels, corn cob, mandarin peels, and peanut shells). They performed best in optimized growth conditions with specific carbon and nitrogen sources, and a preferred pH in the range 3.5-4.5, temperature between 30 and 40 0C, and 1 mM CuSO4. In optimized yeast-growth medium, strain byMM935 showed the highest laccase activities of 1.621 ± 0.063 U/mL at 64 h, whereas byMM938 gave its highest activity (1.417 ± 0.055 U/mL) at 48 h. In this work, we established, by using Bushnell Hass synthetic medium, that the new Ttlcc1-yeast strains tolerated extreme pH and complex hydrocarbon mixture (CHM) toxicity. They degraded 60-90% of the key components in CHM within 48 h, including poly-cyclic aromatic hydrocarbons, alkyl indenes, alkyl tetralines, alkyl benzenes, alkyl biphenyls, and BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes). This is the first report on the hydrocarbon degradation potential of a Ttlcc1-yeast. Compared to the native organism, such synthetic strains are better suited for meeting growing demands and have potentials for application in large-scale in situ bioremediation of hydrocarbon-polluted sites.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
4
|
Abstract
Lignin, a rigid polymer composed of phenolic subunits with high molecular weight and complex structure, ranks behind only cellulose in the contribution to the biomass of plants. Therefore, lignin can be used as a new environmentally friendly resource for the industrial production of a variety of polymers, dyes and adhesives. Since laccase was found to be able to degrade lignin, increasing attention had been paid to the valorization of lignin. Research has mainly focused on the identification of lignin-degrading enzymes, which play a key role in lignin biodegradation, and the potential application of lignin degradation products. In this review, we describe the source, catalytic specificity and enzyme reaction mechanism of the four classes of the lignin-degrading enzymes so far discovered. In addition, the major pathways of lignin biodegradation and the applications of the degradative products are also discussed. Lignin-degrading bacteria or enzymes can be used in combination with chemical pretreatment for the production of value-added chemicals from lignin, providing a promising strategy for lignin valorization.
Collapse
|
5
|
Cai HL, Shimada M, Nakagawa T. The potential and capability of the methylotrophic yeast Ogataea methanolica in a "methanol bioeconomy". Yeast 2022; 39:440-448. [PMID: 35811458 DOI: 10.1002/yea.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/03/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Efficient bioconversion of methanol, which can be generated from greenhouse gases, into valuable resources contributes to achieving climate goals and developing a sustainable economy. The methylotrophic yeast Ogataea methanolica is considered to be a suitable host for efficient methanol bioconversion because it has outstanding characteristics for the better adaptive potential to a high methanol environment (i.e., greater than 5%). This capacity represents a huge potential to construct an innovative carbon-neutral production system that converts methanol into value-added chemicals under the control of strong methanol-induced promoters. In this review, we discuss what is known about the regulation of methanol metabolism and adaptation mechanisms for 5% methanol conditions in O. methanolica in detail. We also discuss about the potential to breed "super methylotrophic yeast," which has potent growth characteristics under high methanol conditions.
Collapse
Affiliation(s)
- Hao-Liang Cai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
6
|
Huy ND, My Le NT, Chew KW, Park SM, Show PL. Characterization of a recombinant laccase from Fusarium oxysporum HUIB02 for biochemical application on dyes removal. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Biocatalyzed Reactions towards Functional Food Components 4-Alkylcatechols and Their Analogues. Catalysts 2020. [DOI: 10.3390/catal10091077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catechols are antioxidants and radical scavengers with a broad medical potential. 4-Methylcatechol (1b) and 4-ethylcatechol (2b) (occurring in some traditional fermented and smoked foods) activate the cell defense against oxidative stress. We examined the biocatalyzed reactions towards 4-n-alkylcatechols with different side chains length, which is a factor important for the biological activities of catechols. 4-n-Alkylcatechols with methyl through heptyl side chains (1b–7b) were obtained in one pot by (i) oxidation of phenols 1a–7a with tyrosinase from Agaricus bisporus followed by (ii) reduction of ortho-quinones (intermediates) with L-ascorbic acid sodium salt. The conversions decreased with increasing side chain length. The preparative reactions were carried out with substrates 1a–5a. The isolated yields of the purified products decreased from 59% in 2b to 10% in 5b in correlation with logP of the substrates. Homology modeling indicated that the affinities of two tyrosinase isoforms (PPO3 and PPO4) to the substrates with side chains longer than C2 decreased with increasing side chain length. This was probably due to steric limitations and to missing interactions of the extended side chains in the active sites. We envisage using the model to predict further substrates of tyrosinase and testing the products, catechols, for radical-scavenging and biological activities.
Collapse
|
8
|
Ardila-Leal LD, Alvarado-Ramírez MF, Gutiérrez-Rojas IS, Poutou-Piñales RA, Quevedo-Hidalgo B, Pérez-Flórez A, Pedroza-Rodríguez AM. Low-cost media statistical design for laccase rPOXA 1B production in P. pastoris. Heliyon 2020; 6:e03852. [PMID: 32368658 PMCID: PMC7184261 DOI: 10.1016/j.heliyon.2020.e03852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Laccases (E.C. 1.10.3.2) are multicopper oxidases of great importance in the industry due to their non-specificity and high oxidative potential. Laccases are useful to bleach synthetic dyes, oxidize phenolic compounds and degrade pesticides, among others. Hence, the objective of this work was to optimize low cost culture media for recombinant (rPOXA 1B) laccase production from Pleurotus ostreatus in Pichia pastoris. To this end, low cost nitrogen sources were studied, such as malt extract, isolated soy protein and milk serum. Following, two central composite designs (CCD) were performed. In CCD-1 different concentrations of glucose USP (0–13.35 gL-1), protein isolated soy protein (5–25 gL-1), malt extract (3.5–17.5 gL-1) and (NH4)2SO4 (1.3–6.5 gL-1) were evaluated. In CCD-2 only different concentrations of glucose USP (7.9–22 gL-1) and isolated soy protein (15.9–44.9 gL-1) were evaluated. CCD-2 results led to a One Factor Experimental design (OFED) to evaluate higher isolated soy protein (20–80 gL-1) concentrations. In all designs, (CCD-1, CCD-2 and OFED) CuSO4 (0.16 gL-1) and chloramphenicol (0.1 gL-1) concentrations remained unchanged. For the OFED after sequential statistical optimization, an enzyme activity of 12,877.3 ± 481.2 UL−1 at 168 h was observed. rPOXA 1B activity increased 30.54 % in comparison with CCD-2 results. Final composition of optimized media was: 20 gL-1 glucose USP, 50 gL-1 isolated soy protein 90 % (w/w), 11.74 gL-1 malt extract, and 4.91 gL-1 (NH4)2SO4. With this culture media, it was possible to reduce culture media costs by 89.84 % in comparison with improved culture media previously described by our group.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - María F Alvarado-Ramírez
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Ivonne S Gutiérrez-Rojas
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Alejandro Pérez-Flórez
- Grupo de Fitoquímica de la PUJ (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| |
Collapse
|
9
|
Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 2017; 7:73. [PMID: 28357784 PMCID: PMC5371579 DOI: 10.1186/s13568-017-0368-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Laccases have gained significant attention due to their emerging applications including bioremediation, biomass degradation and biofuel cells. One of the prerequisites for the industrial application of laccases is their sufficient availability. However, expression levels of recombinantly expressed laccases are often low. In this study Mrl2, a new laccase from the basidiomycete Moniliophthora roreri, was cloned in Pichia pastoris and produced in an optimized fed-batch process at an exceptionally high yield of 1.05 g l−1. With a redox potential of 0.58 V, Mrl2 belongs to mid-redox potential laccases. However, Mrl2 demonstrated high kcat values of 316, 20, 74, and 36 s−1 towards 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), 2,6-dimethoxyphenol (2,6-DMP) and guaiacol, respectively. Mrl2 remained stable above pH 6 and in the presence of many metal ions, which is important for application in bioremediation. Mrl2 was investigated for the ability to degrade endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSDAIs) at neutral pH value. The enzyme accepted and converted estrone, 17β-estradiol, estriol, the synthetic contraceptive 17α-ethinyl estradiol and bisphenol A at pH 7 faster than high-potential laccases from Trametes versicolor. For example, within 30 min Mrl2 removed more than 90% bisphenol A, 17ß-estradiol, 17α-ethinyl estradiol and estriol, respectively. The concentration of the recalcitrant drug diclofenac dropped by 56% after 20 h incubation with Mrl2.
Collapse
|
10
|
Ma X, Liu L, Li Q, Liu Y, Yi L, Ma L, Zhai C. High-level expression of a bacterial laccase, CueO from Escherichia coli K12 in Pichia pastoris GS115 and its application on the decolorization of synthetic dyes. Enzyme Microb Technol 2017; 103:34-41. [DOI: 10.1016/j.enzmictec.2017.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022]
|
11
|
PİNAR O, TAMERLER C, YAZGAN KARATAŞ A. Heterologous expression and characterization of a high redox potential laccase from Coriolopsis polyzona MUCL 38443. Turk J Biol 2017. [DOI: 10.3906/biy-1605-51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
12
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
13
|
Martínková L, Kotik M, Marková E, Homolka L. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. CHEMOSPHERE 2016; 149:373-382. [PMID: 26874626 DOI: 10.1016/j.chemosphere.2016.01.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
The phylum Basidiomycota include organisms with enormous bioremediation potential. A variety of processes were proposed at the lab scale for using these fungi and their phenol oxidases in the degradation of phenolics. Here we present a survey of this topic using literature published mostly over the last 10 years. First, the sources of the enzymes are summarized. The laccase and tyrosinase were mainly from Trametes versicolor and Agaricus bisporus, respectively. Recently, however, new promising wild-type producers of the enzymes have emerged and a number of recombinant strains were also constructed, based mainly on yeasts or Aspergillus strains as hosts. The next part of the study summarizes the enzyme and whole-cell applications for the degradation of phenols, polyphenols, cresols, alkylphenols, naphthols, bisphenols and halogenated (bis)phenols in model mixtures or real wastewaters from the food, paper and coal industries, or municipal and hospital sewage. The enzymes were applied as free (crude or purified) enzymes or as enzymes immobilized in various supports or CLEAs, and optionally recycled or used in continuous mode. Alternatively, growing cultures or harvested mycelia were used instead. The products, which were characterized as quinones and their polymers in some cases, could be eliminated by filtration, flocculation or adsorption onto chitosan. The purity of a treated wastewater was monitored using a sensitive aquatic organism. It is concluded that low-cost sources of these enzymes should be searched for and the benefits of enzymatic, biological and physico-chemical methods could be combined to make the processes fit for industrial use.
Collapse
Affiliation(s)
- L Martínková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic.
| | - M Kotik
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - E Marková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, CZ-166 28 Prague, Czech Republic
| | - L Homolka
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| |
Collapse
|
14
|
Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS One 2015; 10:e0116524. [PMID: 25611746 PMCID: PMC4303304 DOI: 10.1371/journal.pone.0116524] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.
Collapse
|
16
|
Laccase engineering: From rational design to directed evolution. Biotechnol Adv 2015; 33:25-40. [DOI: 10.1016/j.biotechadv.2014.12.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|
17
|
Zelena K, Eisele N, Berger RG. Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnol Adv 2014; 32:1382-95. [DOI: 10.1016/j.biotechadv.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
|
18
|
Screening, separating, and completely recovering polyphenol oxidases and other biochemicals from sweet potato wastewater in starch production. Appl Microbiol Biotechnol 2014; 99:1745-53. [DOI: 10.1007/s00253-014-6034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 11/25/2022]
|
19
|
Gu C, Zheng F, Long L, Wang J, Ding S. Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS One 2014; 9:e93912. [PMID: 24710109 PMCID: PMC3977997 DOI: 10.1371/journal.pone.0093912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/10/2014] [Indexed: 12/04/2022] Open
Abstract
The detail understanding of physiological/biochemical characteristics of individual laccase isoenzymes in fungi is necessary for fundamental and application purposes, but our knowledge is still limited for most of fungi due to difficult to express laccases heterologously. In this study, two novel laccase genes, named lac3 and lac4, encoding proteins of 547 and 532-amino acids preceded by 28 and 16-residue signal peptides, respectively, were cloned from the edible basidiomycete Coprinus comatus. They showed 70% identity but much lower homology with other fungal laccases at protein level (less than 58%). Two novel laccase isoenzymes were successfully expressed in Pichia pastoris by fusing an additional 10 amino acids (Thr-Pro-Phe-Pro-Pro-Phe-Asn-Thr-Asn-Ser) tag at N-terminus, and the volumetric activities could be dramatically enhanced from undetectable level to 689 and 1465 IU/l for Lac3 and Lac4, respectively. Both laccases possessed the lowest Km and highest kcat/Km value towards syringaldazine, followed by ABTS, guaiacol and 2,6-dimethylphenol similar as the low redox potential laccases from other microorganisms. Lac3 and Lac4 showed resistant to SDS, and retained 31.86% and 43.08% activity in the presence of 100 mM SDS, respectively. Lac3 exhibited higher decolorization efficiency than Lac4 for eleven out of thirteen different dyes, which may attribute to the relatively higher catalytic efficiency of Lac3 than Lac4 (in terms of kcat/Km) towards syringaldazine and ABTS. The mild synergistic decolorization by two laccases was observed for triphenylmethane dyes but not for anthraquinone and azo dyes.
Collapse
Affiliation(s)
- Chunjuan Gu
- Department of Biological Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fei Zheng
- Department of Biological Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liangkun Long
- Department of Biological Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Biological Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shaojun Ding
- Department of Biological Engineering, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Li Q, Pei J, Zhao L, Xie J, Cao F, Wang G. Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814020124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Pedroza-Rodríguez AM, RodrÍguez-Vázquez R, Delgado-Boada JM. Fungal laccases. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Loginov DS, Vavilova EA, Savinova ОS, Abyanova AR, Chulkin AM, Vasina DV, Zherdev AV, Koroleva OV. Immunoassays of fungal laccases for screening of natural enzymes and control of recombinant enzyme production. Biotechnol Appl Biochem 2013; 61:230-6. [PMID: 24112404 DOI: 10.1002/bab.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/23/2013] [Indexed: 11/07/2022]
Abstract
Because of the wide application of laccases in different biotechnological processes and intense studies of the enzymes from different sources, the development of efficient techniques for monitoring laccase level is a task of significant importance. Enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques were developed to control total content and isoform composition of laccases, including their recombinant preparations. Because glycosylated and nonglycosylated forms have different structures and sets of epitopes, two kinds of polyclonal antibodies were obtained and applied. The first antibody recognized the native (glycosylated) laccase purified from Trametes hirsuta and the second one reacted with recombinant (nonglycosylated) laccase expressed in Escherichia coli. Titers of the antibodies were analyzed by indirect ELISA with laccases isolated from several strains of basidiomycetes. The obtained cross-reactivity data for both antibodies demonstrated a correspondence with sequence homology of the laccases. The antibodies raised against recombinant (nonglycosylated) laccase had higher titers and thus were preferable for screening of recombinant laccase in cultural media. Thus, optimal antibody preparations were selected for screening of laccase-producing strains, and the control of recombinant enzymes and the efficiency of their use in immunochemical control of laccase levels were confirmed.
Collapse
Affiliation(s)
- Dmitry S Loginov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Refolding of Laccase in Dilution Additive Mode with Copper-Based Ionic Liquid. Appl Biochem Biotechnol 2013; 171:1289-98. [DOI: 10.1007/s12010-013-0422-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/05/2013] [Indexed: 11/25/2022]
|
24
|
Theerachat M, Emond S, Cambon E, Bordes F, Marty A, Nicaud JM, Chulalaksananukul W, Guieysse D, Remaud-Siméon M, Morel S. Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2012; 125:267-274. [PMID: 23026343 DOI: 10.1016/j.biortech.2012.07.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Abstract
The lcc1 gene coding for the laccase from Trametes versicolor DSM11269 was cloned into the genome of Yarrowia lipolytica using either single or multiple integration sites. The levels of the recombinant laccase activity secreted in the culture media were 0.25 and 1 U ml(-1) for single and multiple integrations, respectively. The strain with a single integration was successfully used to express variant libraries which were screened on ABTS substrate. The strain encoding the double mutant L185P/Q214K (rM4A) showed a sixfold enhancement in secreted enzyme activity. The catalytic efficiency of the purified rM-4A laccase was respectively increased 2.4- and 2.8-fold towards ABTS and 2,6-dimethoxyphenol, compared to the rWT. Culture supernatants containing either rWT or rM-4A catalyzed the almost complete decolorization of an Amaranth solution (70 nMs(-1)). Taken together, our results open new perspectives for the use of Y. lipolytica as a molecular evolution platform to engineer laccases with improved properties.
Collapse
Affiliation(s)
- Monnat Theerachat
- Biological Science Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 2011; 157:304-14. [PMID: 22178779 DOI: 10.1016/j.jbiotec.2011.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/25/2011] [Accepted: 11/30/2011] [Indexed: 01/26/2023]
Abstract
Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research.
Collapse
Affiliation(s)
- Roman Kittl
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2011; 1:252-62. [PMID: 21327057 DOI: 10.4161/bbug.1.4.11438] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, Napoli, Italy.
| | | | | | | | | |
Collapse
|
27
|
Huang S, Liu Z, Huang X, Guo L, Lin JF. Molecular cloning and characterization of a novel laccase gene from a white-rot fungus Polyporus grammocephalus TR16 and expression in Pichia pastoris. Lett Appl Microbiol 2011; 52:290-7. [DOI: 10.1111/j.1472-765x.2010.02997.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Huang S, Liu Z, Huang X, Guo L, Lin JF. Molecular cloning and characterization of a novel laccase gene from a white-rot fungus Polyporus grammocephalus TR16 and expression in Pichia pastoris. Lett Appl Microbiol 2011. [DOI: 10.1111/j.1472-765x.2011.02997.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Nakade K, Nakagawa Y, Yano A, Sato T, Sakamoto Y. Characterization of an extracellular laccase, PbLac1, purified from Polyporus brumalis. Fungal Biol 2010; 114:609-18. [DOI: 10.1016/j.funbio.2010.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
|
30
|
Wu YL, Pan LP, Yu SL, Li HH. Cloning, microbial expression and structure-activity relationship of polyphenol oxidases from Camellia sinensis. J Biotechnol 2010; 145:66-72. [PMID: 19857531 DOI: 10.1016/j.jbiotec.2009.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/07/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Polyphenol oxidase (PPO) can be used for organic synthesis and degradation of wastes and dyes in industries. Lack of enzyme sources is a major barrier for its application. A PPO gene, with a full length of 1.8kb without introns, was cloned by PCR from genomic DNA of five common cultivars of Camellia sinensis. They had a 98.2-99.9% degree of identity in nucleotides and 94.7-96.1% in amino acids and encoded a polypeptide of 599 amino acids with a signal peptide targeting the chloroplast and three Cu-binding domains. The mature PPO showed high expression and enzyme activity after refolding the inclusion bodies in Escherichia coli BL21 (DE3) using pET30c expression vector, but low expression in Pichia pastoris GS115 using both the secretory and non-secretory vectors pPICZalphaA and pPICZA. The expression of PPO mutants demonstrated that the signal sequences prevented recombinant gene expression in E. coli. PPO activity was not affected by the C-terminus and was slightly inhibited by the CuC domain. Other domains were important for its activity. A 3.1-fold increase in PPO activity over non-recombinant controls was obtained by expressing the PPO fragment without signal sequences and the CuC domain in E. coli BL21 (DE3) using the pET30c vector.
Collapse
Affiliation(s)
- Yi-Liang Wu
- South China Normal University, Shipai, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
31
|
LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 2009; 76:733-43. [PMID: 19966030 DOI: 10.1128/aem.01757-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laccases couple the oxidation of phenolic compounds to the reduction of molecular oxygen and thus span a wide variety of applications. While laccases of eukaryotes and bacteria are well characterized, these enzymes have not been described in archaea. Here, we report the purification and characterization of a laccase (LccA) from the halophilic archaeon Haloferax volcanii. LccA was secreted at high levels into the culture supernatant of a recombinant H. volcanii strain, with peak activity (170 +/- 10 mU.ml(-)(1)) at stationary phase (72 to 80 h). LccA was purified 13-fold to an overall yield of 72% and a specific activity of 29.4 U.mg(-)(1) with an absorbance spectrum typical of blue multicopper oxidases. The mature LccA was processed to expose an N-terminal Ala after the removal of 31 amino acid residues and was glycosylated to 6.9% carbohydrate content. Purified LccA oxidized a variety of organic substrates, including bilirubin, syringaldazine (SGZ), 2,2,-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and dimethoxyphenol (DMP), with DMP oxidation requiring the addition of CuSO(4). Optimal oxidation of ABTS and SGZ was at 45 degrees C and pH 6 and pH 8.4, respectively. The apparent K(m) values for SGZ, bilirubin, and ABTS were 35, 236, and 670 muM, with corresponding k(cat) values of 22, 29, and 10 s(-)(1), respectively. The purified LccA was tolerant of high salt, mixed organosolvents, and high temperatures, with a half-life of inactivation at 50 degrees C of 31.5 h.
Collapse
|
32
|
Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M. Engineering and Applications of fungal laccases for organic synthesis. Microb Cell Fact 2008; 7:32. [PMID: 19019256 PMCID: PMC2613868 DOI: 10.1186/1475-2859-7-32] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/20/2008] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Guo M, Lu F, Liu M, Li T, Pu J, Wang N, Liang P, Zhang C. Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye. Biotechnol Lett 2008; 30:2091-6. [DOI: 10.1007/s10529-008-9817-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
|
34
|
Couto SR, Toca-Herrera JL. Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 2007; 25:558-69. [PMID: 17706395 DOI: 10.1016/j.biotechadv.2007.07.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/05/2007] [Accepted: 07/11/2007] [Indexed: 11/26/2022]
Abstract
Laccases have received much attention from researchers during the past decades due to their broad substrate specificity and to the fact that they use molecular oxygen as the final electron acceptor instead of hydrogen peroxide as used by peroxidases. This makes laccases highly interesting for a wide variety of processes, such as textile dye decolouration, pulp bleaching, effluent detoxification, biosensors and bioremediation. The successful application of laccases to the above-mentioned processes requires the production of large quantities of enzyme at low cost. Filamentous fungi are able to produce laccases in high amounts, however, an efficient production system at bioreactor scale is still lacking. This is mainly due to the fact that laccase production by wild-type strains of filamentous fungi is linked to secondary metabolism, which implies that the following drawbacks must be overcome: uncontrolled fungal growth, the formation of polysaccharides around mycelia and the secretion of certain compounds (i.e. proteases) that inactivate laccases. This review summarizes the current status of laccase production by wild-type strains of filamentous fungi at the bioreactor scale.
Collapse
Affiliation(s)
- Susana Rodríguez Couto
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
| | | |
Collapse
|