1
|
Zhang J, Wei L, Zhang H, Ma X, Sun Y, Li R, Zhang C, Cai X, Qiao J, Meng Q. Proteomic insights into nematode-trapping fungi Arthrobotrys oligospora after their response to chitin. J Vet Res 2025; 69:71-82. [PMID: 40144063 PMCID: PMC11936082 DOI: 10.2478/jvetres-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Nematode-trapping fungi (NTFs) can produce various chitinases to degrade nematode body wall and eggshell chitin during predation. However, the regulatory mechanisms of their expression of chitinases still remain unclear. The primary objective of this study was to elucidate the differential protein profile of A. oligospora, an NTF, in response to chitin. Material and Methods Colloidal chitin was added to induce the culture of A. oligospora, and the phenotypic differences before and after induction were observed under inverted microscope. The differential proteins before and after mycelium induction were screened by liquid chromatography-tandem mass spectrometry. The differentially expressed chitinase was expressed in Pichia yeast, and the recombinant enzyme was incubated with Caenorhabditis elegans and its egg suspension to explore its biological activity. Results It was found that there was a significant acceleration in the mycelial growth post chitin interaction in A. oligospora. A total of 1,124 differentially expressed proteins (DEPs) were identified between the control group (AO-c) and the experimental group (AO-e), with 183 upregulated and 941 downregulated. Gene Ontology analysis revealed that the DEPs acted in various metabolic processes with catalysis and binding functions. Kyoto Encyclopedia of Genes and Genomes analysis associated these proteins primarily with signalling pathways related to glucose metabolism. Three chitinases were significantly modulated among DEPs. Moreover, enzymatic activity assays demonstrated that one of them effectively degraded C. elegans and its eggs. Conclusion These findings suggest that A. oligospora can significantly alter its protein expression profile in response to chitin, thereby facilitating its sugar metabolism and mycelial development. Our study provided new insights into the regulatory mechanisms of nematode predation in A. oligospora.
Collapse
Affiliation(s)
- Jiahua Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Huimei Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Xixi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Yansen Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Ruobing Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Chengzhi Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu730046, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang832003, China
| |
Collapse
|
2
|
Hao L, Zhao F, Guo Y, Ma Y, Li Z, Wang W, Luo H, Wang R. Antagonistic activity of Pochonia chlamydosporia against three helminth eggs and characterization of its serine protease. Vet Parasitol 2025; 334:110374. [PMID: 39667200 DOI: 10.1016/j.vetpar.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
To address the economic burden caused by livestock parasitic diseases, particularly gastrointestinal nematodes (GIN) and liver flukes, which are exacerbated by growing anthelmintic resistance, researchers are increasingly focusing on biological control strategies as a promising solution. Among these, the fungus Pochonia chlamydosporia has demonstrated promising helminth control properties. This study explored the potential of P. chlamydosporia in controlling helminth infections by examining its effects on helminth eggs. P. chlamydosporia was cultured on 2 % water agar (WA) plates, and the eggs of three parasite species (Fasciola hepatica, Parascaris spp., and Nematodirus oiratianus) were placed on these plates. The impact of the fungus on the eggs was assessed using light microscopy and scanning electron microscopy (SEM). Eggs were introduced into a liquid medium to stimulate P. chlamydosporia' s predatory activity. The culture filtrate was tested for protease activity and its efficacy against nematode eggs was evaluated. The extracellular alkaline serine protease was purified and characterized through ammonium sulfate precipitation and Sephadex G - 100 chromatography. P. chlamydosporia showed type 1, type 2, and type 3 effects on eggs. (Type 1 effect: physiological and biochemical impact without morphological damage to the eggshell, with visible hyphae adhering to the eggshell; Type 2 effect: lytic effect causing morphological changes in both the embryo and eggshell, without hyphal penetration; Type 3 effect: lytic effect with morphological changes in the embryo and eggshell, along with hyphal penetration and internal egg colonization). Light microscope and SEM observations revealed that P. chlamydosporia destroyed the eggs through mycelial growth, appressoria formation, penetration, and degradation stages. Moreover, the addition of nematode eggs stimulated the secretion of extracellular proteins, including proteases, with induction filtrate showing high ovicidal activity. The molecular mass of the protease was approximately 40 kDa estimated by SDS-PAGE. The optimum activity of the protease was at pH 10 and 60 ℃. The purified protease was highly sensitive to phenylmethyl sulfonyl fluoride (PMSF), indicating it belonged to the serine protease family. The findings suggest that P. chlamydosporia could be an effective biological control agent for helminth diseases in livestock.
Collapse
Affiliation(s)
- Luyao Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, China
| | - Fengmiao Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, China
| | - Yuan Guo
- Vocational and Technical College of Inner Mongolia Agricultural University, China
| | - Yuan Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, China
| | - Zhengyi Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, China
| | - Wen Wang
- Foshan Nanhai Dongfang Aolong Pharmaceutical Co., Guangdong Province, China
| | - Hongliang Luo
- Rui Pu Agricultural Technology Co., Ltd., Hohhot, Inner Mongolia, China.
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, China.
| |
Collapse
|
3
|
Ma Y, Lv J, Jiang L, Fan Z, Hao L, Li Z, Ma C, Wang R, Luo H. In vitro ovicidal studies on egg-parasitic fungus Pochonia chlamydosporia and safety tests on mice. Front Vet Sci 2025; 11:1505824. [PMID: 39850584 PMCID: PMC11756595 DOI: 10.3389/fvets.2024.1505824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The control of parasites infections in livestock is an ongoing concern, with parasites developing resistance to commonly used antiparasitic drugs. The current study investigated in vitro the destructive effect of the fungus Pochonia chlamydosporia on the eggs and oocysts of several equine parasites, as well as assessing the safety of the fungus in mice. Methods S. equinus, P. equorum, Anoplocephala spp eggs and Eimeria spp. oocysts were treated with P. chlamydosporia. The prepared preparation was also administered to mice, and the physiological indexes and lesions of major tissues and organs, as well as pathological sections of tissue, were then observed. Results P. chlamydosporia exhibited varying degrees of efficacy in the control of S. equinus, P. equorum, Anoplocephala spp eggs and Eimeria spp. oocysts. The acute toxicity test demonstrated that there was no death or toxicity symptom observed in the mice, with no significant difference in clinical observations, such as respiration, mental state, appetite, or feces, between the control and treated mice after the feeding of the biological preparation of P. chlamydosporia. Discussion These findings suggested that administration of P. chlamydosporia would be safe to use in livestock and provided a rationale for its potential clinical application, pending further analyses.
Collapse
Affiliation(s)
- Yuan Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Jinbao Lv
- Zhongnong Dong Jun Animal Diagnosis Technology (Beijing) Co., Ltd., Beijing, China
| | - Lili Jiang
- College of Pharmacy Heze University, Heze, China
| | - Zhaobin Fan
- College of Pharmacy Heze University, Heze, China
| | - Luyao Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhengyi Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Chengyu Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hongliang Luo
- Rui Pu Agricultural Technology Co., Ltd., Hohhot, China
| |
Collapse
|
4
|
Shourove JH, Meem FC, Chowdhury RS, Eti SA, Samaddar M. Biocontrol agents and their potential use as nano biopesticides to control the tea red spider mite (Oligonychus coffeae): A comprehensive review. Heliyon 2024; 10:e34605. [PMID: 39148997 PMCID: PMC11325067 DOI: 10.1016/j.heliyon.2024.e34605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Tea red spider mite (TRSM), Oligonychus coffeae Nietner, is one of the major pests that cause considerable crop losses in all tea-growing countries. TRSM management often involves the use of multiple chemical pesticides that are linked to human health risks and environmental pollution. Considering these critical issues, employing biocontrol agents is a potential green approach that may replace synthetic pesticides. This review study aims to discuss the efficacy of plant extracts, entomopathogenic microorganisms, and predators in controlling TRSM. This study includes 44 botanical extracts, 14 microbial species, and 8 potential predators used to control TRSM, along with their respective modes of action. Most of the botanical extracts have ovicidal, adulticidal, and larvicidal activity, ranging from 80 to 100 %, attributed to bioactive compounds such as phenols, alcohols, alkaloids, tannins, and other secondary metabolites. Among microbial pesticides, Purpureocillium lilacinum, Metarhizium robertsii, Aspergillus niger, Pseudomonas fluorescens, and Pseudomonas putida are highly effective against TRSM without causing any harm to the nontarget beneficial insects. Besides, some predators, including green lacewings, ladybirds, and phytoseiid mites have the potential to control TRSM. Employing these biocontrol agents simultaneously in tea plantations could be more effective in preventing TRSM. Nevertheless, their high biodegradability rate, uneven distribution, and uncontrolled release pose challenges for large-scale field applications. This study also explores how nanotechnology can enhance sustainability by addressing the limitations of biopesticides in field conditions. This review study could contribute to the search for potential biocontrol agents and the development of commercial nano biopesticides to control TRSM.
Collapse
Affiliation(s)
- Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fariha Chowdhury Meem
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Razia Sultana Chowdhury
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamima Akther Eti
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Mitu Samaddar
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
5
|
Zhang X, Yang Y, Liu L, Sui X, Bermudez RS, Wang L, He W, Xu H. Insights into the efficient degradation mechanism of extracellular proteases mediated by Purpureocillium lilacinum. Front Microbiol 2024; 15:1404439. [PMID: 39040909 PMCID: PMC11260826 DOI: 10.3389/fmicb.2024.1404439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Li Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xin Sui
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
6
|
Rodrigues JA, Feitosa TF, Vilela VLR. A systematic review on products derived from nematophagous fungi in the biological control of parasitic helminths of animals. World J Microbiol Biotechnol 2024; 40:224. [PMID: 38822201 DOI: 10.1007/s11274-024-04036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Nematophagous fungi have been widely evaluated in the biological control of parasitic helminths in animals, both through their direct use and the use of their derived products. Fungal bioproducts can include extracellular enzymes, silver nanoparticles (AgNPs), as well as secondary metabolites. The aim of this study was to conduct a systematic review covering the evaluation of products derived from nematophagous fungi in the biological control of parasitic helminths in animals. In total, 33 studies met the inclusion criteria and were included in this review. The majority of the studies were conducted in Brazil (72.7%, 24/33), and bioproducts derived from the fungus Duddingtonia flagrans were the most commonly evaluated (36.3%, 12/33). The studies involved the production of extracellular enzymes (48.4%, 16/33), followed by crude enzymatic extract (27.2%, 9/33), secondary metabolites (15.1%, 5/33) and biosynthesis of AgNPs (9.1%, 3/33). The most researched extracellular enzymes were serine proteases (37.5%, 6/16), with efficacies ranging from 23.9 to 85%; proteases (31.2%, 5/16), with efficacies from 41.4 to 95.4%; proteases + chitinases (18.7%, 3/16), with efficacies from 20.5 to 43.4%; and chitinases (12.5%, 2/16), with efficacies ranging from 12 to 100%. In conclusion, extracellular enzymes are the most investigated derivatives of nematophagous fungi, with proteases being promising strategies in the biological control of animal helminths. Further studies under in vivo and field conditions are needed to explore the applicability of these bioproducts as tools for biological control.
Collapse
Affiliation(s)
- Jossiara Abrante Rodrigues
- Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Sate of Paraíba, Patos, Brazil
| | - Thais Ferreira Feitosa
- Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, State of Paraíba, Sousa, Brazil
| | - Vinícius Longo Ribeiro Vilela
- Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Sate of Paraíba, Patos, Brazil.
- Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, State of Paraíba, Sousa, Brazil.
| |
Collapse
|
7
|
Tu T, Ren Y, Gong W, Huang J, Zhu C, Salah M, Zhao L, Xia X, Wang Y. Endoglucanase H from Aspergillus westerdijkiae Plays an Important Role in the Virulence on Pear Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8415-8422. [PMID: 38573226 DOI: 10.1021/acs.jafc.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.
Collapse
Affiliation(s)
- Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juanying Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenyang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahmoud Salah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Luning Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoshuang Xia
- Center of Analysis, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
da Silva AT, de Souza DC, de Souza SA, de Souza Alves JC, Dias ES, Aguilar-Marcelino L, de Freitas Soares FE. Linking the protease activity to the nematicidal action of edible mushroom. World J Microbiol Biotechnol 2024; 40:170. [PMID: 38630319 DOI: 10.1007/s11274-024-03980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Biological control using edible mushrooms as natural enemies is a sustainable alternative for pest management. Despite the well-established literature on toxins and secondary metabolites produced by these fungi in the biochemical control of nematodes, the nematicidal activity of proteases from different Pleurotus species is yet to be investigated. Therefore, this study aimed to correlate protease to the nematicidal activity of different mushrooms, Pleurotus sp., P. ostreatus (SB), P. ostreatus (Pearl), and P. djamor. For such a purpose, we performed motility assays of Panagrellus sp. at different time intervals, 6, 12, and 24 h for each of the mushrooms. In addition, the protease activity was measured using different pH (5, 7, and 9) and fermentation time intervals (45 and 75 days). Furthermore, we also evaluated the effect of this cell-free extract on Panagrellus sp. In response to these experiments, all edible mushrooms showed a reduction over 82% for the nematode-feeding activity (p < 0.01). The cell-free crude extract of each of the fungi studied showed nematocidal activity (p < 0.01). For the 45-day fermentation, P. djamor exhibited statistical significance (p < 0.01) compared with the others, reaching a reduction percentage of 73%. For the 75-day fermentation, Pleurotus sp. and P. ostreatus (Pearl) showed significant differences compared with the other fungi (p < 0.01), with reduction percentages of 64 and 62%, respectively. Herein, protease activity was associated with the nematicidal action of different Pleurotus species in controlling Panagrellus sp.
Collapse
Affiliation(s)
- Adriane Toledo da Silva
- Departamento de Química, Laboratório de Biotecnologia e Bioquímica Aplicada, Universidade Federal de Lavras, Lavras, Brazil
| | - Debora Castro de Souza
- Departamento de Química, Laboratório de Biotecnologia e Bioquímica Aplicada, Universidade Federal de Lavras, Lavras, Brazil
| | - Stefany Amorim de Souza
- Departamento de Química, Laboratório de Biotecnologia e Bioquímica Aplicada, Universidade Federal de Lavras, Lavras, Brazil
| | | | | | - Liliana Aguilar-Marcelino
- Centro Nacional de Investigação Disciplinar em Saúde e Segurança Animal, Instituto Nacional de Investigação Florestal, Agrícola e Pecuária (INIFAP), Mexico City, Mexico
| | - Filippe Elias de Freitas Soares
- Departamento de Química, Laboratório de Biotecnologia e Bioquímica Aplicada, Universidade Federal de Lavras, Lavras, Brazil.
| |
Collapse
|
9
|
Park G, Lee KM, Lee YS, Kim Y, Jeon CM, Lee OM, Kim YJ, Son HJ. Biodegradation and valorization of feather waste using the keratinase-producing bacteria and their application in environmentally hazardous industrial processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118986. [PMID: 37714086 DOI: 10.1016/j.jenvman.2023.118986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Poultry feathers are widely discarded as waste worldwide and are considered an environmental pollutant and a reservoir of pathogenic bacteria. Therefore, developing sustainable and environmentally friendly methods for managing feather waste is one of the important environmental protection requirements. In this study, we investigated a rapid and eco-friendly method for the degradation and valorization of feather waste using keratinase-producing Pseudomonas geniculata H10, and evaluated the applicability of keratinase in environmentally hazardous chemical processes. Strain H10 completely degraded chicken feathers within 48 h by producing keratinase using them as sources of carbon, nitrogen, and sulfur. The culture contained a total of 402.8 μM amino acids, including 8 essential amino acids, which was higher than the chemical treatment. Keratinase was a serine-type metalloprotease with optimal temperature and pH of 30 °C and 9, respectively, and showed relatively high stability at 10-40 °C and pH 3-10. Keratinase was also able to degrade various insoluble keratins such as duck feathers, wool, human hair, and nails. Furthermore, keratinase exhibited more efficient depilation and wool modification than chemical treatment, as well as novel functionalities such as nematicidal and exfoliating activities. This suggests that strain H10 is a promising candidate for the efficient degradation and valorization of feather waste, as well as the improvement of current industrial processes that use hazardous chemicals.
Collapse
Affiliation(s)
- Gyulim Park
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Kwang Min Lee
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Young Seok Lee
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Yedam Kim
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Chae Min Jeon
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - O-Mi Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| |
Collapse
|
10
|
Deb L, Dutta P, Mandal MK, Singh SB. Antimicrobial Traits of Beauveria bassiana Against Rhizoctonia solani, the Causal Agent of Sheath Blight of Rice Under Field Conditions. PLANT DISEASE 2023:PDIS04220806RE. [PMID: 37327392 DOI: 10.1094/pdis-04-22-0806-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Beauveria bassiana, an entomopathogenic fungus, has recently drawn attention worldwide not only as a potential biocontrol agent against insect pests but also for its other beneficial roles as plant disease antagonist, endophyte, plant growth promoter, and beneficial rhizosphere colonizer. In the present study, 53 native isolates of B. bassiana were screened for antifungal ability against Rhizoctonia solani, the causal agent of sheath blight of rice. Also, the mechanisms underlying such interaction and the responsible antimicrobial traits involved were studied. Following this, potential B. bassiana isolates were assayed against the reduction of sheath blight of rice under field conditions. The results showed that B. bassiana exhibited antagonistic behavior against R. solani with a percent mycelial inhibition recorded maximum of up to 71.15%. Mechanisms behind antagonism were the production of cell-wall-degrading enzymes, mycoparasitism, and the release of secondary metabolites. The study also deciphered several antimicrobial traits and the presence of virulent genes in B. bassiana as a determinant of potential plant disease antagonists. Under field conditions, combined application of the B. bassiana microbial consortium as a seed treatment, seedling root dip, and foliar sprays showed reduced sheath blight disease incidence and severity up to 69.26 and 60.50%, respectively, along with enhanced plant-growth-promoting attributes. This is one of the few studies investigating the antagonistic abilities of the entomopathogenic fungus B. bassiana against phytopathogen R. solani and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Lipa Deb
- School of Crop Protection, College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya 793103, India
| | - Pranab Dutta
- School of Crop Protection, College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya 793103, India
| | - Mihir Kumar Mandal
- Department of Plant Pathology, University of California-Davis, Salinas, CA 93905, U.S.A
| | | |
Collapse
|
11
|
Hu SJ, Zheng H, Li XP, Li ZX, Xu C, Li J, Liu JH, Hu WX, Zhao XY, Wang JJ, Qiu L. Ada2 and Ada3 Regulate Hyphal Growth, Asexual Development, and Pathogenicity in Beauveria bassiana by Maintaining Gcn5 Acetyltransferase Activity. Microbiol Spectr 2023; 11:e0028123. [PMID: 37052485 PMCID: PMC10269768 DOI: 10.1128/spectrum.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
The histone acetyltransferase (HAT) Gcn5 ortholog is essential for a variety of fungi. Here, we characterize the roles of Ada2 and Ada3, which are functionally linked to Gcn5, in the insect-pathogenic fungus Beauveria bassiana. Loss of Ada2 and Ada3 led to severe hyphal growth defects on rich and minimal media and drastic decreases in blastospore yield and conidiation capacity, with abnormal conidia-producing structures. ΔAda2 and ΔAda3 exhibited a delay in conidial germination and increased sensitivity to multiple chemical stresses and heat shock. Nearly all their pathogenicity was lost, and their ability to secrete extracellular enzymes, Pr1 proteases and chitinases for cuticle degradation was reduced. A yeast two-hybrid assay demonstrated that Ada2 binds to Ada3 and directly interacts with Gcn5, confirming the existence of a yeast-like Ada3-Ada2-Gcn5 HAT complex in this fungus. Additionally, deletion of the Ada genes reduced the activity of Gcn5, especially in the ΔAda2 strain, which was consistent with the acetylation level of histone H3 determined by Western blotting. These results illustrate the dependence of Gcn5 enzyme activity on Ada2 and Ada3 in fungal hyphal growth, asexual development, multiple stress responses, and pathogenicity in B. bassiana. IMPORTANCE The histone acetyltransferase Gcn5 ortholog contributes significantly to the growth and development of various fungi. In this study, we found that Ada2 and Ada3 have critical regulatory effects on Gcn5 enzyme activity and influence the acetylation of histone H3. Deletion of Ada2 or Ada3 decreased the fungal growth rate and asexual conidial yield and increased susceptibility to multiple stresses in Beauveria bassiana. Importantly, Ada genes are vital virulence factors, and their deletion caused the most virulence loss, mainly by inhibiting the activity of a series of hydrolytic enzymes and the dimorphic transition ability. These findings provide a new perspective on the function of the Gcn5 acetyltransferase complex in pathogens.
Collapse
Affiliation(s)
- Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hao Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin-Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhi-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen-Xiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xian-Yan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
12
|
Wang D, Ma N, Rao W, Zhang Y. Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture. Pathogens 2023; 12:pathogens12030367. [PMID: 36986289 PMCID: PMC10056792 DOI: 10.3390/pathogens12030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Parasitic nematodes cause great annual loss in the agricultural industry globally. Arthrobotrys oligospora is the most prevalent and common nematode-trapping fungus (NTF) in the environment and the candidate for the control of plant- and animal-parasitic nematodes. A. oligospora is also the first recognized and intensively studied NTF species. This review highlights the recent research advances of A. oligospora as a model to study the biological signals of the switch from saprophytism to predation and their sophisticated mechanisms for interacting with their invertebrate hosts, which is of vital importance for improving the engineering of this species as an effective biocontrol fungus. The application of A. oligospora in industry and agriculture, especially as biological control agents for sustainable purposes, was summarized, and we discussed the increasing role of A. oligospora in studying its sexual morph and genetic transformation in complementing biological control research.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Nan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- Correspondence:
| |
Collapse
|
13
|
Xing P, Diao H, Wang D, Zhou W, Tian J, Ma R. Identification, Pathogenicity, and Culture Conditions of a New Isolate of Cordyceps javanica (Hypocreales: Cordycipitaceae) From Soil. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:98-107. [PMID: 36534984 DOI: 10.1093/jee/toac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 06/17/2023]
Abstract
This study decribes a highly effective insecticidal isolate of Cordyceps javanica (Frieder. & Bally) (Hypocreales: Cordycipitaceae) named IJ-tg19, which was isolated from soil. Spray bioassays were performed with IJ-tg19 on Myzus persicae (Sulzer) (Hemiptera: Aphididae) adults, third-instar nymphs of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), and third-instar larvae of Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) to determine the pathogenicity of the isolate. The corrected mortality rates for all three pests were 100% when the conidia concentration was 1 × 106 conidia/ml, the lowest concentration in this study, and the median survival times (MST) were 4, 4, and 3 d. The MST shortens with increasing conidia concentration. The effects of laboratory culture conditions on the sporulation and growth of the isolate were also studied. This isolate had the greatest conidia production and fastest growth rate on malt extract agar medium at 25°C. The amount of conidia produced had positive correlation to light duration, with the highest production at 24 hr light. The growth of mycelium can adapt to a moderately alkaline environment, but the optimum conidial production occurred at the pH of 7. Our finding and research will be useful in biocontrol programs that are considering using the new isolate of C. javanica against greenhouse pests.
Collapse
Affiliation(s)
- Peixiang Xing
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Hongliang Diao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Di Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Wenwen Zhou
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Tian
- Department of Life Sciences, Lvliang University, Lvliang, 033001, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
14
|
Trichoderma longibrachiatum T6: A nematocidal activity of endochitinase gene exploration and its function identification. Int J Biol Macromol 2022; 223:1641-1652. [PMID: 36273547 DOI: 10.1016/j.ijbiomac.2022.10.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Endochitinase is a natural extracellular protein in Trichoderma longibrachiatum T6, which can degrade the eggshell of Heterodera avenae significantly, however the related genes that coding this protein was rarely characterized. In the present study, the endochitinase 18-5 gene (T6-Echi18-5) of T. longibrachiatum T6 was cloned and sequenced. The expression level of T6-Echi18-5 gene in T. longibrachiatum T6 was induced and increased after the H. avenae cysts inoculation. The full-length cDNA sequence of T6-Echi18-5 was 1671 bp that contained an ORF of 1275 bp, corresponding to 424 amino acids with a 45.9 kDa molecular weight. A single band of 60.04 kDa was detected and identified using SDS-PAGE and Western blot analysis after transferring the T6-Echi18-5 gene to Escherichia coli BL21 Rosetta (DE3). The concentration of purified recombinant T6-Echi18-5 protein was 1.53 mg·ml-1, and the optimal temperature and pH were 50 °C and 5.0, respectively. The eggshell and content were dissolved and exuded from 4 to10 days after treatment with the purified recombinant T6-Echi18-5 protein. The relative inhibition rate of eggs hatching was 86.79 % at 12 days after treatment. Our study demonstrated the key role of T6-Echi18-5 gene in degrading the H. avenae eggshell and inhibiting the eggs hatching.
Collapse
|
15
|
Yoon KH, Indong RA, Lee JI. Making "Sense" of Ecology from a Genetic Perspective: Caenorhabditis elegans, Microbes and Behavior. Metabolites 2022; 12:1084. [PMID: 36355167 PMCID: PMC9697003 DOI: 10.3390/metabo12111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/31/2023] Open
Abstract
Our knowledge of animal and behavior in the natural ecology is based on over a century's worth of valuable field studies. In this post-genome era, however, we recognize that genes are the underpinning of ecological interactions between two organisms. Understanding how genes contribute to animal ecology, which is essentially the intersection of two genomes, is a tremendous challenge. The bacterivorous nematode Caenorhabditis elegans, one of the most well-known genetic animal model experimental systems, experiences a complex microbial world in its natural habitat, providing us with a window into the interplay of genes and molecules that result in an animal-microbial ecology. In this review, we will discuss C. elegans natural ecology, how the worm uses its sensory system to detect the microbes and metabolites that it encounters, and then discuss some of the fascinating ecological dances, including behaviors, that have evolved between the nematode and the microbes in its environment.
Collapse
Affiliation(s)
- Kyoung-hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rocel Amor Indong
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
16
|
Al-Ani LKT, Soares FEDF, Sharma A, de los Santos-Villalobos S, Valdivia-Padilla AV, Aguilar-Marcelino L. Strategy of Nematophagous Fungi in Determining the Activity of Plant Parasitic Nematodes and Their Prospective Role in Sustainable Agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:863198. [PMID: 37746161 PMCID: PMC10512347 DOI: 10.3389/ffunb.2022.863198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/01/2022] [Indexed: 09/22/2023]
Abstract
In this review, we supply a framework for the importance of nematophagous fungi (nematophagous fungi [NF]) and their role in agricultural ecosystems. We characterize the taxonomy, diversity, ecology, and type of NF, depending on their interaction with plant-parasitic nematodes (PPNs). We described potential mechanisms of NF in the control of PPNs, the efficiency and methods of utilization, and the use of nematicides in sustainable agriculture. We explain the utilization of NF in nanotechnology as a new approach. NF are significant in the soil for having the effective potential for use in sustainable agriculture. These types of fungi belong to wide taxa groups, such as Ascomycota, Basidiomycota, and other groups. Diverse NF are available in different kinds of soil, especially in soils that contain high densities of nematodes. There is a relationship between the environment of nematodes and NF. NF can be divided into two types according to the mechanisms that affect nematodes. These types are divided into direct or indirect effects. The direct effects include the following: ectoparasites, endoparasites, cyst, or egg parasites producing toxins, and attack tools as special devices. However, the indirect effect comprises two groups: paralyzing toxins and the effect on the life cycle of nematodes. We explained the molecular mechanisms for determining the suitable conditions in brief and clarified the potential for increasing the efficacy of NF to highly impact sustainable agriculture in two ways: directly and indirectly.
Collapse
Affiliation(s)
- Laith Khalil Tawfeeq Al-Ani
- Department of Plant Protection, College of Agriculture, University of Baghdad, Baghdad, Iraq
- School of Biology Science, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | | | | | - Liliana Aguilar-Marcelino
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Jiutepec, Mexico
| |
Collapse
|
17
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
18
|
Xu P, Wang H, Qin C, Li Z, Lin C, Liu W, Miao W. Analysis of the Taxonomy and Pathogenic Factors of Pectobacterium aroidearum L6 Using Whole-Genome Sequencing and Comparative Genomics. Front Microbiol 2021; 12:679102. [PMID: 34276610 PMCID: PMC8282894 DOI: 10.3389/fmicb.2021.679102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Soft rot pectobacteria are devastating plant pathogens with a global distribution and a broad host range. Pectobacterium aroidearum L6, previously isolated from leaves of Syngonium podophyllum, is a pectolytic bacterial pathogen that causes typical soft rot on S. podophyllum. There is a shortage for genome data of P. aroidearum, which seriously hinders research on classification and pathogenesis of Pectobacterium. We present here the complete genome sequence of P. aroidearum L6. The L6 strain carries a single 4,995,896-bp chromosome with 53.10% G + C content and harbors 4,306 predicted protein-coding genes. We estimated in silico DNA-DNA hybridization and average nucleotide identity values in combination with the whole-genome-based phylogeny from 19 Pectobacterium strains including P. aroidearum L6. The results showed that L6 and PC1 formed a population distinct from other populations of the Pectobacterium genus. Phylogenetic analysis based on 16S rRNA and genome sequences showed a close evolutionary relationship among Pectobacterium species. Overall, evolutionary analysis showed that L6 was in the same branch with PC1. In comparison with 18 Pectobacterium spp. reference pathogens, strain L6 had 2,712 gene families, among which 1,632 gene families were identified as orthologous to those strains, as well as 1 putative unique gene family. We discovered 478 genes, 10.4% of the total of predicted genes, that were potentially related to pathogenesis using the Virulence Factors of Pathogenic Bacteria database. A total of 25 genes were related to toxins, 35 encoded plant cell-wall degrading enzymes, and 122 were involved in secretion systems. This study provides a foundation for a better understanding of the genomic structure of P. aroidearum and particularly offers information for the discovery of potential pathogenic factors and the development of more effective strategies against this pathogen.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Huanwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Zengping Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunhua Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
19
|
Xu WF, Yang JL, Meng XK, Gu ZG, Zhang QL, Lin LB. Understanding the Transcriptional Changes During Infection of Meloidogyne incognita Eggs by the Egg-Parasitic Fungus Purpureocillium lilacinum. Front Microbiol 2021; 12:617710. [PMID: 33897634 PMCID: PMC8058359 DOI: 10.3389/fmicb.2021.617710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/17/2021] [Indexed: 12/03/2022] Open
Abstract
The egg-pathogenic fungus Purpureocillium lilacinum parasitizes on nematode eggs, and thus, it is used as a good biocontrol agent against plant root-knot nematodes. However, little is known about the transcriptional response of P. lilacinum while infecting nematode eggs. This study presents the whole transcriptome sequencing of P. lilacinum and transcriptome-wide gene expression analysis of P. lilacinum upon infecting the eggs of Meloidogyne incognita compared to non-infecting controls. A transcriptomic library of P. lilacinum was used as reference gene set and six transcriptomic libraries of the non-infecting control and P. lilacinum infecting M. incognita eggs were constructed, respectively, comprising three biological replicates of each. A total of 1,011 differently expressed genes (DEGs) were identified in the infecting samples, including 553 up-regulated and 458 down-regulated genes compared to the non-infecting control samples. Furthermore, functional enrichment analysis exhibited that these DEGs were primarily involved in oxidative phosphorylation, oxidoreductase activity, and metabolic processes. Fifteen DEGs were randomly selected to verify the RNA sequencing results through quantitative real-time polymerase chain reaction (qPCR). The study focused on P. lilacinum genes that were strongly expressed upon infecting M. incognita eggs. These DEGs were primarily involved in detoxification, parasitic behavior, and nutritional utilization. This study contributes significantly to the understanding of the molecular mechanisms underlying the parasitic action of P. lilacinum on nematode eggs and provides a valuable genetic resource for further research on parasitic behavior of P. lilacinum. Notably, this study examined the transcriptomics of P. lilacinum infecting M. incognita eggs at only one time point. Since there were fungi at different stages of the infection process at that time point, the transcriptional profiles are not precisely examining one specific stage in this process.
Collapse
Affiliation(s)
- Wen-Feng Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Kingenta Ecological Engineering Group Co., Ltd., Linyi, China
| | - Jia-Lin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Xiang-Kun Meng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Kingenta Ecological Engineering Group Co., Ltd., Linyi, China
| | - Zhi-Guang Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Kingenta Ecological Engineering Group Co., Ltd., Linyi, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, China
| |
Collapse
|
20
|
Soliman MS, El-Deriny MM, Ibrahim DSS, Zakaria H, Ahmed Y. Suppression of root-knot nematode Meloidogyne incognita on tomato plants using the nematode trapping fungus Arthrobotrys oligospora Fresenius. J Appl Microbiol 2021; 131:2402-2415. [PMID: 33837626 DOI: 10.1111/jam.15101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
AIM The aims of the study were to isolate and characterize the nematode trapping fungus, Arthrobotrys oligospora, to investigate the suppressive and predacious activities of the fungus against Meloidogyne incognita and to study the potentiality of A. oligospora in controlling root-knot caused by M. incognita on tomato plants. METHODS AND RESULTS Arthrobotrys oligospora (MRDS 300) was isolated from sandy soil samples collected from Al-Beheira, Egypt. In vitro experiments revealed a high efficiency of the fungus in capturing and suppressing M. incognita second juveniles (J2 ). Microscopic observations showed that the fungus develops adhesive traps consisting of loops of hyphae. Moreover, an in vitro experiment showed that the culture filtrate of A. oligospora had a high toxic effect on the nematode. Pot experiments carried out in two seasons (2018-2019) showed that A. oligospora significantly suppressed root knot on tomato plants caused by M. incognita. The number of females, galls and nematodes in different developing stages were reduced significantly. The treatment with A. oligospora had a prominent effect on enhancing plant growth. CONCLUSION Arthrobotrys oligospora had significant suppressive and predacious effects against root-knot nematode, M. incognita. The fungus developed different forms of trapping devices in addition to secreting toxic metabolites to M. incognita. The fungus had a plant-growth promoting effect. SIGNIFICANCE AND IMPACT OF THE STUDY Arthrobotrys oligospora (MRDS 300) is a potential biological control agent that can be utilized in controlling the root-knot diseases caused by M. incognita.
Collapse
Affiliation(s)
- M S Soliman
- Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - M M El-Deriny
- Nematode Diseases Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - D S S Ibrahim
- Nematode Diseases Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - H Zakaria
- Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Y Ahmed
- Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
21
|
Tartanus M, Furmanczyk EM, Canfora L, Pinzari F, Tkaczuk C, Majchrowska-Safaryan A, Malusá E. Biocontrol of Melolontha spp. Grubs in Organic Strawberry Plantations by Entomopathogenic Fungi as Affected by Environmental and Metabolic Factors and the Interaction with Soil Microbial Biodiversity. INSECTS 2021; 12:127. [PMID: 33540558 PMCID: PMC7912822 DOI: 10.3390/insects12020127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The efficacy of two strains of two Beauveria species (B. bassiana and B. brongniartii), individually or as co-inoculants, to control Melolontha sp. grubs was assessed in two organic strawberry plantations in relation to the environmental conditions, their abundance after soil inoculation, and their in vitro chitinolytic activity, thereby also verifying their impact on soil microbial communities. A reduction of the grubs' damage to strawberry plants was observed when compared to the untreated control in one plantation, irrespective of the strain used and whether they were applied as single or as co-inoculum. The metabolic pattern expressed by the two fungi in vitro was different: B. bassiana showed a higher metabolic versatility in the use of different carbon sources than B. brongniartii, whose profile was partly overlapped in the co-inoculum. Similar differences in the chitinolytic activity of each of the fungi and the co-inoculum were also pointed out. A higher abundance of B. bassiana in the soils receiving this species in comparison to those receiving B. brongniartii, together with its in vitro metabolic activity, could account for the observed diverse efficacy of pest damage control of the two species. However, environmental and climatic factors also affected the overall efficacy of the two bioinocula. According to the monitoring of the two species in soil, B. bassiana could be considered as a common native species in the studied locations in contrast to B. brongniartii, which seemed to be a non-endemic species. Nevertheless, the inoculation with both species or the co-inoculum did not consistently affect the soil microbial (fungi and bacteria) biodiversity, as expressed by the operational taxonomic unit (OTU) number and Shannon-Wiener diversity index based on terminal restriction fragment length polymorphism (TRFLP) data. A small transient increase of the share of the inoculated species to the total fungal community was noted by the analysis of genes copy numbers only for B. brongniartii at the end of the third growing season.
Collapse
Affiliation(s)
- Malgorzata Tartanus
- Research Institute of Horticulture-NRI, Department of Plant Protection against Pests, 96-100 Skierniewice, Poland; (M.T.); (E.M.F.)
- Centre for Agriculture and Environment, Council for Agricultural Research and Economics, 00-184 Rome, Italy; (L.C.); (F.P.)
| | - Ewa M. Furmanczyk
- Research Institute of Horticulture-NRI, Department of Plant Protection against Pests, 96-100 Skierniewice, Poland; (M.T.); (E.M.F.)
| | - Loredana Canfora
- Centre for Agriculture and Environment, Council for Agricultural Research and Economics, 00-184 Rome, Italy; (L.C.); (F.P.)
| | - Flavia Pinzari
- Centre for Agriculture and Environment, Council for Agricultural Research and Economics, 00-184 Rome, Italy; (L.C.); (F.P.)
- Institute for Biological Systems, Council of National Research of Italy (CNR), 00-015 Monterotondo, Italy
| | - Cezary Tkaczuk
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland; (C.T.); (A.M.-S.)
| | - Anna Majchrowska-Safaryan
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland; (C.T.); (A.M.-S.)
| | - Eligio Malusá
- Research Institute of Horticulture-NRI, Department of Plant Protection against Pests, 96-100 Skierniewice, Poland; (M.T.); (E.M.F.)
| |
Collapse
|
22
|
Floc'h JB, Hamel C, Harker KN, St-Arnaud M. Fungal Communities of the Canola Rhizosphere: Keystone Species and Substantial Between-Year Variation of the Rhizosphere Microbiome. MICROBIAL ECOLOGY 2020; 80:762-777. [PMID: 31897569 DOI: 10.1007/s00248-019-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 05/25/2023]
Abstract
Rhizosphere microbes influence one another, forming extremely complex webs of interactions that may determine plant success. Identifying the key factors that structure the fungal microbiome of the plant rhizosphere is a necessary step in optimizing plant production. In a long-term field experiment conducted at three locations in the Canadian prairies, we tested the following hypotheses: (1) diversification of cropping systems influences the fungal microbiome of the canola (Brassica napus) rhizosphere; (2) the canola rhizosphere has a core fungal microbiome, i.e., a set of fungi always associated with canola; and (3) some taxa within the rhizosphere microbiome of canola are highly interrelated and fit the description of hub taxa. Our results show that crop diversification has a significant effect on the structure of the rhizosphere fungal community but not on fungal diversity. We also discovered and described a canola core microbiome made up of one zero-radius operational taxonomic unit (ZOTU), cf. Olpidium brassicae, and an eco-microbiome found only in 2013 consisting of 47 ZOTUs. Using network analysis, we identified four hub taxa in 2013: ZOTU14 (Acremonium sp.), ZOTU28 (Sordariomycetes sp.), ZOTU45 (Mortierella sp.) and ZOTU179 (cf. Ganoderma applanatum), and one hub taxon, ZOTU17 (cf. Mortierella gamsii) in 2016. None of these most interacting taxa belonged to the core microbiome or eco-microbiome for each year of sampling. This temporal variability puts into question the idea of a plant core fungal microbiome and its stability. Our results provide a basis for the development of ecological engineering strategies for the improvement of canola production systems in Canada.
Collapse
Affiliation(s)
- Jean-Baptiste Floc'h
- Institut de recherche en biologie végétale, ,Université de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
- Jardin Botanique de Montréal, Montreal, Canada
- Québec Research and Development Centre of Quebec, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - Chantal Hamel
- Institut de recherche en biologie végétale, ,Université de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
- Jardin Botanique de Montréal, Montreal, Canada
- Québec Research and Development Centre of Quebec, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - K Neil Harker
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, ,Université de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada.
- Jardin Botanique de Montréal, Montreal, Canada.
| |
Collapse
|
23
|
Baptista CT, Moreira ADS, Maia Filho FDS, Valente JDSS, Pinto NB, Trindade Junior WPD, Braga CQ, Pötter L, Pereira DIB. Purpureocillium lilacinum and Trichoderma virens for biological control of trichostrongylid parasites of sheep: an in vitro evaluation. ACTA ACUST UNITED AC 2020; 29:e006120. [PMID: 33084781 DOI: 10.1590/s1984-29612020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022]
Abstract
The study evaluated the ovicidal activity of enzymatic extracts of Purpureocillium lilacinum and Trichoderma virens against trichostrongylid eggs from sheep. Filtered extract (FE) and macerated crude extract (MCE) were prepared from fungal cultures in minimal broth. In the experiment, 100 trichostrongylid eggs, obtained from the feces of naturally infected sheep, were exposed to fungal extracts for 24 and 48 hours/25°C. In the control group, eggs were incubated in minimal broth. The number of L1 larvae was ascertained. Each treatment consisted of four repetitions and the experiment was repeated five times. It was observed that the effect of FE and MCE of P. lilacinum and T. virens on egg hatchability differed from that of the control group. MCE of T. virens and P. lilacinum showed higher ovicidal activity than FE over both periods and at 48 hours of exposure, respectively. From the percentage reductions in hatchability of the eggs, MCE was shown to be superior to FE for both fungi. This study demonstrated the ovicidal potential of these fungi against trichostrongylid eggs. However, further studies are needed in order to identify the molecules responsible for the ovicidal effects, and to evaluate the behavior of fungal extracts in biotic and abiotic interactions.
Collapse
Affiliation(s)
- Cristiane Telles Baptista
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Andrios da Silva Moreira
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Fernando de Souza Maia Filho
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Júlia de Souza Silveira Valente
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Natália Berne Pinto
- Laboratório de Helmintologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Waldenis Pereira da Trindade Junior
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Caroline Quintana Braga
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| | - Luciana Pötter
- Centro de Ciências Rurais, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brasil
| | - Daniela Isabel Brayer Pereira
- Laboratório de Micologia, Programa de Pós-graduação em Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil.,Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brasil
| |
Collapse
|
24
|
Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. J Fungi (Basel) 2020; 6:E206. [PMID: 33020457 PMCID: PMC7711821 DOI: 10.3390/jof6040206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes. Some of the fungi and nematodes are significant pathogens and pests to crops. We summarize the ecological and molecular mechanisms identified so far that impact, either directly or indirectly, the interactions among phytopathogenic fungi, phytopathogenic nematodes, and crop plants. The potential applications of our understanding to controlling phytophagous nematodes and soilborne fungal pathogens in agricultural fields are discussed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Shuoshuo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
25
|
Zhang S, Gan Y, Liu J, Zhou J, Xu B. Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes. Front Microbiol 2020; 11:574601. [PMID: 33101249 PMCID: PMC7554348 DOI: 10.3389/fmicb.2020.574601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022] Open
Abstract
The cereal cyst nematode Heterodera avenae is one of the important soil-borne pathogens of cereal crops and causes high yield losses worldwide. Trichoderma spp. formulations are applied as commercial bio-control agents against soil-borne plant pathogens such as H. avenae. However, the relationship between Trichoderma longibrachiatum fermentation parameters and its bio-control potential against H. avenae has not been exclusively established. In the present study, the effect of 10 different fermentation media and conditions on the nematicidal activity of T. longibrachiatum T6 (T6) was evaluated with a single-factor method and a Plackett-Burman design, and the interaction between different fermentation parameters was investigated by a Box-Behnken design. The variables for enhancing the nematicidal activity of T6 culture filtrates were explored and optimized using response surface methodology (RSM). The Minor Medium (MM) plus wheat bran-2 medium was found to be the most effective fermentation medium for T6 culture filtrates against the second stage juveniles (J2s) of H. avenae. The maximum mortality of the J2s was obtained using the T6 culture filtrates under the following fermentation conditions: initial pH 6, 28°C culture temperature, 180 rpm rotating speed, 60 ml of fermentation media, 7 days of incubation time, and 1 ml of inoculation volumes. Among these parameters, the initial pH, inoculation volume, and incubation day were identified as the most significant parameters and critical independent variables for enhancing the nematicidal activity of the T6 culture filtrates. After further optimizations based on statistical predictions, the highest nematicidal activity (92.42%) was obtained with the T6 culture filtrates fermented under an initial pH of 6.06, an inoculation volume of 1.62 ml, and an incubation time of 7.15 days. The nematicidal activity was increased approximately by as high as 1.07% compared with that before optimization. Bio-control efficacy of T6 culture filtrates was 83.88% at the 70th day after wheat seeds sowing in greenhouse experiments. The results from the validation experiments agreed with the model predictions. Our study has improved the bio-control potential of Trichoderma spp. against the plant-parasitic nematodes H. avenae and provided a cost-efficient bio-resource in the future development of novel bio-control agents.
Collapse
Affiliation(s)
- Shuwu Zhang
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, China
| | - Yantai Gan
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Saskatchewan, SK, Canada
| | - Jia Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, China
| | - Jingjiang Zhou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, China
| | - Bingliang Xu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, China
| |
Collapse
|
26
|
Becker JS, Borneman J, Becker JO. Effect of Heterodera schachtii female age on susceptibility to three fungal hyperparasites in the genus Hyalorbilia. J Nematol 2020; 52:e2020-93. [PMID: 33829185 PMCID: PMC8015330 DOI: 10.21307/jofnem-2020-093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/20/2022] Open
Abstract
Three closely related nematophagous fungi in the genus Hyalorbilia were compared for their ability to parasitize females and eggs of Heterodera schachtii at different developmental stages. DoUCR50, StM, and ARF were originally isolated from Heterodera schachtii, Meloidogyne incognita, and Heterodera glycines, respectively. Phylogenetic analysis and pairwise sequence analysis showed that DoUCR50 and StM are more closely related to each other than they are to ARF. DoUCR50 parasitism suppressed 100% of the J2 hatch from 3-week-old H. schachtii females and 75% of the hatch from 4-week-old females. Eggs within 5-week-old females were resistant to parasitism, and hatch of J2 was unaffected by exposure to DoUCR50. StM and ARF did not reduce the hatch of J2 from H. schachtii females of any age. Eggs removed from females and spread onto water agar cultures of the fungi were mostly resistant to parasitism. DoUCR50 parasitized only 16% of such eggs from 3-week-old females. Extracellular hydrolytic enzyme production by the three fungal strains grown on PDA or parasitized H. schachtii females was evaluated using API ZYM (bioMérieux) test strips. All three fungi produced extracellular hydrolytic enzymes when grown on PDA or H. schachtii females. Trypsin-like protease activity was uniquely detected in DoUCR50 grown on PDA and H. schachtii females, with the highest activity associated with the fungus grown on parasitized females.
Collapse
Affiliation(s)
- J Smith Becker
- Department of Nematology, University of California, 3401 Watkins Drive, Riverside, CA, 92521
| | - J Borneman
- Department of Microbiology and Plant Pathology, University of California, 3401 Watkins Drive, Riverside, CA, 92521
| | - J O Becker
- Department of Nematology, University of California, 3401 Watkins Drive, Riverside, CA, 92521
| |
Collapse
|
27
|
Hu H, Gao Y, Li X, Chen S, Yan S, Tian X. Identification and Nematicidal Characterization of Proteases Secreted by Endophytic Bacteria Bacillus cereus BCM2. PHYTOPATHOLOGY 2020; 110:336-344. [PMID: 31524559 DOI: 10.1094/phyto-05-19-0164-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The endophytic bacterium Bacillus cereus BCM2 has shown great potential as a biocontrol organism against Meloidogyne incognita, which causes severe root-knot diseases in crops. In our previous study, the metabolite of BCM2 showed high nematicidal activity against the M. incognita second-stage juveniles. However, the mechanism employed by endophytic bacteria to infect and kill nematodes is still unclear. Here, we investigate both the endophytic bacterial extracellular proteins with nematicidal activity and their mechanism of killing nematodes. The first step was detecting the nematicidal activities of crude proteins. The results show that the nematode mortality rate reached 100% within 72 h, and the crude proteins damaged both the cuticle and eggshell, before finally destroying the targets. This suggests possible proteinaceous pathogeny in BCM2. Throughout the process, the fine-detail changes in the nematode cuticle and the intestinal structure were observed using scanning electron microscopy and transmission electron microscopy. These images show that BCM2 extracellular proteins did not damage the internal organization of the nematode but did severely damage its cuticle, which led to content leakage. From the crude proteins, chitosanase, alkaline serine protease, and neutral protease were purified and identified. The M. incognita-B. cereus BCM2 microenvironment simulation demonstrates that BCM2 adheres to the surface of nematodes and helps the metabolites that were produced by BCM2 to rapidly recognize and kill M. incognita. This relationship between plants, endophytic bacteria, and nematodes offers insight into the biological mechanisms that can be utilized for of nematode management.
Collapse
Affiliation(s)
- Haijing Hu
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yang Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210046, People's Republic of China
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, 330045, People's Republic of China
| | - Xia Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Shuanglin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Shuzhen Yan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, School of Life Sciences, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Xinjun Tian
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|
28
|
The pH sensing receptor AopalH plays important roles in the nematophagous fungus Arthrobotrys oligospora. Fungal Biol 2019; 123:547-554. [PMID: 31196524 DOI: 10.1016/j.funbio.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
There is well-conserved PacC/Rim101 signaling among ascomycete fungi to mediate environmental pH sensing. For pathogenic fungi, this pathway not only enables fungi to grow over a wide pH range, but it also determines whether these fungi can successfully colonize and invade the targeted host. Within the pal/PacC pathway, palH is a putative ambient pH sensor with a seven-transmembrane domain. To characterize the function of a palH homolog, AopalH, in the nematophagous fungus Arthrobotrys oligospora, we knocked out the encoding gene of AopalH through homologous recombination, and the transformants exhibited slower growth rates, greater sensitivities to cationic and hyperoxidation stresses, as well as reduced conidiation and reduced trap formation, suggesting that the pH regulatory system has critical functions in nematophagous fungi. Our results provide novel insights into the mechanisms of pH response and regulation in fungi.
Collapse
|
29
|
An efficient gene disruption system for the nematophagous fungus Purpureocillium lavendulum. Fungal Biol 2019; 123:274-282. [DOI: 10.1016/j.funbio.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/20/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022]
|
30
|
Liang LM, Zou CG, Xu J, Zhang KQ. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180317. [PMID: 30967028 PMCID: PMC6367146 DOI: 10.1098/rstb.2018.0317] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause severe damage to agricultural crops worldwide. As most chemical nematicides have negative environmental side effects, there is a pressing need for developing efficient biocontrol methods. Nematophagous microbes, the natural enemies of nematodes, are potential biocontrol agents against PPNs. These natural enemies include both bacteria and fungi and they use diverse methods to infect and kill nematodes. For instance, nematode-trapping fungi can sense host signals and produce special trapping devices to capture nematodes, whereas endo-parasitic fungi can kill nematodes by spore adhesion and invasive growth to break the nematode cuticle. By contrast, nematophagous bacteria can secrete virulence factors to kill nematodes. In addition, some bacteria can mobilize nematode-trapping fungi to kill nematodes. In response, nematodes can also sense and defend against the microbial pathogens using strategies such as producing anti-microbial peptides regulated by the innate immunity system. Recent progresses in our understanding of the signal pathways involved in microbe-nematode interactions are providing new insights in developing efficient biological control strategies against PPNs. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- School of Life Science, Yunnan University, Kunming 650091, People's Republic of China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- School of Life Science, Yunnan University, Kunming 650091, People's Republic of China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- Department of Biology, McMaster University, Hamilton, Ontario, CanadaL8S 4K1
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- School of Life Science, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
31
|
Maia Filho FDS, Fonseca ADODS, Valente JDSS, Baptista CT, Moreira ADS, Botton SDA, Pötter L, Pereira DIB. Exposure of Toxocara canis eggs to Purpureocillium lilacinum as a biocontrol strategy: an experimental model evaluation. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2019; 28:91-96. [DOI: 10.1590/s1984-29612019007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022]
Abstract
Abstract Purpureocillium lilacinum is a nematophagous fungus used in biological control against some parasites, including Toxocara canis. This study researched the infectivity of embryonated T. canis eggs after exposure to the fungus P. lilacinum. T. canis eggs were exposed to P. lilacinum for 15 or 30 days and subsequently administered to Swiss mice (n=20). Control group consisted of mice who received T. canis embryonated eggs without fungal exposure. Forty-eight hours after infection, heart, lung, and liver from animals of each group were collected to assess larval recovery. The organs of mice that received embryonated eggs exposed to the fungus showed a lower average larval recovery (P<0.05) suggesting that exposure of T. canis eggs to P. lilacinum was able to reduce experimental infection. Under the evaluated conditions, the interaction time between the fungus and the parasite eggs was not a significant factor in larvae recovery. P. lilacinum may be considered a promising T. canis biological control agent. However, further studies are needed to determine a protocol for the use of this fungus as a biological control agent.
Collapse
|
32
|
Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol Adv 2018; 36:818-838. [DOI: 10.1016/j.biotechadv.2018.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023]
|
33
|
Hussain M, Zouhar M, Ryšánek P. Suppression of Meloidogyne incognita by the Entomopathogenic Fungus Lecanicillium muscarium. PLANT DISEASE 2018; 102:977-982. [PMID: 30673384 DOI: 10.1094/pdis-09-17-1392-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The entomopathogenic fungus Lecanicillium muscarium (Petch) Zare and Gams is currently being developed as a biocontrol agent against insect pests, as well as some plant-pathogenic fungi and bacteria. Data about its activity against plant-parasitic nematodes exist, but are relatively limited. To expand this understanding, we investigated the biocontrol efficiency of three isolates of L. muscarium (Lm) against the root knot nematode, Meloidogyne incognita, in both in vitro and in vivo conditions. In our experiments, the maximum number of nematode eggs, juveniles (J2s), females, and egg masses that were parasitized were quantified after a 72-h exposure to the fungus. The isolate Lm1 was designated as the best biocontrol agent against nematode eggs as well as J2s. It showed the highest colonization of eggs and significantly decreased egg hatching events. The results from two additional isolates, Lm2 and Lm3, were also significant (P = 0.05) but less pronounced than those observed with Lm1. L. muscarium treatments had significant (P = 0.05) positive effects on plant shoot and root growth compared with the growth of control plants. These results suggest the effectiveness of the fungus may be due to either the infection of eggs and J2s, or the production of secondary metabolites that induced plant defense mechanisms and lead to systemic resistance. Our study demonstrates that L. muscarium could be used as a potential biocontrol agent against root knot nematodes.
Collapse
Affiliation(s)
- Manzoor Hussain
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Kamycka 129, 165 21 Prague, Czech Republic
| | - Miloslav Zouhar
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Kamycka 129, 165 21 Prague, Czech Republic
| | - Pavel Ryšánek
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Kamycka 129, 165 21 Prague, Czech Republic
| |
Collapse
|
34
|
Screening and identification of horticultural soil fungi for their evaluation against the plant parasitic nematode Nacobbus aberrans. World J Microbiol Biotechnol 2018; 34:63. [DOI: 10.1007/s11274-018-2441-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|
35
|
Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Appl Microbiol Biotechnol 2018. [PMID: 29523933 DOI: 10.1007/s00253-018-8897-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
Collapse
|
36
|
Wang R, Dong L, He R, Wang Q, Chen Y, Qu L, Zhang YA. Comparative genomic analyses reveal the features for adaptation to nematodes in fungi. DNA Res 2018; 25:4791394. [PMID: 29315395 PMCID: PMC6014366 DOI: 10.1093/dnares/dsx053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022] Open
Abstract
Nematophagous (NP) fungi are ecologically important components of the soil microbiome in natural ecosystems. Esteya vermicola (Ev) has been reported as a NP fungus with a poorly understood evolutionary history and mechanism of adaptation to parasitism. Furthermore, NP fungal genomic basis of lifestyle was still unclear. We sequenced and annotated the Ev genome (34.2 Mbp) and integrated genetic makeup and evolution of pathogenic genes to investigate NP fungi. The results revealed that NP fungi had some abundant pathogenic genes corresponding to their niche. A number of gene families involved in pathogenicity were expanded, and some pathogenic orthologous genes underwent positive selection. NP fungi with diverse morphological features exhibit similarities of evolutionary convergence in attacking nematodes, but their genetic makeup and microscopic mechanism are different. Endoparasitic NP fungi showed similarity in large number of transporters and secondary metabolite coding genes. Noteworthy, expanded families of transporters and endo-beta-glucanase implied great genetic potential of Ev in quickly perturbing nematode metabolism and parasitic behavior. These results facilitate our understanding of NP fungal genomic features for adaptation to nematodes and lay a solid theoretical foundation for further research and application.
Collapse
Affiliation(s)
- Ruizhen Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Botany, Beijing Botanical Garden, Beijing 100093, China
| | - Leiming Dong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ran He
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Botany, Beijing Botanical Garden, Beijing 100093, China
| | - Qinghua Wang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuequ Chen
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- Forestry Resources Protection Institute, Jilin Provincial Academy of Forestry Sciences, Changchun 130031, China
| | - Liangjian Qu
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Yong-An Zhang
- The Key Laboratory of Forest Protection, State Forestry Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
37
|
Zhang D, Zhou Y, Zhao D, Zhu J, Yang Z, Zhu M. Complete genome sequence and pathogenic genes analysis of Pectobacterium atroseptica JG10-08. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0559-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Taxonomic Resolution of the Nematophagous Fungal Isolate ARF18 via Genome Sequencing. GENOME ANNOUNCEMENTS 2017; 5:5/34/e00903-17. [PMID: 28839040 PMCID: PMC5571426 DOI: 10.1128/genomea.00903-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The taxonomically uncharacterized nematophagous fungus ARF18, which parasitizes cysts, juveniles, and adults of the soybean cyst nematode (Heterodera glycines), was proposed as a nematode biological control agent in 1991. A 46.3-Mb draft genome sequence of this fungus is presented, and a tentative taxonomic identification as a novel species of Brachyphoris is proposed.
Collapse
|
39
|
Random mutagenesis analysis and identification of a novel C 2H 2-type transcription factor from the nematode-trapping fungus Arthrobotrys oligospora. Sci Rep 2017; 7:5640. [PMID: 28717216 PMCID: PMC5514059 DOI: 10.1038/s41598-017-06075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/12/2017] [Indexed: 01/04/2023] Open
Abstract
Arthrobotrys oligospora is a typical nematode-trapping fungus. In this study, 37 transformants of A. oligospora were obtained by REMI (restriction enzyme mediated integration) method and phenotypic properties of nine transformants were analyzed. The nine transformants showed differences in growth, conidiation, trap formation, stress tolerance, and/or pathogenicity among each other and with those of the parental wild-type strain (WT). The insertional sites of the hph cassette were identified in transformants X5 and X13. In X5, the cassette was inserted in the non-coding region between AOL_s00076g273 (76g273) and AOL_s00076g274 (76g274) and the transcription of 76g274, but not 76g273, was enhanced in X5. 76g274p had two conserved domains and was predicted as a nucleoprotein, which we confirmed by its nuclear localization in Saccharomyces cerevisiae using the green fluorescent protein-fused 76g274p. The transcription of 76g274 was stimulated or inhibited by several environmental factors. The sporulation yields of 76g274-deficient mutants were decreased by 70%, and transcription of several sporulation-related genes was severely diminished compared to the WT during the conidiation. In summary, a method for screening mutants was established in A. oligospora and using the method, we identified a novel C2H2-type transcription factor that positively regulates the conidiation of A. oligospora.
Collapse
|
40
|
RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi. World J Microbiol Biotechnol 2017; 33:65. [DOI: 10.1007/s11274-017-2232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
|
41
|
Silveira WFD, Oliveira GDD, Braga FR, Carvalho LMD, Domingues RR, Silva LAD, Zanuncio JC, Araújo JVD. Predation rate of nematophagous fungi after passing through the gastrointestinal tract of goats. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Abstract
Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.
Collapse
Affiliation(s)
- Xiangzhi Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| |
Collapse
|
43
|
Yang LQ, Sang P, Zhang RP, Liu SQ. Substrate-induced changes in dynamics and molecular motions of cuticle-degrading serine protease PL646: a molecular dynamics study. RSC Adv 2017. [DOI: 10.1039/c7ra07797a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cuticle-degrading serine proteases secreted by nematophagous fungi can degrade the nematode cuticle during the infection processes.
Collapse
Affiliation(s)
- Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China
| | - Peng Sang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China
| | - Ruo-Peng Zhang
- Department of Reproductive Medicine
- The First Affiliated Hospital of Dali University
- Dali
- P. R. China
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| |
Collapse
|
44
|
Chen J, An Y, Kumar A, Liu Z. Improvement of chitinase Pachi with nematicidal activities by random mutagenesis. Int J Biol Macromol 2016; 96:171-176. [PMID: 27989482 DOI: 10.1016/j.ijbiomac.2016.11.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022]
Abstract
Chitinase, an enzyme that can degrade the main compositions of insect intestine and cuticle, has been used in the bio-control field. Our previous work has reported the chitinase Pachi with nematicidal activity (Caenorhabditis elegans). In the present study, to improve the chitinolytic and nematicidal activities of Pachi, a random mutant library was constructed by error-prone PCR and screened by bacteriophage T7-based high-throughput screening system. One mutant, PachiN35D was obtained from about 10, 000 clones. The kinetics analysis revealed that PachiN35D exhibited a 63% decrease in Km value against chitosan, a 2.1-fold enhancement in kcat/Km value and a 1.2-fold increase in specific activity over the wild-type Pachi. Moreover, the mortality analysis against Caenorhabditis elegans showed that the 50% lethal concentration (LC50) of PachiN35D is 309.6±1.1μg/ml and a 20% increase in nematicidal activity over the wild-type Pachi (with a LC50 value of 387.3±31.7μg/ml). The structure modeling and superimposition indicated that the substitution N35D reduced the distance between substrate and substrate-binding site Asp141, finally resulting in an increase in substrate affinity, catalytic efficiency and specific activity. These results provide useful information for the study of structure-function relationship of Pachi and lay a foundation for its potential applications in agro-biotechnology.
Collapse
Affiliation(s)
- Junpeng Chen
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Yangdongfang An
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Ashok Kumar
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Ziduo Liu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430 070, China.
| |
Collapse
|
45
|
Hofstätter BDM, Oliveira da Silva Fonseca A, de Souza Maia Filho F, de Souza Silveira J, Persici BM, Pötter L, Silveira A, Antoniolli ZI, Brayer Pereira DI. Effect of Paecilomyces lilacinus, Trichoderma harzianum and Trichoderma virens fungal extracts on the hatchability of Ancylostoma eggs. Rev Iberoam Micol 2016; 34:28-31. [PMID: 27810261 DOI: 10.1016/j.riam.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 12/15/2015] [Accepted: 04/08/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Ancylostoma species have demanded attention due to their zoonotic potential. The use of anthelmintics is the usual method to prevent environmental contamination by Ancylostoma eggs and larvae. Nematophagous fungi have been widely used in their biological control due to the fungus ability to capture and digest free nematode forms. AIMS The aim of this study was to evaluate the effect of four different fungal extracts of Paecilomyces lilacinus (n=2), Trichoderma harzianum (n=1) and Trichoderma virens (n=1) isolates on the hatchability of Ancylostoma eggs. METHODS Fungal extracts consisted of fungal broth culture supernatant without filtration (crude extract) and filtered broth (filtered extract), macerated mycelium (crude macerate), and macerated mycelium submitted to filtration (filtered macerate). The Ancylostoma eggs were obtained from the feces of naturally infected dogs. In vitro assays were performed in five replicates and consisted of four treatments and one control group. RESULTS The activity of the fungal extracts of each evaluated fungus differed (p<0.05) from those of the control group, showing significant ovicidal activity. The hatching of the eggs suffered reduction percentages of 68.43% and 47.05% with P. lilacinus, and 56.43% with T. harzianum, when crude macerate extract was used. The reduction with the macerate extract of T. virens was slightly lower (52.25%) than that for the filtered macerate (53.64%). CONCLUSIONS The results showed that all extracts were effective in reducing the hatchability of Ancylostoma eggs. The ovicidal effect observed is likely to have been caused by the action of hydrolytic enzymes secreted by the fungi.
Collapse
Affiliation(s)
- Bianca Delgado Menezes Hofstätter
- Universidade Federal de Pelotas (UFPel), Instituto de Biología, Departamento de Microbiologia e Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Anelise Oliveira da Silva Fonseca
- Universidade Federal de Pelotas (UFPel), Instituto de Biología, Departamento de Microbiologia e Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Fernando de Souza Maia Filho
- Universidade Federal de Pelotas (UFPel), Instituto de Biología, Departamento de Microbiologia e Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Julia de Souza Silveira
- Universidade Federal de Pelotas (UFPel), Instituto de Biología, Departamento de Microbiologia e Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Beatriz Maroneze Persici
- Universidade Federal de Pelotas (UFPel), Instituto de Biología, Departamento de Microbiologia e Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Pötter
- Universidade Federal de Santa Maria (UFSM), Centro de Ciências Rurais, Departamento de Zootecnia, Santa Maria, Rio Grande do Sul, Brasil
| | - Andressa Silveira
- Universidade Federal de Santa Maria (UFSM), Centro de Ciências Rurais, Departamento de Zootecnia, Santa Maria, Rio Grande do Sul, Brasil
| | - Zaida Inês Antoniolli
- Universidade Federal de Santa Maria (UFSM), Centro de Ciências Rurais, Departamento de Zootecnia, Santa Maria, Rio Grande do Sul, Brasil
| | - Daniela Isabel Brayer Pereira
- Universidade Federal de Pelotas (UFPel), Instituto de Biología, Departamento de Microbiologia e Parasitologia, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
46
|
Varshney D, Jaiswar A, Adholeya A, Prasad P. Phylogenetic analyses reveal molecular signatures associated with functional divergence among Subtilisin like Serine Proteases are linked to lifestyle transitions in Hypocreales. BMC Evol Biol 2016; 16:220. [PMID: 27756202 PMCID: PMC5069783 DOI: 10.1186/s12862-016-0793-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/07/2016] [Indexed: 11/15/2022] Open
Abstract
Background Subtilisin-like serine proteases or Subtilases in fungi are important for penetration and colonization of host. In Hypocreales, these proteins share several properties with other fungal, bacterial, plant and mammalian homologs. However, adoption of specific roles in entomopathogenesis may be governed by attainment of unique biochemical and structural features during the evolutionary course. Due to such functional shifts Subtilases coded by different family members of Hypocreales acquire distinct features according to respective hosts and lifestyle. We conducted phylogenetic and DIVERGE analyses and identified important protein residues that putatively assign functional specificity to Subtilases in fungal families/species under the order Hypocreales. Results A total of 161 Subtilases coded by 10 species from five different families under the fungal order Hypocreales was included in the analysis. Based on the presence of conserved domains, the Subtilase genes were divided into three subfamilies, Subtilisin (S08.005), Proteinase K (S08.054) and Serine-carboxyl peptidases (S53.001). These subfamilies were investigated for phylogenetic associations, protein residues under positive selection and functional divergence among paralogous clades. The observations were co-related with the life-styles of the fungal families/species. Phylogenetic and Divergence analyses of Subtilisin (S08.005) and Proteinase K (S08.054) families of proteins revealed that the paralogous clades were clear-cut representation of familial origin of the protein sequences. We observed divergence between the paralogous clades of plant-pathogenic fungi (Nectriaceae), insect-pathogenic fungi (Cordycipitaceae/Clavicipitaceae) and nematophagous fungi (Ophiocordycipitaceae). In addition, Subtilase genes from the nematode-parasitic fungus Purpureocillium lilacinum made a unique cluster which putatively indicated that the fungus might have developed distinctive mechanisms for nematode-pathogenesis. Our evolutionary genetics analysis revealed evidence of positive selection on the Subtilisin (S08.005) and Proteinase K (S08.054) protein sequences of the entomopathogenic and nematophagous species belonging to Cordycipitaceae, Clavicipitaceae and Ophiocordycipitaceae families of Hypocreales. Conclusions Our study provided new insights into the evolution of Subtilisin like serine proteases in Hypocreales, a fungal order largely consisting of biological control species. Subtilisin (S08.005) and Proteinase K (S08.054) proteins seemed to play important roles during life style modifications among different families and species of Hypocreales. Protein residues found significant in functional divergence analysis in the present study may provide support for protein engineering in future. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0793-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepti Varshney
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Akanksha Jaiswar
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Pushplata Prasad
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gual Pahari, Faridabad Road, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
47
|
Aranda-Martinez A, Lenfant N, Escudero N, Zavala-Gonzalez EA, Henrissat B, Lopez-Llorca LV. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism. Environ Microbiol 2016; 18:4200-4215. [PMID: 27668983 DOI: 10.1111/1462-2920.13544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Pochonia chlamydosporia is a soil fungus with a multitrophic lifestyle combining endophytic and saprophytic behaviors, in addition to a nematophagous activity directed against eggs of root-knot and other plant parasitic nematodes. The carbohydrate-active enzymes encoded by the genome of P. chlamydosporia suggest that the endophytic and saprophytic lifestyles make use of a plant cell wall polysaccharide degradation machinery that can target cellulose, xylan and, to a lesser extent, pectin. This enzymatic machinery is completed by a chitin breakdown system that involves not only chitinases, but also chitin deacetylases and a large number of chitosanases. P. chlamydosporia can degrade and grow on chitin and is particularly efficient on chitosan. The relevance of chitosan breakdown during nematode egg infection is supported by the immunolocalization of chitosan in Meloidogyne javanica eggs infected by P. chlamydosporia and by the fact that the fungus expresses chitosanase and chitin deacetylase genes during egg infection. This suggests that these enzymes are important for the nematophagous activity of the fungus and they are targets for improving the capabilities of P. chlamydosporia as a biocontrol agent in agriculture.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Nicolas Lenfant
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,INRA, USC 1408 AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
48
|
Xie J, Li S, Mo C, Xiao X, Peng D, Wang G, Xiao Y. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1. Front Microbiol 2016; 7:1084. [PMID: 27486440 PMCID: PMC4949223 DOI: 10.3389/fmicb.2016.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs.
Collapse
Affiliation(s)
- Jialian Xie
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Shaojun Li
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Chenmi Mo
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xueqiong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Gaofeng Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
49
|
|
50
|
Xie M, Zhang YJ, Zhang XL, Peng DL, Yu WB, Li Q. Genetic improvement of the nematicidal fungus Lecanicillium attenuatum against Heterodera glycines by expression of the Beauveria bassiana Cdep1 protease gene. J Invertebr Pathol 2016; 138:86-8. [PMID: 27342597 DOI: 10.1016/j.jip.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Lecanicillium attenuatum is an important nematophagous fungus with potential as a biopesticide against plant-parasitic nematodes. The Pr1A-like cuticle-degrading protease (Cdep1) gene originating from the entomopathogenic fungus Beauveria bassiana was transformed into the nematophagous fungus L. attenuatum using a polyethylene-glycol mediated protoplast-based transformation system. Protease activity was increased 0.64- to 1.63-fold 2-10d after growth in the transformed L. attenuatum. Inhibition of egg-hatching and J2 motility of soybean cyst nematodes (Heterodera glycines) by cell-free fungal culture filtrates were enhanced by 17-76% 2-14d and 43-152% 1-13d after incubation, respectively.
Collapse
Affiliation(s)
- Ming Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yan-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Xiao-Lin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - De-Liang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Wen-Bin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|