1
|
Tao F, Chen F, Liu H, Chen C, Cheng B, Han G. Insight into the composition and differentiation of endophytic microbial communities in kernels via 368 maize transcriptomes. J Adv Res 2025; 71:5-16. [PMID: 38772425 DOI: 10.1016/j.jare.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Kernels are important reproductive organs in maize, yet there is a lack of systematic investigation on the differences in the composition of endophytic microorganisms in plants from a population perspective. OBJECTIVES We aimed to elucidate the composition of endophytic microorganisms in developing maize kernels, emphasizing differences among various inbred lines. METHODS The transcriptomic data of 368 maize inbred lines were used to explore the composition and diversity of endophytic microorganisms. RESULTS The findings revealed a higher abundance of fungi than bacteria in developing maize kernels, followed by protozoa, while viruses were less abundant. There were significant differences in the composition and relative abundance of endophytic microorganisms among different maize lines. Diversity analysis revealed overall similarity in the community composition structure between tropical/subtropical (TST) and temperate (NSS) maize germplasm with apparent variations in community richness and abundance. The endophytic microorganisms network in the kernels from TST genotypes exhibited higher connectivity and stability compared to NSS kernels. Bacteria dominated the highly connected species in the networks, and different core species showed microbial phylum specificity. Some low-abundance species acted as core species, contributing to network stability. Beneficial bacteria were predominant in the core species of networks in TST kernels, while pathogenic bacteria were more abundant in the core species of networks in NSS kernels. CONCLUSION Tropical maize germplasm may have advantages in resisting the invasion of pathogenic microorganisms, providing excellent genetic resources for disease-resistant breeding.
Collapse
Affiliation(s)
- Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Feng Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Haida Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Aishwarya P, Sabarinathan KG, Gomathy M, Meenakshisundaram P, Manonmani K, Kar AA. Endophytes as bioenhancers of plant growth: An overview. Fitoterapia 2025; 181:106355. [PMID: 39719223 DOI: 10.1016/j.fitote.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
The need for food production rises with the era of expanding population. As a result, there is more indirect demand for chemical pesticides and fertilizers. Serious environmental concerns result from the continuous and careless usage of chemicals. Additionally, they could make the land infertile. One of the finest substitutes for chemicals is to use microorganisms, particularly endophytes. Endophytes uses both direct and indirect mechanisms to encourage plant growth by increased mineral availability, resilience to biotic and abiotic stresses, synthesis of significant phytohormones. This review is focused on exploring the plant growth promoting effect of endophytes and its potential implications in the crop production.
Collapse
Affiliation(s)
- P Aishwarya
- Department of Agricultural Microbiology, Agricultural College & Research Institute, TNAU, Madurai, Tamil Nadu, India
| | - K G Sabarinathan
- Department of Agricultural Microbiology, Agricultural College & Research Institute, TNAU, Madurai, Tamil Nadu, India.
| | - M Gomathy
- Dept. of Soil Science & Agricultural Chemistry, Agricultural College and Research Institute, Killikulam, TNAU, Tamil Nadu, India.
| | - P Meenakshisundaram
- Department of Biotechnology, Agricultural College & Research Institute, Madurai, TNAU, Tamil Nadu, India
| | - K Manonmani
- Department of Plant Pathology, Agricultural College & Research Institute, Madurai, TNAU, Tamil Nadu, India
| | - A Ahaz Kar
- Department of Agricultural Microbiology, Agricultural College & Research Institute, TNAU, Madurai, Tamil Nadu, India
| |
Collapse
|
3
|
Hwang HH, Huang YT, Chien PR, Huang FC, Wu CL, Chen LY, Hung SHW, Pan IC, Huang CC. A plant endophytic bacterium Burkholderia seminalis strain 869T2 increases plant growth under salt stress by affecting several phytohormone response pathways. BOTANICAL STUDIES 2025; 66:7. [PMID: 39904843 PMCID: PMC11794907 DOI: 10.1186/s40529-025-00453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Due to global warming and gradual climate change, plants are subjected to a wide range of environmental stresses, adversely affecting plant growth and production worldwide. Plants have developed various mechanisms to overpower these abiotic stresses, including salt stress, drought, and high light intensity. Apart from their own defense strategies, plants can get help from the beneficial endophytic bacteria inside host plants and assist them in enduring severe growth conditions. A previously isolated plant endophytic bacteria, Burkholderia seminalis 869T2, from vetiver grass can produce auxin, synthesize siderophore, and solubilize phosphate. The B. seminalis 869T2 can colonize inside host plants and increase the growth of bananas, Arabidopsis, and several leafy vegetables. RESULTS We further demonstrated that different growth parameters of Arabidopsis and pak choi plants were significantly increased after inoculating the B. seminalis 869T2 under normal, salt, and drought stress conditions compared to the mock-inoculated plants. Both transcriptome analysis and quantitative real-time PCR results showed that expression levels of genes related to phytohormone signal transduction pathways, including auxin, gibberellin, cytokinin, and abscisic acid were altered in Arabidopsis plants after inoculated with the strain 869T2 under salt stress, in comparison to the mock-inoculated control with salt treatments. Furthermore, the accumulation levels of hydrogen peroxide (H2O2), electrolyte leakage (EL), and malondialdehyde (MDA) were lower in the 869T2-inoculated Arabidopsis and pak choi plants than in control plants under salt and drought stresses. CONCLUSIONS The plant endophytic bacterium strain B. seminalis 869T2 may affect various phytohormone responses and reduce oxidative stress damage to increase salt and drought stress tolerances of host plants.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Yu-Ting Huang
- Department of Horticulture, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Chih-Lin Wu
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Liang-Yu Chen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Chun Pan
- Department of Horticulture, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
4
|
Kamal N, Qian C, Hao H, Wu J, Liu Z, Zhong X, Ghanem OM, Salem A, Orban Z, Elwakeel AE, Mahmoud SF, Said AF. Hybrid Pennisetum colonization by Bacillus megaterium BM18-2 labeled with green fluorescent protein (GFP) under Cd stress. Arch Microbiol 2025; 207:30. [PMID: 39786545 PMCID: PMC11717813 DOI: 10.1007/s00203-024-04228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization. Confocal laser scanning microscopy of plant roots infected with gfp tagged BM18-2 revealed that the bacterium colonised root hairs and epidermal cells at the early stage of colonization, and over time, the bacteria penetrated to the internal tissues following their colonization of the stem and leaf. The roots, stems, and leaves of H. Pennisetum grown in Cd-contaminated soil contained a higher number of bacteria than those grown in normal soil. The result of Cd translocation indicated the condensation of heavy metals in the root cells and stem, while no Cd was found in the leaf. The study will also look for the enzymatic activity of bacteria BM18-2 and use Leadmium Green AM dye to track how Cd is taken up and moved through the plant. The enzymatic activity results showed that BM18-2 can produce catalase and amylase, but did not record any cellulase or lipase activity. As a result, the pattern of useful endophytic BM18-2 colonization through H. Pennisetum grass will aid in the application and maintenance of these bacteria in farming, and it presents new opportunities for the development of innovative strategies in the fields of agriculture and biotechnology.
Collapse
Affiliation(s)
- Nehal Kamal
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China.
- Department of Botany and Microbiology, Faculty of Science, Suez University, P.O. Box: 43221, Suez, Egypt.
| | - Chen Qian
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China
| | - Huanhuan Hao
- College of Agro-grassland Science, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Juanzi Wu
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China
| | - Zhiwei Liu
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China.
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Osama M Ghanem
- Soil and Water Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minya, Egypt.
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary.
| | - Zoltan Orban
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary
| | - Abdallah Elshawadfy Elwakeel
- Agricultural Engineering Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
| | - Samy F Mahmoud
- Department of Biotechnology, College of Science, Taif University, Taif city, Saudi Arabia
| | - Alaa F Said
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
5
|
Tiwari PK, Srivastava AK, Singh R, Srivastava AK. Stress-relieving plant growth-promoting bacterial co-inoculation enhances nodulation and nitrogen uptake in black gram under nitrogen-free saline conditions. Front Microbiol 2025; 15:1516748. [PMID: 39831124 PMCID: PMC11739075 DOI: 10.3389/fmicb.2024.1516748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram (Vigna mungo) resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability. A total of 72 bacterial strains were isolated from soil and 28 from black gram (Vigna mungo) root nodules, with 32 of the soil bacteria tolerating up to 10% NaCl. These bacteria were characterized through taxonomic and biochemical tests. Cross-compatibility analysis showed two rhizobia strains were highly compatible with five salt-tolerant bacteria. These strains exhibited significant plant growth-promoting traits, including phosphate, potassium, and zinc solubilization, as well as ACC deaminase, IAA, siderophore, and EPS production. Strain Paenibacillus sp. SPR11 showed the strongest overall performance. Genetic diversity was assessed using BOX-PCR and ERIC-PCR, and strains were identified through 16S rRNA gene sequencing. In a seed germination study under saline conditions (200 mM and 300 mM), co-inoculation with Bradyrhizobium yuanmingense PR3 and Paenibacillus sp. SPR11 resulted in a significant enhancement in seed germination (40%), root growth (84.45%), and shoot growth (90.15%) compared to single inoculation of B. yuanmingense PR3. Under greenhouse conditions in Leonard jars, co-inoculation with strains PR3 and SPR11 significantly enhanced shoot and root length, fresh and dry biomass, nodule count, and nodule fresh and dry weight. Chlorophyll content, nutrient uptake, and crude protein levels increased, while proline content decreased compared to single inoculation and uninoculated seeds. Our best understanding leads us to believe that this is the very first report of utilizing co-inoculation of salt-tolerant Paenibacillus sp. SPR11 and B. yuanmingense PR3, demonstrating their promising potential to alleviate salt stress and enhance growth, root architecture, nitrogen uptake, and nodule formation in black gram under nitrogen free saline conditions.
Collapse
Affiliation(s)
- Praveen Kumar Tiwari
- National Bureau of Agriculturally Important Microorganism, Mau, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | |
Collapse
|
6
|
Ren H, Huang X, Wang Z, Abdallah Y, Ayoade SO, Qi X, Yu Z, Wang Q, Mohany M, Al-Rejaie SS, Li B, Li G. The epidemic occurrence of decline disease in bayberry trees altered plant and soil related microbiome and metabolome. ENVIRONMENTAL MICROBIOME 2024; 19:79. [PMID: 39449039 PMCID: PMC11515357 DOI: 10.1186/s40793-024-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND In China, decline disease with unknown etiology appeared as an epidemic among bayberry trees in the southern area of the Yangtze River. Furthermore, the use of beneficial microbes has been reported to be able to reduce the incidence of this disease, emphasizing the association of this disease with microorganisms. Therefore, it has become critical to uncover the microbiome's function and related metabolites in remodeling the immunity of bayberry trees under biotic or abiotic stresses. RESULTS The amplicon sequencing data revealed that decline disease significantly altered bacterial and fungal communities, and their metabolites in the four distinct niches, especially in the rhizosphere soils and roots. Furthermore, the microbial communities in the four niches correlated with the metabolites of the corresponding niches of bayberry plants, and the fungal and bacterial networks of healthy trees were shown to be more complex than those of diseased trees. In addition, the role of microbiome in the resistance of bayberry trees to the occurrence of decline disease was justified by the isolation, identification, and characterization of important microorganisms such as significantly enriched Bacillus ASV804, Pseudomonas ASV815 in healthy plants, and significantly enriched Stenotrophomonas ASV719 in diseased plants. CONCLUSION Overall, our study revealed that the occurrence of decline disease altered the microbiome and its metabolites in four ecological niches in particular rhizosphere soils and roots of bayberry, which provides new insight into the control of bayberry decline disease.
Collapse
Affiliation(s)
- Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Solabomi Olaitan Ayoade
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Li P, Tian Y, Yang K, Tian M, Zhu Y, Chen X, Hu R, Qin T, Liu Y, Peng S, Yi Z, Liu Z, Ao H, Li J. Mechanism of microbial action of the inoculated nitrogen-fixing bacterium for growth promotion and yield enhancement in rice (Oryza sativa L.). ADVANCED BIOTECHNOLOGY 2024; 2:32. [PMID: 39883349 PMCID: PMC11709144 DOI: 10.1007/s44307-024-00038-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 01/31/2025]
Abstract
The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil. We investigated the effects of such inoculation on nutrient content in the rhizosphere soil, plant growth, and the nitrogen-fixing microbial communities within the rhizosphere and endorhizosphere. The findings showed that inoculation with the R3 strain considerably increased the amounts of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the rhizosphere by 14.77%, 27.83%, and 22.67%, respectively, in comparison to the control (CK). Additionally, the theoretical yield of rice was enhanced by 8.81% due to this inoculation, primarily through a 10.24% increase in the effective number of rice panicles and a 4.14% increase in the seed setting rate. Further analysis revealed that the structure of the native nitrogen-fixing microbial communities within the rhizosphere and endorhizosphere were altered by inoculation with the R3 strain, significantly increasing the α-diversity of the communities. The relative abundance of key nitrogen-fixing genera such as Ralstonia, Azotobacter, Geobacter, Streptomyces, and Pseudomonas were increased, enhancing the quantity and community stability of the nitrogen-fixing community. Consequently, the nitrogen-fixing capacity and sustained activity of the microbial community in the rhizosphere soil were strengthened. Additionally, the expression levels of the nitrogen absorption and transport-related genes OsNRT1 and OsPTR9 in rice roots were upregulated by inoculation with the R3 strain, potentially contributing to the increased rice yield. Our study has revealed the potential microbial mechanisms through which inoculation with nitrogen-fixing bacteria enhances rice yield. This finding provides a scientific basis for subsequent agricultural practices and is of critical importance for increasing rice production and enhancing the ecosystem services of rice fields.
Collapse
Affiliation(s)
- Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Kun Yang
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Zhu
- Hunan Tobacco Company Changde Branch, Changde, 415000, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tian Qin
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Shuguang Peng
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Li F, Sun A, Jiao X, Yu DT, Ren P, Wu BX, He P, Bi L, He JZ, Hu HW. Nitrogenous fertilizer plays a more important role than cultivars in shaping sorghum-associated microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173831. [PMID: 38866152 DOI: 10.1016/j.scitotenv.2024.173831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.
Collapse
Affiliation(s)
- Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Jiao
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Dan-Ting Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| | - Peixin Ren
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Bing-Xue Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Peng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Li Bi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, Mohapatra PK, Santos-Villalobos SDL, Rani A, Thatoi H. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100251. [PMID: 39165409 PMCID: PMC11334944 DOI: 10.1016/j.crmicr.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
The adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices. Additionally, this review discusses the future prospects of biofertilizers, emphasizing the ongoing advancements in biotechnology and formulation techniques that are expected to enhance their efficacy and applicability. Furthermore, this article provides insights into strategies for the successful acceptance of biofertilizers among farmers, including the importance of quality control, assurance, and education initiatives to raise awareness about their benefits and overcome barriers to adoption. By synthesizing the current research findings and industrial developments, this review offers valuable guidance for stakeholders seeking to exploit the potential of biofertilizers or beneficial microbes to promote soil health, ensure sustainable crop production, and addressing the challenges of modern agriculture.
Collapse
Affiliation(s)
- Aurodeepa Samantaray
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Sourav Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal 722102, India
| | - Rahul Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Pradeep K.Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal 733134, India
| | | | - Anju Rani
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
10
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
11
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
12
|
Xie CJ, Yao L, Tang R, Han S, Yang S, Alwathnani H, Rensing C, Liu GH, Zhou SG. Azotosporobacter soli gen. nov., sp. nov., a novel nitrogen-fixing bacterium isolated from paddy soil. Antonie Van Leeuwenhoek 2024; 117:79. [PMID: 38755437 DOI: 10.1007/s10482-024-01978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 μmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).
Collapse
Affiliation(s)
- Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Ling Yao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou City, Guangdong Province, 510006, People's Republic of China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Guo-Hong Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, 350003, People's Republic of China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China.
| |
Collapse
|
13
|
Jin T, Ren J, Bai B, Wu W, Cao Y, Meng J, Zhang L. Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Microbiol Spectr 2024; 12:e0405623. [PMID: 38563743 PMCID: PMC11064500 DOI: 10.1128/spectrum.04056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Wei Wu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yongqing Cao
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jing Meng
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Lihui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
14
|
Li X, Zheng X, Yadav N, Saha S, Salama ES, Li X, Wang L, Jeon BH. Rational management of the plant microbiome for the Second Green Revolution. PLANT COMMUNICATIONS 2024; 5:100812. [PMID: 38213028 PMCID: PMC11009158 DOI: 10.1016/j.xplc.2024.100812] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in environmental challenges. A new approach, the Second Green Revolution, seeks to enhance agricultural productivity while minimizing negative environmental impacts. Plant microbiomes play critical roles in plant growth and stress responses, and understanding plant-microbiome interactions is essential for developing sustainable agricultural practices that meet food security and safety challenges, which are among the United Nations Sustainable Development Goals. This review provides a comprehensive exploration of key deterministic processes crucial for developing microbiome management strategies, including the host effect, the facilitator effect, and microbe-microbe interactions. A hierarchical framework for plant microbiome modulation is proposed to bridge the gap between basic research and agricultural applications. This framework emphasizes three levels of modulation: single-strain, synthetic community, and in situ microbiome modulation. Overall, rational management of plant microbiomes has wide-ranging applications in agriculture and can potentially be a core technology for the Second Green Revolution.
Collapse
Affiliation(s)
- Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Hermantown, MN 55811, USA; Department of Biotechnology, Brainware University, Barasat, Kolkata 700125, West Bengal, India
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
15
|
Negi R, Sharma B, Kumar S, Chaubey KK, Kaur T, Devi R, Yadav A, Kour D, Yadav AN. Plant endophytes: unveiling hidden applications toward agro-environment sustainability. Folia Microbiol (Praha) 2024; 69:181-206. [PMID: 37747637 DOI: 10.1007/s12223-023-01092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
16
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
17
|
Bizjak T, Sellstedt A, Gratz R, Nordin A. Presence and activity of nitrogen-fixing bacteria in Scots pine needles in a boreal forest: a nitrogen-addition experiment. TREE PHYSIOLOGY 2023; 43:1354-1364. [PMID: 37073466 PMCID: PMC10423461 DOI: 10.1093/treephys/tpad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Endophytic nitrogen-fixing bacteria have been detected and isolated from the needles of conifer trees growing in North American boreal forests. Because boreal forests are nutrient-limited, these bacteria could provide an important source of nitrogen for tree species. This study aimed to determine their presence and activity in a Scandinavian boreal forest, using immunodetection of nitrogenase enzyme subunits and acetylene-reduction assays of native Scots pine (Pinus sylvestris L.) needles. The presence and rate of nitrogen fixation by endophytic bacteria were compared between control plots and fertilized plots in a nitrogen-addition experiment. In contrast to the expectation that nitrogen-fixation rates would decline in fertilized plots, as seen, for instance, with nitrogen-fixing bacteria associated with bryophytes, there was no difference in the presence or activity of nitrogen-fixing bacteria between the two treatments. The extrapolated calculated rate of nitrogen fixation relevant for the forest stand was 20 g N ha-1 year-1, which is rather low compared with Scots pine annual nitrogen use but could be important for the nitrogen-poor forest in the long term. In addition, of 13 colonies of potential nitrogen-fixing bacteria isolated from the needles on nitrogen-free media, 10 showed in vitro nitrogen fixation. In summary, 16S rRNA sequencing identified the species as belonging to the genera Bacillus, Variovorax, Novosphingobium, Sphingomonas, Microbacterium and Priestia, which was confirmed by Illumina whole-genome sequencing. Our results confirm the presence of endophytic nitrogen-fixing bacteria in Scots pine needles and suggest that they could be important for the long-term nitrogen budget of the Scandinavian boreal forest.
Collapse
Affiliation(s)
- Tinkara Bizjak
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Anita Sellstedt
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Regina Gratz
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Annika Nordin
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
18
|
Prodhan MY, Rahman MB, Rahman A, Akbor MA, Ghosh S, Nahar MNEN, Simo, Shamsuzzoha M, Cho KM, Haque MA. Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants-A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms 2023; 11:1821. [PMID: 37512993 PMCID: PMC10385066 DOI: 10.3390/microorganisms11071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC-MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Bokhtiar Rahman
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Mst Nur-E-Nazmun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Simo
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Shamsuzzoha
- Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
19
|
Peng M, Jiang Z, Zhou F, Wang Z. From salty to thriving: plant growth promoting bacteria as nature's allies in overcoming salinity stress in plants. Front Microbiol 2023; 14:1169809. [PMID: 37426022 PMCID: PMC10327291 DOI: 10.3389/fmicb.2023.1169809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Soil salinity is one of the main problems that affects global crop yield. Researchers have attempted to alleviate the effects of salt stress on plant growth using a variety of approaches, including genetic modification of salt-tolerant plants, screening the higher salt-tolerant genotypes, and the inoculation of beneficial plant microbiome, such as plant growth-promoting bacteria (PGPB). PGPB mainly exists in the rhizosphere soil, plant tissues and on the surfaces of leaves or stems, and can promote plant growth and increase plant tolerance to abiotic stress. Many halophytes recruit salt-resistant microorganisms, and therefore endophytic bacteria isolated from halophytes can help enhance plant stress responses. Beneficial plant-microbe interactions are widespread in nature, and microbial communities provide an opportunity to understand these beneficial interactions. In this study, we provide a brief overview of the current state of plant microbiomes and give particular emphasis on its influence factors and discuss various mechanisms used by PGPB in alleviating salt stress for plants. Then, we also describe the relationship between bacterial Type VI secretion system and plant growth promotion.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhihui Jiang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Fangzhen Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
| |
Collapse
|
20
|
Xia Y, He R, Xu W, Zhang J. The Zoige pioneer plant Leymus secalinus has different endophytic bacterial community structures to adapt to environmental conditions. PeerJ 2023; 11:e15363. [PMID: 37220526 PMCID: PMC10200098 DOI: 10.7717/peerj.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/16/2023] [Indexed: 05/25/2023] Open
Abstract
Background Leymus secalinus is a pioneer plant grown in the Zoige desertified alpine grassland and it is also one of the dominant plant species used for environmental remediation. L. secalinus plays a large role in vegetation reconstruction in sandy land, but the abundance and diversity of its endophytes have not yet been investigated. Objectives This study was performed to investigate the changes in the endophytic bacterial community structure of L. secalinus under different ecological environments and to analyze the effects of environmental changes and different plant tissues on the L. secalinus endophytic bacteria. Methods Leaf, stem, and root tissue samples of L. secalinus were collected from Zoige Glassland (Alpine sandy land) and an open field nursery (Control). DNA was extracted and the 16S ribosomal DNA was amplified. The sequence library was sequenced on an Illumina MiSeq platform and clustered by operational taxonomic units (OTUs). α-diversity and β-diversity analyses, species diversity analyses, functional prediction, and redundancy (RDA) analyses for the soil physicochemical properties were conducted. Results α-diversity and β-diversity analyses showed that the endophytic bacteria in L. secalinus varied in different areas and tissues. The abundance of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, which is related to nitrogen fixation, increased significantly in the L. secalinus found in the Zoige Grassland.Moreover, the abundance of nutrition metabolism and anti-stress abilities increased in functional prediction in the desert samples. The soil physicochemical properties had an insignificant influence on bacterial diversity. Conclusion The changes in the endophytic bacterial community structure in L. secalinus were significant and were caused by environmental alterations and plant choice. The endophytic bacteria in L. secalinus grown in alpine sandy land may have greater anti-stress properties and the ability to fix nitrogen, which has potential value in environmental remediation and agricultural production.
Collapse
Affiliation(s)
- Yue Xia
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ruipeng He
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wanru Xu
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, Kocsubé S, Jakab P, Monostori T, Škrbić BD, Mohai E, Hatvani L, Vágvölgyi C, Kredics L. Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation. Microorganisms 2023; 11:microorganisms11040914. [PMID: 37110337 PMCID: PMC10143537 DOI: 10.3390/microorganisms11040914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation.
Collapse
Affiliation(s)
- Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Anuar Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Ádám Bordé
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Adrienn Szarvas
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Jakab
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Tamás Monostori
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Biljana D. Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Edina Mohai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
22
|
Wang G, Li J, Ji J, Zhang L, Li B, Zhang J, Wang X, Song W, Guan C. Combined application of allantoin and strain JIT1 synergistically or additively promotes the growth of rice under 2, 4-DCP stress by enhancing the phosphate solubility, improving soil enzyme activities and photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153941. [PMID: 36739690 DOI: 10.1016/j.jplph.2023.153941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/10/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Environmental pollution by 2, 4 dichlorophenol (2, 4-DCP) has become a widespread concern due to its detrimental influence on human and natural ecosystem. With the increasing accumulation of 2, 4-DCP in soil, it is of great significance to explore some appropriate approaches for enhancing plant tolerance to 2, 4-DCP stress. In the current study, a strain resistant to 2, 4-DCP was obtained from the tall fescue rhizosphere soil and named as Pseudomonas sp. JIT1. The strain JIT1 exhibited several remarkable plant growth-promoting traits, including the production of IAA, fixation of biological nitrogen and solubilization of phosphate. The inoculation of strain JIT1 significantly increased biomass, photosynthesis, antioxidant levels, chlorophyll contents and the osmotic substance contents in rice seedlings exposed to 2, 4-DCP. Meanwhile, inoculation of strain JIT1 also enhanced activities of soil alkaline phosphatase, urease, sucrase and cellulase. Moreover, under 2, 4-DCP stress, the content of allantoin in seedlings significantly increased and the pretreatment of exogenous allantoin noticeably ameliorated the negative effects caused by 2, 4-DCP stress in rice seedlings. Interesting, allantoin treatment also enhanced phosphate solubilization properties of strain JIT1. The chlorophyll contents, photosynthesis and osmotic substance further increased by combination use of strain JIT1 and allantoin, which improved the growth of seedlings, most likely to be attributed to the synergistic or additive effect between allantoin and strain JIT1. The results of this study highlight the important roles of combined use of strain JIT1 and allantoin for improving the tolerance of rice to 2, 4-DCP to stress.
Collapse
Affiliation(s)
- Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiali Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lishuang Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Bowen Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
23
|
Esmaeilian Y, Amiri MB, Tavassoli A, Caballero-Calvo A, Rodrigo-Comino J. Replacing chemical fertilizers with organic and biological ones in transition to organic farming systems in saffron (Crocus sativus) cultivation. CHEMOSPHERE 2022; 307:135537. [PMID: 35850217 DOI: 10.1016/j.chemosphere.2022.135537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the response of saffron to animal manure, and biological and chemical fertilizer in an arid climate, an experiment was performed as split plots based on a randomized complete blocks design with three replications during three consecutive crop growth seasons (2015-2018) at the Research Farm of University of Gonabad, Iran. The experimental treatments included application (60 t ha-1) and non-application (control) of manure as the main plot and the use of biosulfur (5 kg ha-1), biophosphate (3 L ha-1), nitroxin (3 L ha-1), chemical fertilizer (150, 100, and 100 kg ha-1 of urea, triple superphosphate, and potassium sulfate, respectively), and no fertilizer application (control) as the sub-plot. The results showed a highly significant response of the quantitative traits of saffron to the application of manure, which increased the leaf, flower, and corm indices of saffron by a mean of 15.1-35.7% than control. The interaction effect of manure with biological and chemical fertilizers for leaf, flower, and weeds indices of saffron was significant. There was no significant difference between the interaction treatments of manure and chemical fertilizer with nitroxin and biophosphorus fertilizers in most of the mentioned traits in the three experiment years. The simultaneous application of these fertilizers increased the average by about 60, 105, 135, 110, 165, and 55% of the leaf dry weight, the number of flowers, fresh flower yield, dry flower yield, dry stigma yield, and weed dry weight of saffron, respectively as compared to control. There was no significant difference between the chemical fertilizer with nitroxin or biophosphate in terms of the effect on the traits related to saffron corm so the use of these fertilizers, as compared to control, increased replacement corm weight, replacement corm size, and bud number per corm by, respectively, about 35, 60, and 40% on average. The chemical and biological fertilizers improved the content of crocin, picrocrocin, and safranal of saffron stigma. The best results were obtained from the use of chemical fertilizers, although no significant difference was observed between this treatment and the nitroxin and biophosphate treatments. Overall, the results of this three-year experiment show a very high response of the saffron plant to the simultaneous use of manure and biological fertilizers and, therefore, it is possible to replace chemical fertilizers with organic and biological fertilizers in saffron cultivation to implement organic agriculture and achieve acceptable quantitative and qualitative yields in areas similar to the experiment location.
Collapse
Affiliation(s)
| | | | | | - Andrés Caballero-Calvo
- Department of Regional Geographic Analysis and Physical Geography, Faculty of Philosophy and Letters, Campus Universitario de Cartuja, University of Granada, 18071, Granada, Spain.
| | - Jesús Rodrigo-Comino
- Department of Regional Geographic Analysis and Physical Geography, Faculty of Philosophy and Letters, Campus Universitario de Cartuja, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
24
|
De Palma M, Scotti R, D’Agostino N, Zaccardelli M, Tucci M. Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2672. [PMID: 36297696 PMCID: PMC9612229 DOI: 10.3390/plants11202672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
25
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
26
|
Tripathi A, Pandey P, Tripathi SN, Kalra A. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic plants. FRONTIERS IN PLANT SCIENCE 2022; 13:985429. [PMID: 36247631 PMCID: PMC9560770 DOI: 10.3389/fpls.2022.985429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Ensuring food and nutritional security, it is crucial to use chemicals in agriculture to boost yields and protect the crops against biotic and abiotic perturbations. Conversely, excessive use of chemicals has led to many deleterious effects on the environment like pollution of soil, water, and air; loss of soil fertility; and development of pest resistance, and is now posing serious threats to biodiversity. Therefore, farming systems need to be upgraded towards the use of biological agents to retain agricultural and environmental sustainability. Plants exhibit a huge and varied niche for endophytic microorganisms inside the planta, resulting in a closer association between them. Endophytic microorganisms play pivotal roles in plant physiological and morphological characteristics, including growth promotion, survival, and fitness. Their mechanism of action includes both direct and indirect, such as mineral phosphate solubilization, fixating nitrogen, synthesis of auxins, production of siderophore, and various phytohormones. Medicinal and aromatic plants (MAPs) hold a crucial position worldwide for their valued essential oils and several phytopharmaceutically important bioactive compounds since ancient times; conversely, owing to the high demand for natural products, commercial cultivation of MAPs is on the upswing. Furthermore, the vulnerability to various pests and diseases enforces noteworthy production restraints that affect both crop yield and quality. Efforts have been made towards enhancing yields of plant crude drugs by improving crop varieties, cell cultures, transgenic plants, etc., but these are highly cost-demanding and time-consuming measures. Thus, it is essential to evolve efficient, eco-friendly, cost-effective simpler approaches for improvement in the yield and health of the plants. Harnessing endophytic microorganisms as biostimulants can be an effective and alternative step. This review summarizes the concept of endophytes, their multidimensional interaction inside the host plant, and the salient benefits associated with endophytic microorganisms in MAPs.
Collapse
Affiliation(s)
- Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shakti Nath Tripathi
- Department of Botany, Nehru Gram Bharati Deemed to be University, Prayagraj, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
27
|
Exploring Functional Diversity and Community Structure of Diazotrophic Endophytic Bacteria Associated with Pennisetum glaucum Growing under Field in a Semi-Arid Region. LAND 2022. [DOI: 10.3390/land11070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diazotrophic endophytic bacteria (DEB) are the key drivers of nitrogen fixation in rainfed soil ecosystems and, hence, can influence the growth and yield of crop plants. Therefore, the present work investigated the structure and composition of the DEB community at different growth stages of field-grown pearl millet plants, employing the cultivation-dependent method. Diazotrophy of the bacterial isolates was confirmed by acetylene reduction assay and amplification of the nifH gene. ERIC-PCR-based DNA fingerprinting, followed by 16S rRNA gene analysis of isolates recovered at different time intervals, demonstrated the highest bacterial diversity during early (up to 28 DAS (Days after sowing)) and late (63 DAS onwards) stages, as compared to the vegetative growth stage (28–56 DAS). Among all species, Pseudomonas aeruginosa was the most dominant endophyte. Assuming modulation of the immune response as one of the tactics for successful colonization of P. aeruginosa PM389, we studied the expression of the profile of defense genes of wheat, used as a host plant, in response to P. aeruginosa inoculation. Most of the pathogenesis-related PR genes were induced initially (at 6 h after infection (HAI)), followed by their downregulation at 12 HAI. The trend of bacterial colonization was quantified by qPCR of 16S rRNAs. The results obtained in the present study indicated an attenuated defense response in host plants towards endophytic bacteria, which is an important feature that helps endophytes establish themselves inside the endosphere of roots.
Collapse
|
28
|
Li Q. Perspectives on Converting Keratin-Containing Wastes Into Biofertilizers for Sustainable Agriculture. Front Microbiol 2022; 13:918262. [PMID: 35794912 PMCID: PMC9251476 DOI: 10.3389/fmicb.2022.918262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin-containing wastes become pollution to the environment if they are not treated properly. On the other hand, these wastes can be converted into value-added products applicable to many fields. Organic fertilizers and biofertilizers are important for sustainable agriculture by providing nutrients to enhance the growth speed of the plant and production. Keratin-containing wastes, therefore, will be an important resource to produce organic fertilizers. Many microorganisms exhibit capabilities to degrade keratins making them attractive to convert keratin-containing wastes into valuable products. In this review, the progress in microbial degradation of keratins is summarized. In addition, perspectives in converting keratin into bio- and organic fertilizers for agriculture are described. With proper treatment, feather wastes which are rich in keratin can be converted into high-value fertilizers to serve as nutrients for plants, reduce environmental pressure and improve the quality of the soil for sustainable agriculture.
Collapse
|
29
|
Das SR, Haque MA, Akbor MA, Abdullah-Al-Mamun M, Debnath GC, Hossain MS, Hasan Z, Rahman A, Islam MA, Hossain MAA, Yesmin S, Nahar MNEN, Cho KM. Organophosphorus insecticides mineralizing endophytic and rhizospheric soil bacterial consortium influence eggplant growth-promotion. Arch Microbiol 2022; 204:199. [DOI: 10.1007/s00203-022-02809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/01/2022]
|
30
|
Suquilanda-Pesántez JD, Aguiar Salazar ED, Almeida-Galárraga D, Salum G, Villalba-Meneses F, Gudiño Gomezjurado ME. NIFtHool: an informatics program for identification of NifH proteins using deep neural networks. F1000Res 2022; 11:164. [PMID: 35360826 PMCID: PMC8956849 DOI: 10.12688/f1000research.107925.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Atmospheric nitrogen fixation carried out by microorganisms has environmental and industrial importance, related to the increase of soil fertility and productivity. The present work proposes the development of a new high precision system that allows the recognition of amino acid sequences of the nitrogenase enzyme (NifH) as a promising way to improve the identification of diazotrophic bacteria. For this purpose, a database obtained from UniProt built a processed dataset formed by a set of 4911 and 4782 amino acid sequences of the NifH and non-NifH
proteins respectively. Subsequently, the feature extraction was developed using two methodologies: (i) k-mers counting and (ii) embedding layers to obtain numerical vectors of the amino acid chains. Afterward, for the embedding layer, the data was crossed by an external trainable convolutional layer, which received a uniform matrix and applied convolution using filters to obtain the feature maps of the model. Finally, a deep neural network was used as the primary model to classify the amino acid sequences as NifH protein or not. Performance evaluation experiments were carried out, and the results revealed an accuracy of 96.4%, a sensitivity of 95.2%, and a specificity of 96.7%. Therefore, an amino acid sequence-based feature extraction method that uses a neural network to detect N-fixing organisms is proposed and implemented. NIFtHool is available from:
https://nifthool.anvil.app/
Collapse
Affiliation(s)
| | - Evelyn Dayana Aguiar Salazar
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Diego Almeida-Galárraga
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Graciela Salum
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Fernando Villalba-Meneses
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Marco Esteban Gudiño Gomezjurado
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| |
Collapse
|
31
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
32
|
Mayerhofer J, Thuerig B, Oberhaensli T, Enderle E, Lutz S, Ahrens CH, Fuchs JG, Widmer F. Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane. FEMS Microbiol Ecol 2021; 97:6373440. [PMID: 34549287 PMCID: PMC8478479 DOI: 10.1093/femsec/fiab134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Compost applications vary in their plant growth promotion and plant disease suppression, likely due to differences in physico-chemical and biological parameters. Our hypothesis was that bacteria are important for plant growth promotion and disease suppression of composts and, therefore, composts having these traits would contain similar sets of indicative bacterial taxa. Seventeen composts prepared from five different commercial providers and different starting materials were classified accordingly with bioassays using cress plants and the pathogen Pythium ultimum. Using a metabarcoding approach, bacterial communities were assessed in bulk composts and cress rhizoplanes. Six and nine composts showed significant disease suppression or growth promotion, respectively, but these traits did not correlate. Growth promotion correlated positively with nitrate content of composts, whereas disease suppression correlated negatively with factors representing compost age. Growth promotion and disease suppression explained significant portions of variation in bacterial community structures, i.e. 11.5% and 14.7%, respectively. Among the sequence variants (SVs) associated with growth promotion, Microvirga, Acinetobacter, Streptomyces, Bradyrhizobium and Bacillus were highly promising, while in suppressive composts, Ureibacillus,Thermogutta and Sphingopyxis were most promising. Associated SVs represent the basis for developing prediction tools for growth promotion and disease suppression, a highly desired goal for targeted compost production and application.
Collapse
Affiliation(s)
| | - Barbara Thuerig
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Thomas Oberhaensli
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Eileen Enderle
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Stefanie Lutz
- Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, 8820, Wädenswil, Switzerland
| | - Christian H Ahrens
- Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, 8820, Wädenswil, Switzerland.,Bioinformatics and Proteogenomics, SIB Swiss Institute of Bioinformatics, 8820, Wädenswil, Switzerland
| | - Jacques G Fuchs
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Franco Widmer
- Molecular Ecology, Agroscope, 8046, Zurich, Switzerland
| |
Collapse
|
33
|
Ghadimi M, Sirousmehr A, Ansari MH, Ghanbari A. Organic soil amendments using vermicomposts under inoculation of N 2-fixing bacteria for sustainable rice production. PeerJ 2021; 9:e10833. [PMID: 34557340 PMCID: PMC8418801 DOI: 10.7717/peerj.10833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Organic and biological fertilizers are considered as a very important source of plant nutrients. A field experiment was conducted during 2017−2018 in paddy soil to investigate the effect of vermicomposting of cattle manure mixture with Azolla and rice straw on soil microbial activity, nutrient uptake, and grain yield under inoculation of N2-fixing bacteria. Experimental factors consisted of organic amendments at six levels (vermicomposts prepared from manure (VM); manure + rice straw (VRM); manure + Azolla mixture (VAM); manure + rice straw + Azolla mixture (VRAM); raw manure without vermicomposting (M), and a control) and N2-fixing bacteria at three levels (Azotobacter chroococcum, Azospirillum brasilence, and non−inoculation). The results showed that, vermicompost treatments compared to control and raw manure significantly increased the number and biomass−C of soil microorganisms, urease activity, number of tillers hill−1, phosphorus (P) and potassium (K) uptake, and grain and protein yield. Inoculation of plants with N2-fixing bacteria, especially Azotobacter increased the efficiency of organic amendments, so that the maximum urease activity, soil microbial activity, P and N uptake, and grain yield (4,667 (2017) and 5,081 (2018) kg/h) were observed in vermicompost treatments containing Azolla (VAM and VRAM) under inoculation with Azotobacter. The results of the study suggested that, using an organic source along with inoculation with appropriate N2-fixing bacteria for vermicompost has a great effect on enzyme activity, soil biology, nutrient uptake and grain yield has a synergistic interaction on agronomic traits under flooded conditions. Therefore, this nutrient method can be used as one of the nutrient management strategies in the sustainable rice production.
Collapse
Affiliation(s)
- Mehdi Ghadimi
- Department of Agronomy, University of Zabol, Zabol, Sistan-o-Baluchestan, Iran
| | - Alireza Sirousmehr
- Department of Agronomy, University of Zabol, Zabol, Sistan-o-Baluchestan, Iran
| | | | - Ahmad Ghanbari
- Department of Agronomy, University of Zabol, Zabol, Sistan-o-Baluchestan, Iran
| |
Collapse
|
34
|
Ali M, Ali Q, Sohail MA, Ashraf MF, Saleem MH, Hussain S, Zhou L. Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. Int J Mol Sci 2021; 22:ijms221810165. [PMID: 34576331 PMCID: PMC8465699 DOI: 10.3390/ijms221810165] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytic bacterial communities are beneficial communities for host plants that exist inside the surfaces of plant tissues, and their application improves plant growth. They benefit directly from the host plant by enhancing the nutrient amount of the plant’s intake and influencing the phytohormones, which are responsible for growth promotion and stress. Endophytic bacteria play an important role in plant-growth promotion (PGP) by regulating the indirect mechanism targeting pest and pathogens through hydrolytic enzymes, antibiotics, biocontrol potential, and nutrient restriction for pathogens. To attain these benefits, firstly bacterial communities must be colonized by plant tissues. The nature of colonization can be achieved by using a set of traits, including attachment behavior and motility speed, degradation of plant polymers, and plant defense evasion. The diversity of bacterial endophytes colonization depends on various factors, such as plants’ relationship with environmental factors. Generally, each endophytic bacteria has a wide host range, and they are used as bio-inoculants in the form of synthetic applications for sustainable agriculture systems and to protect the environment from chemical hazards. This review discusses and explores the taxonomic distribution of endophytic bacteria associated with different genotypes of rice plants and their origin, movement, and mechanism of PGP. In addition, this review accentuates compressive meta data of endophytic bacteria communities associated with different genotypes of rice plants, retrieves their plant-growth-promoting properties and their antagonism against plant pathogens, and discusses the indication of endophytic bacterial flora in rice plant tissues using various methods. The future direction deepens the study of novel endophytic bacterial communities and their identification from rice plants through innovative techniques and their application for sustainable agriculture systems.
Collapse
Affiliation(s)
- Mohsin Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Q.A.); (L.Z.)
| | - Muhammad Aamir Sohail
- Center for Excellence in Molecular Plant Sciences, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
| | | | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Punjab, Pakistan;
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (Q.A.); (L.Z.)
| |
Collapse
|
35
|
Ospina-Betancourth C, Acharya K, Allen B, Head IM, Sanabria J, Curtis TP. Valorization of pulp and paper industry wastewater using sludge enriched with nitrogen-fixing bacteria. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1734-1747. [PMID: 33765365 DOI: 10.1002/wer.1561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen-fixing bacteria (NFB) can reduce nitrogen at ambient pressure and temperature. In this study, we treated effluent from a paper mill in sequencing batch reactors (SBRs) and monitored the abundance and activity of NFB with a view to producing a sludge that could work as a biofertilizer. Four reactors were inoculated with activated sludge enriched with NFB and fed with a high C/N waste (100:0.5) from a paper mill. Though the reactors were able to reduce the organic load of the wastewater by up to 89%, they did not have any nitrogen-fixing activity and showed a decrease in the putative number of NFB (quantified with qPCR). The most abundant species in the reactors treating high C/N paper mill wastewater was identified by Illumina MiSeq 16S rRNA gene amplicon sequencing as Methyloversatilis sp. (relative abundance of 4.4%). Nitrogen fixation was observed when the C/N ratio was increased by adding sucrose. We suspect that real-world biological nitrogen fixation (BNF) will only occur where there is a C/N ratio ≤100:0.07. Consequently, operators should actively avoid adding or allowing nitrogen in the waste streams if they wish to valorize their sludge and reduce running costs. PRACTITIONER POINTS: Efficient biological wastewater treatment of low nitrogen paper mill effluent was achieved without nutrient supplementation. The sludge was still capable of fixing nitrogen although this process was not observed in the wastewater treatment system. This high C/N wastewater treatment technology could be used with effluents from cassava flour, olive oil, wine and dairy industries.
Collapse
Affiliation(s)
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Ben Allen
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Janeth Sanabria
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental & Natural Resources, Engineering Faculty, Universidad del Valle, Cali, Colombia
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Manfredini A, Malusà E, Costa C, Pallottino F, Mocali S, Pinzari F, Canfora L. Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil. Front Microbiol 2021; 12:698491. [PMID: 34531836 PMCID: PMC8438429 DOI: 10.3389/fmicb.2021.698491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Microorganisms promised to lead the bio-based revolution for a more sustainable agriculture. Beneficial microorganisms could be a valid alternative to the use of chemical fertilizers or pesticides. However, the increasing use of microbial inoculants is also raising several questions about their efficacy and their effects on the autochthonous soil microorganisms. There are two major issues on the application of bioinoculants to soil: (i) their detection in soil, and the analysis of their persistence and fate; (ii) the monitoring of the impact of the introduced bioinoculant on native soil microbial communities. This review explores the strategies and methods that can be applied to the detection of microbial inoculants and to soil monitoring. The discussion includes a comprehensive critical assessment of the available tools, based on morpho-phenological, molecular, and microscopic analyses. The prospects for future development of protocols for regulatory or commercial purposes are also discussed, underlining the need for a multi-method (polyphasic) approach to ensure the necessary level of discrimination required to track and monitor bioinoculants in soil.
Collapse
Affiliation(s)
- Andrea Manfredini
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Eligio Malusà
- National Research Institute of Horticulture, Skierniewice, Poland
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano, Italy
| | - Corrado Costa
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, Monterotondo, Italy
| | - Federico Pallottino
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, Monterotondo, Italy
| | - Stefano Mocali
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy (CNR), Rome, Italy
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Loredana Canfora
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| |
Collapse
|
37
|
Hwang HH, Chien PR, Huang FC, Hung SH, Kuo CH, Deng WL, Chiang EPI, Huang CC. A Plant Endophytic Bacterium, Burkholderia seminalis Strain 869T2, Promotes Plant Growth in Arabidopsis, Pak Choi, Chinese Amaranth, Lettuces, and Other Vegetables. Microorganisms 2021; 9:microorganisms9081703. [PMID: 34442782 PMCID: PMC8401003 DOI: 10.3390/microorganisms9081703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Plant endophytic bacteria live inside host plants, can be isolated from surface-sterilized plant tissues, and are non-pathogenic. These bacteria can assist host plants in obtaining more nutrients and can improve plant growth via multiple mechanisms. Certain Gram-negative Burkholderia species, including rhizobacteria, bioremediators, and biocontrol strains, have been recognized for their plant-growth-promoting abilities, while other isolates have been identified as opportunistic plant or human pathogens. In this study, we observed the auxin production, siderophore synthesis, and phosphate solubilization abilities of B. seminalis strain 869T2. Our results demonstrated that strain 869T2 promoted growth in Arabidopsis, ching chiang pak choi, pak choi, loose-leaf lettuce, romaine lettuce, red leaf lettuce, and Chinese amaranth. Leafy vegetables inoculated with strain 869T2 were larger, heavier, and had more and larger leaves and longer and heavier roots than mock-inoculated plants. Furthermore, inoculations of strain 869T2 into hot pepper caused increased flower and fruit production, and a higher percentage of fruits turned red. Inoculation of strain 869T2 into okra plants resulted in earlier flowering and increased fruit weight. In conclusion, the plant endophytic bacterium Burkholderia seminalis 869T2 exerted positive effects on growth and production in several plant species.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (H.-H.H.); (C.-C.H.); Tel.: +886-4-2284-0416-412 (H.-H.H.); +886-4-2284-0416-402 (C.-C.H.); Fax: +886-4-2287-4740 (H.-H.H. & C.-C.H.)
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
| | - Shih-Hsun Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan;
| | - Wen-Ling Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan;
| | - En-Pei Isabel Chiang
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (H.-H.H.); (C.-C.H.); Tel.: +886-4-2284-0416-412 (H.-H.H.); +886-4-2284-0416-402 (C.-C.H.); Fax: +886-4-2287-4740 (H.-H.H. & C.-C.H.)
| |
Collapse
|
38
|
Koovalamkadu Velayudhan P, Singh A, Korekallu Srinivasa A. Exploring the global research trends in biofertilizers: a bibliometric approach. 3 Biotech 2021; 11:304. [PMID: 34194897 DOI: 10.1007/s13205-021-02794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/15/2021] [Indexed: 11/27/2022] Open
Abstract
This research article attempts a bibliometric analysis of global research on biofertilizers carried out from 2000 to 2019. The main purpose of this analysis is in technology foresight; to understand where the research interest lies within the domain of biofertilizer and also to identify the major research networks. The analysis is based on 344 research articles identified using the ISI Web of Science tool, which is processed further using VOSviewer. The results demonstrated that there is an increase in the number of articles, particularly from countries like Brazil, India China, the USA, and Iran. The research focus has been on the assessment of nitrogen fixation capacity of biofertilizers, and the yield improvement due to biofertilizers, and the economics of biofertilizer application. Our findings can act as a useful reference for the researchers, and provide insights for directing future research on biofertilizers.
Collapse
Affiliation(s)
| | - Alka Singh
- Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
39
|
Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SED. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:935. [PMID: 34067154 PMCID: PMC8151188 DOI: 10.3390/plants10050935] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Endophytic bacteria colonize plants and live inside them for part of or throughout their life without causing any harm or disease to their hosts. The symbiotic relationship improves the physiology, fitness, and metabolite profile of the plants, while the plants provide food and shelter for the bacteria. The bacteria-induced alterations of the plants offer many possibilities for biotechnological, medicinal, and agricultural applications. The endophytes promote plant growth and fitness through the production of phytohormones or biofertilizers, or by alleviating abiotic and biotic stress tolerance. Strengthening of the plant immune system and suppression of disease are associated with the production of novel antibiotics, secondary metabolites, siderophores, and fertilizers such as nitrogenous or other industrially interesting chemical compounds. Endophytic bacteria can be used for phytoremediation of environmental pollutants or the control of fungal diseases by the production of lytic enzymes such as chitinases and cellulases, and their huge host range allows a broad spectrum of applications to agriculturally and pharmaceutically interesting plant species. More recently, endophytic bacteria have also been used to produce nanoparticles for medical and industrial applications. This review highlights the biotechnological possibilities for bacterial endophyte applications and proposes future goals for their application.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
| | - Mohamed Hijri
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, Montréal, QC 22001, Canada;
- African Genome Center, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Amr Elkelish
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| |
Collapse
|
40
|
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:660620. [PMID: 33859664 PMCID: PMC8042378 DOI: 10.3389/fpls.2021.660620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 06/07/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.
Collapse
Affiliation(s)
- Maria Chiara Guerrieri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
41
|
Nunes RDO, Domiciano Abrahão G, de Sousa Alves W, Aparecida de Oliveira J, César Sousa Nogueira F, Pasqualoto Canellas L, Lopes Olivares F, Benedeta Zingali R, Soares MR. Quantitative proteomic analysis reveals altered enzyme expression profile in Zea mays roots during the early stages of colonization by Herbaspirillum seropedicae. Proteomics 2021; 21:e2000129. [PMID: 33570822 DOI: 10.1002/pmic.202000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/09/2022]
Abstract
The use of plant growth-promoting bacteria as agricultural inoculants of plants should be encouraged because of their prominent role in biological nitrogen fixation, the increase of nutrient uptake by roots, abiotic stress mitigation, and disease control. The complex mechanisms underlying the association between plant and beneficial bacteria have been increasingly studied, and proteomic tools can expand our perception regarding the fundamental molecular processes modulated by the interaction. In this study, we investigated the changes in protein expression in maize roots in response to treatment with the endophytic diazotrophic Herbaspirillum seropedicae and the activities of enzymes related to nitrogen metabolism. To identify maize proteins whose expression levels were altered in the presence of bacteria, a label-free quantitative proteomic approach was employed. Using this approach, we identified 123 differentially expressed proteins, of which 34 were upregulated enzymes, in maize roots cultivated with H. seropedicae. The maize root colonization of H. seropedicae modulated the differential expression of enzymes involved in the stress response, such as peroxidases, phenylalanine ammonia-lyase, and glutathione transferase. The differential protein profile obtained in the inoculated roots reflects the effect of colonization on plant growth and development compared with control plants.
Collapse
Affiliation(s)
- Rosane de Oliveira Nunes
- Departamento de Bioquímica/Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselli Domiciano Abrahão
- Departamento de Bioquímica/Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilber de Sousa Alves
- Departamento de Ensino Médio e Técnico, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro, Brazil
| | - Jaqueline Aparecida de Oliveira
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Proteômica/LADETEC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Unidade de Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fábio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Regina Soares
- Departamento de Bioquímica/Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Sajadinia H, Ghazanfari D, Naghavii K, Naghavi H, Tahamipur B. A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize ( Zea mays L .). Heliyon 2021; 7:e06094. [PMID: 33748444 PMCID: PMC7969904 DOI: 10.1016/j.heliyon.2021.e06094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/22/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hydroxyapatite nanoparticles have a remarkable potential to be used as nano-fertilizers with great effects on improving the yield of plants. These nano-compounds were synthesized using microwave and ultrasound methods, which decrease the particle size distribution of the products. To investigate the effects of two types of simple and triple superphosphate fertilizers on some properties of maize plant (Zea mays L.), a factorial experiment was conducted based on a completely randomized block design. The fertilizer treatments included in this study were simple superphosphate, triple superphosphate, microwave nano-hydroxyapatite, and ultrasound nano-hydroxyapatite and examined at five concentration levels. The results showed that the application of nano-hydroxyapatite phosphate fertilizers improved the growth and physiological properties of maize plant. This would raise better results in comparison to the simple and triple superphosphate fertilizers. Considering the positive effects of nano-hydroxyapatite fertilizers and high production levels, the results of this experiment revealed that the synthetic nano-hydroxyapatite methods prevent phosphorus loss; therefore, it is recommended to use nano-phosphate fertilizers in food resource management to achieve a favorable quantitative yield. Moreover, they can be regarded as a favorable solution to deal with the environmental problems.
Collapse
Affiliation(s)
- Homa Sajadinia
- Department of Chemistry, Islamic Azad University Kerman, Kerman, Iran
| | | | - Kazem Naghavii
- Department of Physics, Islamic Azad University Kerman, Kerman, Iran
| | - Hormozd Naghavi
- Department of Agriculture, Islamic Azad University Kerman, Kerman, Iran
| | - Batool Tahamipur
- Department of Chemistry, Islamic Azad University Kerman, Kerman, Iran
| |
Collapse
|
43
|
Raimi A, Roopnarain A, Adeleke R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Singh P, Singh RK, Guo DJ, Sharma A, Singh RN, Li DP, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR. Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18-A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum. Front Microbiol 2021; 12:628376. [PMID: 33613496 PMCID: PMC7894208 DOI: 10.3389/fmicb.2021.628376] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Sugarcane smut is a significant fungal disease that causes a major loss in sugar yield and quality. In this study, we isolated an endophytic strain B18 from a sugarcane root, which showed plant growth-promotion, hydrolytic enzyme production, antifungal activity against sugarcane pathogens (Sporisorium scitamineum, Ceratocystis paradoxa, Fusarium verticillioides), and the presence of nifH, acdS, and antibiotic genes (hcn, prn, and phCA) under in vitro conditions. BIOLOG(R) phenotypic profiling of B18 established its ability to use various carbon and nitrogen sources and tolerate a range of pH and osmotic and temperature stresses. Whole-genome analysis of B18, identified as Pseudomonas aeruginosa, showed that it consists of a single circular chromosome of 6,490,014 bp with 66.33% GC content. Genome annotation has identified 5,919 protein-coding genes, and 65 tRNA, and 12 rRNA genes. The P. aeruginosa B18 genome encodes genes related to ethylene, nitrogen (nifU, norBCDERQ, gltBDPS, and aatJMPQ), and phosphate (pstABCS and phoBDHRU) metabolism and produce indole-3-acetic acid and siderophores. This also includes genes encoding hydrolases and oxidoreductases, those associated with biocontrol mechanisms (hcnABC, phzA_B, phzDEFGMS, and pchA), colonization (minCDE and lysC), and biofilm formation (efp, hfq, flgBCDEFGHI, and motAB), and those associated with metabolism of secondary metabolites. Collectively, these results suggest a role for P. aeruginosa B18 in plant growth enhancement and biocontrol mechanisms. The P. aeruginosa B18 strain was found to be an efficient colonizer in sugarcane; it can improve growth through modulation of plant hormone production and enhanced host-plant resistance to smut pathogen S. scitamineum in a smut-susceptible sugarcane variety (Yacheng71-374). These biocontrol and plant growth promotion properties of P. aeruginosa B18 area are discussed in this report.
Collapse
Affiliation(s)
- Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,College of Agriculture, Guangxi University, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | | | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mukesh K Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing, China.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
45
|
Zia H, Ayub MA, Fattah El Baroudy AAE, Rehman MZU, Khalid H, Haq AU, Umar W, Ahmad Z. Microbial associations in ecological reclamation and restoration of marginal lands. MICROBES IN LAND USE CHANGE MANAGEMENT 2021:239-266. [DOI: 10.1016/b978-0-12-824448-7.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
46
|
Dey R, Raghuwanshi R. Comprehensive assessment of growth parameters for screening endophytic bacterial strains in Solanum lycopersicum (Tomato). Heliyon 2020; 6:e05325. [PMID: 33134591 PMCID: PMC7586120 DOI: 10.1016/j.heliyon.2020.e05325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
Abstract
Conventional agricultural practices demand application of pesticides for better yield, yet their uncontrolled use for longer duration exhibit deleterious effects on the soil health and subsequent plant productivity. These circumstances have displayed alarming effects on food security in the modern world. Therefore, biological solutions to the crisis can be practiced in consideration to their environmental benefits. Bacterial endophytes are ubiquitous in the phytosystem and beneficial for the plant growth and productivity. The present study aimed to obtain endophytic bacterial strains that can be developed as effective plant growth promoters. For this purpose twelve strains of bacterial endophytes were isolated from different plant sources and their putative plant growth promoting attributes were analyzed by morphological and biochemical studies. Subsequently these isolates were inoculated in the Solanum lycopersicum (Tomato) and the factors like germination percentage, seedling length, biomass production, and leaf variables were analyzed. However, the vigour index was considered as the prime parameter for determining plant growth. In essence, RR2 and RR4 strains were observed as effective growth promoter, hence in future they can be utilized as effective biofertilizers.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
47
|
Ramos AC, Melo J, de Souza SB, Bertolazi AA, Silva RA, Rodrigues WP, Campostrini E, Olivares FL, Eutrópio FJ, Cruz C, Dias T. Inoculation with the endophytic bacterium Herbaspirillum seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in rice. PLANTA 2020; 252:87. [PMID: 33057912 DOI: 10.1007/s00425-020-03496-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Higher vacuolar proton pump activity may increase plant energy and nutrient use efficiency and provide the nexus between plant inoculation with Herbaspirillum seropedicae and growth promotion. Global change and growing human population are exhausting arable land and resources, including water and fertilizers. We present inoculation with the endophytic plant-growth promoting bacterium (PGPB) Herbaspirillum seropedicae as a strategy for promoting growth, nutrient uptake and photosynthetic efficiency in rice (Oryza sativa L.). Because plant nutrient acquisition is coordinated with photosynthesis and the plant carbon status, we hypothesize that inoculation with H. seropedicae will stimulate proton (H+) pumps, increasing plant growth nutrient uptake and photosynthetic efficiency at low nutrient levels. Plants were inoculated and grown in pots with sterile soil for 90 days. Herbaspirillum seropedicae endophytic colonization was successful and, as hypothesized, inoculation (1) stimulated root vacuolar H+ pumps (vacuolar H+-ATPase and vacuolar H+-PPase), and (2) increased plant growth, nutrient contents and photosynthetic efficiency. The results showed that inoculation with the endophytic bacterium H. seropedicae can promote plant growth, nutrient uptake and photosynthetic efficiency, which will likely result in a more efficient use of resources (nutrients and water) and higher production of nutrient-rich food at reduced economic and environmental costs.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sávio B de Souza
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Amanda A Bertolazi
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Renderson A Silva
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Weverton P Rodrigues
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Eliemar Campostrini
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Fábio L Olivares
- Cell Tissue and Biology Lab, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Frederico J Eutrópio
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Dias
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
48
|
Characterization of antifungal metabolite phenazine from rice rhizosphere fluorescent pseudomonads (FPs) and their effect on sheath blight of rice. Saudi J Biol Sci 2020; 27:3313-3326. [PMID: 33304137 PMCID: PMC7715052 DOI: 10.1016/j.sjbs.2020.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
We have shown, the outcome of antifungal activity of phenazine derivatives which is produced by fluorescent pseudomonads (FPs) for the control of sheath blight of rice. A total of 50 fluorescent pseudomonads (FPs) were isolated from rice rhizosphere. Off which, 36 FPs exhibited antagonistic activity against Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum, Alternaria alternata and Sclerotium rolfsii up to 70–80% compared to control by dual culture method. BOX-PCR analyses of antagonistic isolates indicated that two phylogenetic group, where group I consisted of 28 isolates and eight isolates belongs to group II. Among 36 FPs, a total of 10 FPs revealed that the presence of phenazine derivatives on thin layer chromatography (TLC), which is coincided with that of authentic phenazine with Rf value 0.57. Similar to TLC analysis, antibiotic encoding gene phenazine-1-carboxamide (PCN) was detected in 10 FPs by PCR analysis with respective primer. Among, PCN detected isolates of FPs, a significant biocontrol potential possessing isolate designated as VSMKU1 and it was showed prominent antifungal activity against R. solani and other tested fungal pathogens. Hence, the isolate VSMKU1 was selected for further studies. The selected isolate VSMKU1 was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. The antifungal metabolite phenazine like compound produced by VSMKU1 was confirmed by UV, FT-IR and HPLC analysis. The phenazine compound from VSMKU1 significantly arrest the growth of R. solani compared to carbendazim by well diffusion method. The detached leaf assay showed remarkable inhibition of lesion height 80 to 85% by the treatments of culture (VSMKU1), cell free culure filtrate and phenazine like compound compared to control and other treatments was observed in detached leaves of rice. These results emphasized that VSMKU1 isolate can be used as an alternative potential biocontrol agent against sheath blight of rice, instead of using commercial fungicide such as validamycin and carbendazim which cause environmental pollution and health hazards.
Collapse
|
49
|
Prabhukarthikeyan SR, Parameswaran C, Keerthana U, Teli B, Jag PTK, Cayalvizhi B, Panneerselvam P, Senapati A, Nagendran K, Kumari S, Yadav MK, Aravindan S, Sanghamitra S. Understanding the Plant-microbe Interactions in CRISPR/CAS9 Era: Indeed a Sprinting Start in Marathon. Curr Genomics 2020; 21:429-443. [PMID: 33093805 PMCID: PMC7536795 DOI: 10.2174/1389202921999200716110853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, eco-friendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/CAS9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/CAS9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/CAS9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.
Collapse
Affiliation(s)
| | | | - Umapathy Keerthana
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Basavaraj Teli
- Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | | | | | - Periyasamy Panneerselvam
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Ansuman Senapati
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Krishnan Nagendran
- Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, Uttar Pradesh, India
| | - Shweta Kumari
- Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Sundaram Aravindan
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| | - Samantaray Sanghamitra
- Crop Improvement Division, National Rice Research Institute (ICAR-NRRI), Cuttack, 753006 Odisha, India
| |
Collapse
|
50
|
Xie H, Feng X, Wang M, Wang Y, Kumar Awasthi M, Xu P. Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered 2020; 11:1001-1015. [PMID: 32881650 PMCID: PMC8291792 DOI: 10.1080/21655979.2020.1816788] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host's growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world's three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources.
Collapse
Affiliation(s)
- Hengtong Xie
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station of Zhejiang University , Hangzhou, China
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture , Hangzhou, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture , Hangzhou, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University , Yangling, China
| | - Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture , Hangzhou, China
| |
Collapse
|