1
|
Wang Q, Cai L, Zhang R, Wei S, Li F, Liu Y, Xu Y. A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. Microbiol Spectr 2022; 10:e0236722. [PMID: 36190421 PMCID: PMC9602691 DOI: 10.1128/spectrum.02367-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 01/04/2023] Open
Abstract
Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People’s Republic of China
| | - Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
2
|
Pomel S, Mao W, Ha-Duong T, Cavé C, Loiseau PM. GDP-Mannose Pyrophosphorylase: A Biologically Validated Target for Drug Development Against Leishmaniasis. Front Cell Infect Microbiol 2019; 9:186. [PMID: 31214516 PMCID: PMC6554559 DOI: 10.3389/fcimb.2019.00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.
Collapse
Affiliation(s)
- Sébastien Pomel
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Wei Mao
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tâp Ha-Duong
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Cavé
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
3
|
Howlett R, Anttonen K, Read N, Smith MCM. Disruption of the GDP-mannose synthesis pathway in Streptomyces coelicolor results in antibiotic hyper-susceptible phenotypes. MICROBIOLOGY-SGM 2018; 164:614-624. [PMID: 29493491 PMCID: PMC5982138 DOI: 10.1099/mic.0.000636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Actinomycete bacteria use polyprenol phosphate mannose as a lipid linked sugar donor for extra-cytoplasmic glycosyl transferases that transfer mannose to cell envelope polymers, including glycoproteins and glycolipids. We showed recently that strains of Streptomyces coelicolor with mutations in the gene ppm1 encoding polyprenol phosphate mannose synthase were both resistant to phage φC31 and have greatly increased susceptibility to antibiotics that mostly act on cell wall biogenesis. Here we show that mutations in the genes encoding enzymes that act upstream of Ppm1 in the polyprenol phosphate mannose synthesis pathway can also confer phage resistance and antibiotic hyper-susceptibility. GDP-mannose is a substrate for Ppm1 and is synthesised by GDP-mannose pyrophosphorylase (GMP; ManC) which uses GTP and mannose-1-phosphate as substrates. Phosphomannomutase (PMM; ManB) converts mannose-6-phosphate to mannose-1-phosphate. S. coelicolor strains with knocked down GMP activity or with a mutation in sco3028 encoding PMM acquire phenotypes that resemble those of the ppm1- mutants i.e. φC31 resistant and susceptible to antibiotics. Differences in the phenotypes of the strains were observed, however. While the ppm1- strains have a small colony phenotype, the sco3028 :: Tn5062 mutants had an extremely small colony phenotype indicative of an even greater growth defect. Moreover we were unable to generate a strain in which GMP activity encoded by sco3039 and sco4238 is completely knocked out, indicating that GMP is also an important enzyme for growth. Possibly GDP-mannose is at a metabolic branch point that supplies alternative nucleotide sugar donors.
Collapse
Affiliation(s)
| | - Katri Anttonen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Margaret C M Smith
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Department of Biology, University of York, York, UK
| |
Collapse
|
4
|
Perez JBDS, Fernando C, Nosach RV, Huang Y, Harding JCS, Hill JE. In vitro attenuation of a virulent swine isolate of Brachyspira hampsonii. Pathog Dis 2018; 76:4563581. [PMID: 29069340 DOI: 10.1093/femspd/ftx116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
Brachyspira hampsonii causes dysentery-like disease in infected pigs. Serial passage of a virulent swine isolate (P13) one-hundred times in laboratory culture medium was conducted to produce an attenuated strain, and to identify genomic determinants of virulence through comparison of genome sequences of the original and passaged strains. The resulting strain, P113, did not differ from P13 in terms of diagnostic biochemical characteristics but had an enhanced growth rate in culture, indicating laboratory adaptation. Whole genome sequencing of P113 revealed several single-nucleotide changes including a T to C transition that results in an R to G amino acid change in a putative mannose-1-phosphate guanylytransferase that is implicated in production of lipo-oligosaccharide. P113 was partially attenuated in a mouse model of infection, indicated by significantly fewer observations of abnormal feces in mice infected with P113 relative to P13. No differences were detected in bacterial shedding in feces, demonstrating that the ability of the organism to colonize mice was not affected. Passage through a mouse did not further alter the virulence of P113. Results of this study provide insight into genomic determinants of virulence in B. hampsonii and a live attenuated vaccine candidate.
Collapse
Affiliation(s)
- Jason Byron D S Perez
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, SK, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, SK, Canada
| | - Roman V Nosach
- Department of Large Animal Clinical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Yanyun Huang
- Prairie Diagnostic Services Inc., 52 Campus Drive, Saskatoon S7N5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, SK, Canada
| |
Collapse
|
5
|
Daligaux P, Bernadat G, Tran L, Cavé C, Loiseau PM, Pomel S, Ha-Duong T. Comparative study of structural models of Leishmania donovani and human GDP-mannose pyrophosphorylases. Eur J Med Chem 2015; 107:109-18. [PMID: 26562546 DOI: 10.1016/j.ejmech.2015.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Leishmania is the parasite responsible for the neglected disease leishmaniasis. Its virulence and survival require biosynthesis of glycoconjugates, whose guanosine diphospho-d-mannose pyrophosphorylase (GDP-MP) is a key player. However, experimentally resolved structures of this enzyme are still lacking. We herein propose structural models of the GDP-MP from human and Leishmania donovani. Based on a multiple sequences alignment, the models were built with MODELLER and then carefully refined with all atom molecular dynamics simulations in explicit solvent. Their quality was evaluated against several standard criteria, including their ability to bind GDP-mannose assessed by redocking calculations. Special attention was given in this study to interactions of the catalytic site residues with the enzyme substrate and competitive inhibitors, opening the perspective of medicinal chemistry developments.
Collapse
Affiliation(s)
- Pierre Daligaux
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Guillaume Bernadat
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Linh Tran
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Christian Cavé
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Philippe M Loiseau
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Sébastien Pomel
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
6
|
Navarrete F, De La Fuente L. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Appl Environ Microbiol 2014; 80:1097-107. [PMID: 24271184 PMCID: PMC3911211 DOI: 10.1128/aem.02998-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.
Collapse
Affiliation(s)
- Fernando Navarrete
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
7
|
Ferreira AS, Silva IN, Oliveira VH, Cunha R, Moreira LM. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front Cell Infect Microbiol 2011; 1:16. [PMID: 22919582 PMCID: PMC3417362 DOI: 10.3389/fcimb.2011.00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022] Open
Abstract
The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico Lisboa, Portugal
| | | | | | | | | |
Collapse
|
8
|
Narasaki CT, Mertens K, Samuel JE. Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis. PLoS One 2011; 6:e25514. [PMID: 22065988 PMCID: PMC3204966 DOI: 10.1371/journal.pone.0025514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022] Open
Abstract
Coxiella burnetii, the etiologic agent of human Q fever, is a Gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is critical to fully understand the biosynthesic pathway of GDP-β-D-virenose and LPS structure in C. burnetii.
Collapse
Affiliation(s)
- Craig T. Narasaki
- Texas A&M University Health Science Center, College of Medicine, College Station, Texas, United States of America
| | - Katja Mertens
- Texas A&M University Health Science Center, College of Medicine, College Station, Texas, United States of America
| | - James E. Samuel
- Texas A&M University Health Science Center, College of Medicine, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J Bacteriol 2011; 193:1515-26. [PMID: 21278292 DOI: 10.1128/jb.01375-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia J2315 is a highly virulent and epidemic clinical isolate of the B. cepacia complex (Bcc), a group of bacteria that have emerged as important pathogens to cystic fibrosis patients. This bacterium, together with all Bcc strains and a few other prokaryotes, is unusual for encoding in its genome two distinct and functional Hfq-like proteins. In this work, we show results indicating that the 188-amino-acid Hfq2 protein is required for the full virulence and stress resistance of B. cenocepacia J2315, despite the presence on its genome of the functional 79-amino-acid Hfq protein encoded by the hfq gene. Similar to other Hfq proteins, Hfq2 is able to bind RNA. However, Hfq2 is unique in its ability to apparently form trimers in vitro. Maximal transcription of hfq was observed in B. cenocepacia J2315 cells in the early exponential phase of growth. In contrast, hfq2 transcription reached maximal levels in cells in the stationary phase, depending on the CepR quorum-sensing regulator. These results suggest that tight regulation of the expression of these two RNA chaperones is required to maximize the fitness and virulence of this bacterium. In addition, the ability of Hfq2 to bind DNA, not observed for Hfq, suggests that Hfq2 might play additional roles besides acting as an RNA chaperone.
Collapse
|
10
|
Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010; 87:31-40. [PMID: 20390415 DOI: 10.1007/s00253-010-2528-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 closely related species of the beta-proteobacteria subdivision that emerged in the 1980s as important human pathogens, especially to patients suffering from cystic fibrosis. Since then, a remarkable progress has been achieved on the taxonomy and molecular identification of these bacteria. Although some progress have been achieved on the knowledge of the pathogenesis traits and virulence factors used by these bacteria, further work envisaging the identification of potential targets for the scientifically based design of new therapeutic strategies is urgently needed, due to the very difficult eradication of these bacteria with available therapies. An overview of these aspects of Bcc pathogenesis and opportunities for the design of future therapies is presented and discussed in this work.
Collapse
|
11
|
Pelissier MC, Lesley SA, Kuhn P, Bourne Y. Structural insights into the catalytic mechanism of bacterial guanosine-diphospho-D-mannose pyrophosphorylase and its regulation by divalent ions. J Biol Chem 2010; 285:27468-27476. [PMID: 20573954 DOI: 10.1074/jbc.m109.095182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GMP catalyzes the formation of GDP-Man, a fundamental precursor for protein glycosylation and bacterial cell wall and capsular polysaccharide biosynthesis. Crystal structures of GMP from the thermophilic bacterium Thermotoga maritima in the apo form, in complex with the substrates mannose-1-phosphate or GTP and bound with the end product GDP-Man in the presence of the essential divalent cation Mg(2+), were solved in the 2.1-2.8 A resolution range. The T. maritima GMP molecule is organized in two separate domains: a N-terminal Rossman fold-like domain and a C-terminal left-handed beta-helix domain. Two molecules associate into a dimer through a tail-to-tail arrangement of the C-terminal domains. Comparative analysis of the structures along with characterization of enzymatic parameters reveals the bases of substrate specificity of this class of sugar nucleotidyltransferases. In particular, substrate and product binding are associated with significant changes in the conformation of loop regions lining the active center and in the relative orientation of the two domains. Involvement of both the N- and C-terminal domains, coupled to the catalytic role of a bivalent metal ion, highlights the catalytic features of bacterial GMPs compared with other members of the pyrophosphorylase superfamily.
Collapse
Affiliation(s)
- Marie-Cécile Pelissier
- Architecture et Fonction des Macromolécules Biologiques, UMR-6098, CNRS, Université Aix-Marseille, F-13288 Marseille, France
| | - Scott A Lesley
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | - Peter Kuhn
- Scripps Research Institute, La Jolla, California 92037
| | - Yves Bourne
- Architecture et Fonction des Macromolécules Biologiques, UMR-6098, CNRS, Université Aix-Marseille, F-13288 Marseille, France.
| |
Collapse
|
12
|
Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput Biol 2010; 6:e1000732. [PMID: 20369015 PMCID: PMC2848543 DOI: 10.1371/journal.pcbi.1000732] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 03/03/2010] [Indexed: 01/01/2023] Open
Abstract
In bacterial genomes composed of more than one chromosome, one replicon is typically larger, harbors more essential genes than the others, and is considered primary. The greater variability of secondary chromosomes among related taxa has led to the theory that they serve as an accessory genome for specific niches or conditions. By this rationale, purifying selection should be weaker on genes on secondary chromosomes because of their reduced necessity or usage. To test this hypothesis we selected bacterial genomes composed of multiple chromosomes from two genera, Burkholderia and Vibrio, and quantified the evolutionary rates (dN and dS) of all orthologs within each genus. Both evolutionary rate parameters were faster among orthologs found on secondary chromosomes than those on the primary chromosome. Further, in every bacterial genome with multiple chromosomes that we studied, genes on secondary chromosomes exhibited significantly weaker codon usage bias than those on primary chromosomes. Faster evolution and reduced codon bias could in turn result from global effects of chromosome position, as genes on secondary chromosomes experience reduced dosage and expression due to their delayed replication, or selection on specific gene attributes. These alternatives were evaluated using orthologs common to genomes with multiple chromosomes and genomes with single chromosomes. Analysis of these ortholog sets suggested that inherently fast-evolving genes tend to be sorted to secondary chromosomes when they arise; however, prolonged evolution on a secondary chromosome further accelerated substitution rates. In summary, secondary chromosomes in bacteria are evolutionary test beds where genes are weakly preserved and evolve more rapidly, likely because they are used less frequently. Why many bacteria have multiple chromosomes is largely unknown, but a leading hypothesis is that secondary chromosomes evolved from plasmids and now serve as accessory genomes. We tested a key prediction of this theory that genes on secondary chromosomes should evolve faster because they are under less selective constraint. Indeed, orthologous genes shared within two groups of bacteria (Burkholderia or Vibrio) with multiple chromosomes were less conserved and evolved more rapidly when found on secondary chromosomes. Much of these patterns could stem from the tendency of secondary chromosomes to be replicated later in the cell cycle, which reduces their gene dosage, their potential for expression, and selection for their optimal translation. However, the content of secondary chromosomes appears to be predisposed to evolve faster, because these same genes still evolve more rapidly in single-chromosome genomes. In summary, the evolution of divided genomes therefore appears to allow for the long-term segregation of genome content by their rates of expression and dispensability, placing some genes at increased risk of mutational decay and greater turnover.
Collapse
|
13
|
Mizanur RM, Pohl NLB. Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides. Org Biomol Chem 2009; 7:2135-9. [PMID: 19421452 DOI: 10.1039/b822794b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present an analysis of the chemical function of a recombinant bifunctional phosphomannose isomerase/GDP-mannose pyrophosphorylase (manC) from Pyrococcus furiosus DSM 3638 and its use in the synthesis of guanidinediphospho-hexoses and a range of nucleotidediphospho-mannoses. This enzyme is unusually promiscuous in both its nucleotide triphosphate (NTP) and sugar-1-phosphate acceptance. It accepts all five naturally occurring NTPs (ATP, CTP, GTP, dTTP and UTP) and a range of sugar-1-phosphates (glucose-, mannose-, galactose-, glucosamine-, N-acetylglucosamine- and fucose-1-phosphate). A truncated GDP-mannose pyrophosphorylase domain of the whole length enzyme showed almost 100-fold less sugar nucleotidyltransferase activity with only GTP and mannose 1-phosphate as substrates. The temperature stability and inherently broad substrate tolerance of this archaeal enzyme make it an effective reagent for the rapid chemoenzymatic synthesis of a range of natural and unnatural sugar nucleotides that are challenging to make by chemical means alone.
Collapse
Affiliation(s)
- Rahman M Mizanur
- Department of Chemistry and Plant Sciences Institute, Gilman Hall, Iowa State University, Ames, Iowa 50011-3111, USA
| | | |
Collapse
|