1
|
Rabby MRI, Ahmed ZB, Paul GK, Chowdhury NN, Akter F, Razu MH, Karmaker P, Khan M. A Combined Study on Optimization, In Silico Modeling, and Genetic Modification of Large Scale Microbial Cellulase Production. Biochem Res Int 2022; 2022:4598937. [PMID: 36589721 PMCID: PMC9797302 DOI: 10.1155/2022/4598937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellulase is a biocatalyst that hydrolyzes cellulosic biomass and is considered a major group of industrial enzymes for its applications. Extensive work has been done on microbial cellulase but fungi are considered a novel strain for their maximum cellulase production. Production cost and novel microbial strains are major challenges for its improvement where cheap agro wastes can be essential sources of cellulose as substrates. The researcher searches for more cellulolytic microbes from natural sources but the production level of isolated strains is comparatively low. So genetic modification or mutation can be employed for large-scale cellulase production before optimization. After genetic modification than in silico molecular modeling can be evaluated for substrate molecule's binding affinity. In this review, we focus not only on the conventional methods of cellulase production but also on modern biotechnological approaches applied to cellulase production by a sequential study on common cellulase-producing microbes, modified microbes, culture media, carbon sources, substrate pretreatment process, and the importance of optimum pH and temperature on fermentation. In this review, we also compare different cellulase activity determination methods. As a result, this review provides insights into the interrelationship between the characteristics of optimizing different culture conditions, genetic modification, and in silico enzyme modeling for the production of cellulase enzymes, which may aid in the advancement of large-scale integrated enzyme manufacturing of substrate-specific enzymes.
Collapse
Affiliation(s)
| | - Zabed Bin Ahmed
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Gobindo Kumar Paul
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | | | - Fatema Akter
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| |
Collapse
|
2
|
Fu Y, Yeom SJ, Kwon KK, Hwang J, Kim H, Woo EJ, Lee DH, Lee SG. Structural and functional analyses of the cellulase transcription regulator CelR. FEBS Lett 2018; 592:2776-2785. [PMID: 30062758 DOI: 10.1002/1873-3468.13206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/05/2018] [Accepted: 07/19/2018] [Indexed: 11/10/2022]
Abstract
CelR is a transcriptional regulator that controls the expression of cellulases catalyzing cellulose hydrolysis. However, the structural mechanism of its regulation has remained unclear. Here, we report the first structure of CelR, in this case with cellobiose bound. CelR consists of a DNA-binding domain (DBD) and a regulatory domain (RD), and homodimerizes with each monomer bound to cellobiose. A hinge region (HR) in CelR connects the DBD with the RD, and Leu59 in the HR acts as a 'leucine lever' that transduces a transcriptional activation signal. Furthermore, an α4 helix mediates the ligand-binding signal for transcriptional activation. Tyr84 and Gln301 can potentially alter the ligand specificity of CelR. This study provides a pivotal step toward understanding transcription of the cellulases.
Collapse
Affiliation(s)
- Yaoyao Fu
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, China
| | - Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Kil Koang Kwon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jungwon Hwang
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bio-Analytical Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
3
|
Metabolic Profile of the Cellulolytic Industrial Actinomycete Thermobifida fusca. Metabolites 2017; 7:metabo7040057. [PMID: 29137138 PMCID: PMC5746737 DOI: 10.3390/metabo7040057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022] Open
Abstract
Actinomycetes have a long history of being the source of numerous valuable natural products and medicinals. To expedite product discovery and optimization of biochemical production, high-throughput technologies can now be used to screen the library of compounds present (or produced) at a given time in an organism. This not only facilitates chemical product screening, but also provides a comprehensive methodology to the study cellular metabolic networks to inform cellular engineering. Here, we present some of the first metabolomic data of the industrial cellulolytic actinomycete Thermobifida fusca generated using LC-MS/MS. The underlying objective of conducting global metabolite profiling was to gain better insight on the innate capabilities of T. fusca, with a long-term goal of facilitating T. fusca-based bioprocesses. The T. fusca metabolome was characterized for growth on two cellulose-relevant carbon sources, cellobiose and Avicel. Furthermore, the comprehensive list of measured metabolites was computationally integrated into a metabolic model of T. fusca, to study metabolic shifts in the network flux associated with carbohydrate and amino acid metabolism.
Collapse
|
4
|
Deng Y, Lin J, Mao Y, Zhang X. Systematic analysis of an evolved Thermobifida fusca muC producing malic acid on organic and inorganic nitrogen sources. Sci Rep 2016; 6:30025. [PMID: 27424527 PMCID: PMC4948018 DOI: 10.1038/srep30025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Thermobifida fusca is a thermophilic actinobacterium. T. fusca muC obtained by adaptive evolution preferred yeast extract to ammonium sulfate for accumulating malic acid and ammonium sulfate for cell growth. We did transcriptome analysis of T. fusca muC on Avicel and cellobiose with addition of ammonium sulfate or yeast extract, respectively by RNAseq. The transcriptional results indicate that ammonium sulfate induced the transcriptions of the genes related to carbohydrate metabolisms significantly more than yeast extract. Importantly, Tfu_2487, encoding histidine-containing protein (HPr), didn’t transcribe on yeast extract at all, while it transcribed highly on ammonium sulfate. In order to understand the impact of HPr on malate production and cell growth of the muC strain, we deleted Tfu_2487 to get a mutant strain: muCΔ2487, which had 1.33 mole/mole-glucose equivalent malate yield, much higher than that on yeast extract. We then developed an E. coli-T. fusca shuttle plasmid for over-expressing HPr in muCΔ2487, a strain without HPr background, forming the muCΔ2487S strain. The muCΔ2487S strain had a much lower malate yield but faster cell growth than the muC strain. The results of both mutant strains confirmed that HPr was the key regulatory protein for T. fusca’s metabolisms on nitrogen sources.
Collapse
Affiliation(s)
- Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jia Lin
- College of Life Science, North China University of Science and Technology, Tangshan 063000, China
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaojuan Zhang
- School of pharmaceutical science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Deng Y, Mao Y, Zhang X. Metabolic engineering of a laboratory-evolvedThermobifida fuscamuC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol Prog 2016; 32:14-20. [DOI: 10.1002/btpr.2180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF); Jiangnan University; Wuxi Jiangsu 214122 China
- School of pharmaceutical science; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF); Jiangnan University; Wuxi Jiangsu 214122 China
- School of pharmaceutical science; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Xiaojuan Zhang
- School of pharmaceutical science; Jiangnan University; Wuxi Jiangsu 214122 China
| |
Collapse
|
6
|
Hara KY, Kondo A. ATP regulation in bioproduction. Microb Cell Fact 2015; 14:198. [PMID: 26655598 PMCID: PMC4676173 DOI: 10.1186/s12934-015-0390-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
Adenosine-5'-triphosphate (ATP) is consumed as a biological energy source by many intracellular reactions. Thus, the intracellular ATP supply is required to maintain cellular homeostasis. The dependence on the intracellular ATP supply is a critical factor in bioproduction by cell factories. Recent studies have shown that changing the ATP supply is critical for improving product yields. In this review, we summarize the recent challenges faced by researchers engaged in the development of engineered cell factories, including the maintenance of a large ATP supply and the production of cell factories. The strategies used to enhance ATP supply are categorized as follows: addition of energy substrates, controlling pH, metabolic engineering of ATP-generating or ATP-consuming pathways, and controlling reactions of the respiratory chain. An enhanced ATP supply generated using these strategies improves target production through increases in resource uptake, cell growth, biosynthesis, export of products, and tolerance to toxic compounds.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Department of Environmental Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
7
|
Deng Y, Mao Y, Zhang X. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca. J Biotechnol 2015; 216:151-7. [PMID: 26535965 DOI: 10.1016/j.jbiotec.2015.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/07/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover.
Collapse
Affiliation(s)
- Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaojuan Zhang
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Deng Y, Mao Y. Production of adipic acid by the native-occurring pathway in Thermobifida fusca
B6. J Appl Microbiol 2015; 119:1057-63. [DOI: 10.1111/jam.12905] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 07/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF); Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu China
| | - Y. Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF); Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu China
| |
Collapse
|
9
|
Systematic analysis of intracellular mechanisms of propanol production in the engineered Thermobifida fusca B6 strain. Appl Microbiol Biotechnol 2015; 99:8089-100. [PMID: 26227414 DOI: 10.1007/s00253-015-6850-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
Thermobifida fusca is a moderately thermophilic actinobacterium naturally capable of utilizing lignocellulosic biomass. The B6 strain of T. fusca was previously engineered to produce 1-propanol directly on lignocellulosic biomass by expressing a bifunctional butyraldehyde/alcohol dehydrogenase (adhE2). To characterize the intracellular mechanisms related to the accumulation of 1-propanol, the engineered B6 and wild-type (WT) strains were systematically compared by analysis of the transcriptome and intracellular metabolome during exponential growth on glucose, cellobiose, and Avicel. Of the 18 known cellulases in T. fusca, 10 cellulase genes were transcriptionally expressed on all three substrates along with three hemicellulases. Transcriptomic analysis of cellodextrin and cellulose transport revealed that Tfu_0936 (multiple sugar transport system permease) was the key enzyme regulating the uptake of sugars in T. fusca. For both WT and B6 strains, it was found that growth in oxygen-limited conditions resulted in a blocked tricarboxylic acid (TCA) cycle caused by repressed expression of Tfu_1925 (aconitate hydratase). Further, the transcriptome suggested a pathway for synthesizing succinyl-CoA: oxaloacetate to malate (by malate dehydrogenase), malate to fumarate (by fumarate hydratase), and fumarate to succinate (by succinate dehydrogenase/fumarate reductase) which was ultimately converted to succinyl-CoA by succinyl-CoA synthetase. Both the transcriptome and the intracellular metabolome confirmed that 1-propanol was produced through succinyl-CoA, L-methylmalonyl-CoA, D-methylmalonyl-CoA, and propionyl-CoA in the B6 strain.
Collapse
|
10
|
Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Funct Integr Genomics 2014; 15:163-73. [DOI: 10.1007/s10142-014-0425-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 11/16/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
|
11
|
Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Gomez del Pulgar EM, Saadeddin A. The cellulolytic system ofThermobifida fusca. Crit Rev Microbiol 2013; 40:236-47. [DOI: 10.3109/1040841x.2013.776512] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost. Microb Cell Fact 2012; 11:164. [PMID: 23267666 PMCID: PMC3549853 DOI: 10.1186/1475-2859-11-164] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/16/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. RESULTS Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose following a Michaelis-Menten kinetics with a KM of 9.13 mg/ml and a vmax of 3469 μM min-1. The enzyme exhibits a half life of around 24 h and 96 h at 60°C and 50°C, respectively and shows a retention of around 80% of activity after 96 h at 40°C. CONCLUSIONS In this manuscript, we describe the isolation of a new cellulolytic strain, Streptomyces sp. G12, from industrial waste based compost, the identification of the enzymes putatively responsible for its cellulolytic activity, the cloning and the recombinant expression of the gene coding for the Streptomyces sp. G12 cellulase CelStrep, that was characterized showing to exhibit a relevant thermoresistance increasing its potential for cellulose conversion.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S, Angelo, via Cintia, 4, 80126, Naples, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng 2012. [PMID: 23202749 DOI: 10.1016/j.ymben.2012.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Clostridium thermocellum, a thermophilic anaerobic bacterium able to rapidly ferment cellulose to ethanol, pyruvate kinase (EC 2.7.1.40) is absent based on both the genome sequence and enzymatic assays. Instead, a new pathway converting phosphoenolpyruvate to pyruvate via a three-step pathway involving phosphoenolpyruvate carboxykinase, NADH-linked malate dehydrogenase, and NADP-dependent malic enzyme has been found. We examined the impact of targeted modification of enzymes associated with this pathway, termed the "malate shunt", including expression of the pyruvate kinase gene from Thermoanaerobacterium saccharolyticum, mutation of the phosphoenolpyruvate carboxykinase and deletion of malic enzyme gene. Strain YD01 with exogenous pyruvate kinase, in which phosphoenolpyruvate carboxykinase expression was diminished by modifying the start codon from ATG to GTG, exhibited 3.25-fold higher ethanol yield than the wild-type strain. A second strain, YD02 with exogenous pyruvate kinase, in which the gene for malic enzyme and part of malate dehydrogenase were deleted, had over 3-fold higher ethanol yield than the wild-type strain.
Collapse
|
15
|
Ji G, Wu Y, Wang C. Analysis of microbial characterization in an upflow anaerobic sludge bed/biological aerated filter system for treating microcrystalline cellulose wastewater. BIORESOURCE TECHNOLOGY 2012; 120:60-69. [PMID: 22784954 DOI: 10.1016/j.biortech.2012.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
A two-stage UASB and 2-stage BAF series bioreactor was used for treating the microcrystalline cellulose (MCC) wastewater. The treating efficiency, dominant microbes, eubacterial and archaebacterial composition and cel5A, cel6B and bglC gene expression levels were examined using combined PCR-DGGE and real-time PCR technology. The results showed that under three MCC loads (1000, 2000 and 3000 mg L(-1)), the total MCC degradation efficiency of the UASB-BAF system was 82.0%, 83.5% and 70.5%, respectively. In different MCC load cases, the first stage UASB and BAF formed an approximate full-value cellulase system where cellulolytic microorganisms were the dominant flora, while the second stage UASB and BAF formed a low-value cellulase system where non-cellulolytic microorganisms were the dominant flora. Eubacteria were dominant in every UASB-BAF unit. The rate-limiting enzyme gene for MCC degradation in every unit was cel6B. These results will support the development of high efficiency bio-reactors for the degradation of MCC.
Collapse
Affiliation(s)
- Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
16
|
Deive FJ, López E, Rodríguez A, Longo MA, Sanromán MÁ. Targeting the Production of Biomolecules by Extremophiles at Bioreactor Scale. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201100528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Characterisation of microbial floras and functional gene levels in an anaerobic/aerobic bio-reactor for the degradation of carboxymethyl cellulose. Appl Microbiol Biotechnol 2012; 97:3195-206. [PMID: 22576945 DOI: 10.1007/s00253-012-4134-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
The current study determined the carboxymethyl cellulose (CMC) degradation efficiency, dominant microbial flora, eubacteria and archaebacteria characteristics, and expression levels of genes cel5A, cel6B, and bglC in an anaerobic/aerobic bio-reactor consisting of two-stage UASB (U1 and U2) and two-stage BAF (B1 and B2). The results showed that under three CMC loads, the CMC degradation efficiency of the UASB-BAF system was 91.25%, 80.44%, and 78.73%, respectively. At higher CMC loads, the degradation of cellulose and transformation to cellobiose in U1 was higher, while the transformation to glucose was lower. The results of DGGE and real-time PCR indicated that cellulose degradation bacteria are dominant in U1, cellulose degradation bacteria and cellulose degradation symbiosis bacteria are dominant in B1, and non-cellulose degradation symbiosis bacteria are dominant in both U2 and B2. The rate-limiting enzyme gene of cellulose degradation in U1, B1, and B2 is cel6B, but it is cel5A in U2.
Collapse
|
18
|
Deng Y, Fong SS. Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem 2011; 286:39958-66. [PMID: 21914801 DOI: 10.1074/jbc.m111.239616] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological utilization of cellulose is a complex process involving the coordinated expression of different cellulases, often in a synergistic manner. One possible means of inducing an organism-level change in cellulase activity is to use laboratory adaptive evolution. In this study, evolved strains of the cellulolytic actinobacterium, Thermobifida fusca, were generated for two different scenarios: continuous exposure to cellobiose (strain muC) or alternating exposure to cellobiose and glucose (strain muS). These environmental conditions produced a phenotype specialized for growth on cellobiose (muC) and an adaptable, generalist phenotype (muS). Characterization of cellular phenotypes and whole genome re-sequencing were conducted for both the muC and muS strains. Phenotypically, the muC strain showed decreased cell yield over the course of evolution concurrent with decreased cellulase activity, increased intracellular ATP concentrations, and higher end-product secretions. The muS strain increased its cell yield for growth on glucose and exhibited a more generalist phenotype with higher cellulase activity and growth capabilities on different substrates. Whole genome re-sequencing identified 48 errors in the reference genome and 18 and 14 point mutations in the muC and muS strains, respectively. Among these mutations, the site mutation of Tfu_1867 was found to contribute the specialist phenotype and the site mutation of Tfu_0423 was found to contribute the generalist phenotype. By conducting and characterizing evolution experiments on Thermobifida fusca, we were able to show that evolutionary changes balance ATP energetic considerations with cellulase activity. Increased cellulase activity is achieved in stress environments (switching carbon sources), otherwise cellulase activity is minimized to conserve ATP.
Collapse
Affiliation(s)
- Yu Deng
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | |
Collapse
|
19
|
Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 2011; 13:570-7. [DOI: 10.1016/j.ymben.2011.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/22/2022]
|
20
|
Gowen CM, Fong SS. Applications of systems biology towards microbial fuel production. Trends Microbiol 2011; 19:516-24. [PMID: 21871807 DOI: 10.1016/j.tim.2011.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 12/19/2022]
Abstract
Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge.
Collapse
|
21
|
Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. BIORESOURCE TECHNOLOGY 2010; 101:8798-806. [PMID: 20599378 DOI: 10.1016/j.biortech.2010.06.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/15/2010] [Accepted: 06/01/2010] [Indexed: 05/05/2023]
Abstract
The composition of thermophilic (60 degrees C) mixed cellulose-degrading enrichment culture initiated from compost samples was examined by constructing a 16S rRNA gene clone library and the presence of sequences related to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria were identified. Eight isolates capable of degrading cellulose, carboxymethyl cellulose (CMC), or ponderosa pine sawdust were identified as belonging to the genera Geobacillus, Thermobacillus, Cohnella, and Thermus. A compost isolate WSUCF1 (Geobacillus sp.) was selected based on its higher growth rate and cellulase activity compared to others in liquid minimal medium containing cellulose as a source of carbon and energy. Strain WSUCF1 and a previously isolated thermophilic cellulose-degrading deep gold mine strain DUSELR13 (Bacillus sp.) were examined for their enzyme properties and kinetics. The optimal pH for carboxymethyl cellulase (CMCase) activity was 5.0 for both isolates. The optimum temperatures for CMCase of WSUCFI and DUSELR13 were 70 and 75 degrees C, respectively. For CMC, the DUSELR13 and WSUCF1 CMCases had K(m) values of 3.11 and 1.08mg/ml, respectively. Most remarkably, WSUCF1 and DUSELR13 retained 89% and 78% of the initial CMCase activities, respectively, after incubation at 70 degrees C for 1day. These thermostable enzymes would facilitate development of more efficient and cost-effective forms of the simultaneous saccharification and fermentation process to convert lignocellulosic biomass into biofuels.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl Environ Microbiol 2010; 76:2098-106. [PMID: 20097808 DOI: 10.1128/aem.02626-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermobifida fusca is a high-G+C-content, thermophilic, Gram-positive soil actinobacterium with high cellulolytic activity. In T. fusca, CelR is thought to act as the primary regulator of cellulase gene expression by binding to a 14-bp inverted repeat [5'-(T)GGGAGCGCTCCC(A)] that is upstream of many known cellulase genes. Previously, the ability to study the roles and regulation of cellulase genes in T. fusca has been limited largely by a lack of established genetic engineering methods for T. fusca. In this study, we developed an efficient procedure for creating precise chromosomal gene disruptions and demonstrated this procedure by generating a celR deletion strain. The celR deletion strain was then characterized using measurements for growth behavior, cellulase activity, and gene expression. The celR deletion strain of T. fusca exhibited a severely crippled growth phenotype with a prolonged lag phase and decreased cell yields for growth on both glucose and cellobiose. While the maximum endoglucanase activity and cellulase activity were not significantly changed, the endoglucanase activity and cellulase activity per cell were highly elevated. Measurements of mRNA transcript levels in both the celR deletion strain and the wild-type strain indicated that the CelR protein potentially acts as a repressor for some genes and as an activator for other genes. Overall, we established and demonstrated a method for manipulating chromosomal DNA in T. fusca that can be used to study the cellulolytic capabilities of this organism. Components of this method may be useful in developing genetic engineering methods for other currently intractable organisms.
Collapse
|