1
|
Zhang W, Jia J, Yang Y, Ye D, Li Y, Li D, Wang J. Estradiol metabolism by gut microbiota in women's depression pathogenesis: inspiration from nature. Front Psychiatry 2025; 16:1505991. [PMID: 39935532 PMCID: PMC11811108 DOI: 10.3389/fpsyt.2025.1505991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
The recurrence and treatment resistance of depression remain significant issues, primarily due to an inadequate understanding of its pathogenesis. Recent scientific evidence indicates that gut microbiota influence estradiol metabolism and are associated with the development of depression in nonpremenopausal women. Integrating existing studies on the regulation of estradiol metabolism by microorganisms in nature and the relevance of its degradation products to depression, recent scientific explorations have further elucidated the key mechanisms by which gut microbiota catabolize estradiol through specific metabolic pathways. These emerging scientific findings suggest that the unique metabolic effects of gut microbiota on estradiol may be one of the central drivers in the onset and course of depression in non-menopausal women.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghan Jia
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Yuhang Yang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Dawei Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Di Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Liu X, Wang Z, Wang X, Liu J, Waigi MG. Conversion of estriol to estrone: A bacterial strategy for the catabolism of estriol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116564. [PMID: 38865939 DOI: 10.1016/j.ecoenv.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Natural estrogens, including estrone (E1), 17β-estradiol (E2), and estriol (E3), are potentially carcinogenic pollutants commonly found in water and soil environments. Bacterial metabolic pathway of E2 has been studied; however, the catabolic products of E3 have not been discovered thus far. In this study, Novosphingobium sp. ES2-1 was used as the target strain to investigate its catabolic pathway of E3. The metabolites of E3 were identified by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) combined with stable 13C3-labeling. Strain ES2-1 could almost completely degrade 20 mg∙L-1 of E3 within 72 h under the optimal conditions of 30°C and pH 7.0. When inoculated with strain ES2-1, E3 was initially converted to E1 and then to 4-hydroxyestrone (4-OH-E1), which was then cleaved to HIP (metabolite A6) via the 4, 5-seco pathway or cleaved to the B loop via the 9,10-seco pathway to produce metabolite with a long-chain ketone structure (metabolite B4). Although the ring-opening sequence of the above two metabolic pathways was different, the metabolism of E3 was achieved especially through continuous oxidation reactions. This study reveals that, E3 could be firstly converted to E1 and then to 4-OH-E1, and finally degraded into small molecule metabolites through two alternative pathways, thereby reducing E3 pollution in water and soil environments.
Collapse
Affiliation(s)
- Xiangyu Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiu Wang
- Institute of Animal Husbandry and Poultry Science, Nanjing 210017, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
3
|
Peng W, Lin S, Deng Z, Liang R. Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17α-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3. CHEMOSPHERE 2023; 317:137893. [PMID: 36690257 DOI: 10.1016/j.chemosphere.2023.137893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Synthetic estrogens are emerging environmental contaminants with great estrogenic activities and stable structures that are widespread in various ecological systems and significantly threaten the health of organisms. Pseudomonas citronellolis SJTE-3 is reported to degrade the synthetic estrogen 17α-ethynylestradiol (EE2) efficiently in laboratory conditions. In this work, the environmental adaptability, the EE2-degrading properties, and the ecological effects of P. citronellolis SJTE-3 under different hostile conditions (heavy metals and surfactants) and various natural environment samples (solid soil, lake water, and pig manure) were studied. Strain SJTE-3 can tolerate high concentrations of Zn2+ and Cr3+, but is relatively sensitive to Cu2+. Tween 80 of low concentration can significantly promote EE2 degradation by strain SJTE-3, different from the repressing effect of Triton X-100. High concentration of Tween 80 prolonged the lagging phase of EE2-degrading process, while the final EE2 removal efficiency was improved. More importantly, strain SJTE-3 can grow normally and degrade estrogen stably in various environmental samples. Inoculation of strain SJTE-3 removed the intrinsic synthetic and natural estrogens (EE2 and estrone) in lake water samples in 4 days, and eliminated over 90% of the amended 1 mg/L EE2 in 2 days. Bioaugmentation of strain SJTE-3 in EE2-supplied solid soil and pig manure samples achieved a removal rate of over 55% and 70% of 1 mg/kg EE2 within 2 weeks. Notably, the bioaugmentation of extrinsic strain SJTE-3 had a slight influence on indigenous bacterial community in pig manure samples, and its relative abundance decreased significantly after EE2 removal. Amendment of EE2 or strain SJTE-3 in manure samples enhanced the abundance of Proteobacteria and Actinobacteria, implying their potential in utilizing EE2 or its metabolites. These findings not only shed a light on the environment adaptability and degradation efficiency of strain SJTE-3, but also provide insights for bioremediation application in complex and synthetic estrogen polluted environments.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Yuan X, Cui K, Chen Y, Xu W, Li P, He Y. Response of microbial community and biological nitrogen removal to the accumulation of nonylphenol in sequencing batch reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-12. [PMID: 36817166 PMCID: PMC9923645 DOI: 10.1007/s13762-023-04825-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The widespread existence of nonylphenol in the environmental rendered from wastewater discharge has become a growing concern for its endocrine disrupting effects on microorganisms. In this study, the performance of nitrifying and denitrifying microbial community in a sequencing batch reactor (SBR) was investigated under different nonylphenol concentrations. The SBR was shown to be less effective in nitrogen removal at higher concentration of nonylphenol. Proteobacteria, Bacteroidetes, and Actinobacteria were characterized by 454 pyrosequencing as the dominant bacteria, nitrogen removal functional bacteria in these three phyla were inhibited by nonylphenol, and Proteobacteria and Actinobacteria were more sensitive to nonylphenol. With the accumulation of nonylphenol, the population of the most abundant denitrifying bacteria (Thauera spp.) and nitrifying bacteria (Nitrosomonas spp.) significantly reduced. Microbial diversity increased due to nonylphenol perturbation, which is indicated by the changes in microbial alpha diversity. Principal component analysis showed high similarity between microbial community in low and high concentration of nonylphenol, and the core genera involved in nitrogen removal had a low correlation with other genera shown in co-occurrence network. Moreover, linear discriminant analysis effect size analysis revealed intergroup differences in microorganisms. The mechanism of accumulated NP on the diversity and metabolism of the microbial community was examined. This paper established a theoretical foundation for the treatment of NP-containing wastewater and provided hints for further research about NP impact on biological nitrogen removal. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04825-9.
Collapse
Affiliation(s)
- X. Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - K. Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - Y. Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - W. Xu
- Zhejiang Lab, Hangzhou, 310012 China
| | - P. Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Y. He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
5
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Bai L, Ju Q, Wang C, Tian L, Wang C, Zhang H, Jiang H. Responses of steroid estrogen biodegradation to cyanobacterial organic matter biodegradability in the water column of a eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150058. [PMID: 34537690 DOI: 10.1016/j.scitotenv.2021.150058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The co-occurrence of cyanobacterial harmful algal blooms and contaminants is an increasing environmental concern in freshwater worldwide. Our field investigations coupled with laboratory incubations demonstrated that the microbial degradation potential of 17β-estradiol (E2) with estrone as the intermediate was primarily driven by increased dissolved organic matter (DOM) in the water column of a cyanobacterial bloom. To explain the intrinsic contribution of cyanobacterial-derived DOM (C-DOM) to estrogen biodegradation, a combination of methods including bioassay, ultrahigh-resolution mass spectrometry, and microbial ecology were applied. The results showed that preferential assimilation of highly biodegradable structures, including protein-, carbohydrate-, and unsaturated hydrocarbon-like molecules sustained bacterial growth, selected for more diverse microbes, and resulted in greater estrogen biodegradation compared to less biodegradable molecules (lignin- and tannin-like molecules). The biodegradability of C-DOM decreased from 78% to 1%, whereas the E2 biodegradation rate decreased dramatically at first, then increased with the accumulation of recalcitrant, bio-produced lipid-like molecules in C-DOM. This change was linked to alternative substrate-induced selection of the bacterial community under highly refractory conditions, as suggested by the greater biomass-normalized E2 biodegradation rate after a 24-h lag phase. In addition to the increased frequency of potential degraders, such as Sphingobacterium, the network analysis revealed that C-DOM molecules distributed in high H/C (protein- and lipid-like molecules) were the main drivers structuring the bacterial community, inducing strong deterministic selection of the community assemblage and upregulating the metabolic capacity for contaminants. These findings provide strong evidence that estrogen biodegradation in eutrophic water may be facilitated by cyanobacterial blooms and provide a theoretical basis for ecological remediation of estrogen pollution.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qi Ju
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
7
|
The Analysis of Estrogen-Degrading and Functional Metabolism Genes in Rhodococcus equi DSSKP-R-001. Int J Genomics 2020; 2020:9369182. [PMID: 32908857 PMCID: PMC7471831 DOI: 10.1155/2020/9369182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Estrogen contamination is recognized as one of the most serious environmental problems, causing widespread concern worldwide. Environmental estrogens are mainly derived from human and vertebrate excretion, drugs, and agricultural activities. The use of microorganisms is currently the most economical and effective method for biodegradation of environmental estrogens. Rhodococcus equi DSSKP-R-001 (R-001) has strong estrogen-degrading capabilities. Our study indicated that R-001 can use different types of estrogen as its sole carbon source for growth and metabolism, with final degradation rates above 90%. Transcriptome analysis showed that 720 (E1), 983 (E2), and 845 (EE2) genes were significantly upregulated in the estrogen-treated group compared with the control group, and 270 differentially expressed genes (DEGs) were upregulated across all treatment groups. These DEGs included ABC transporters; estrogen-degrading genes, including those that perform initial oxidation and dehydrogenation reactions and those that further degrade the resulting substrates into small molecules; and metabolism genes that complete the intracellular transformation and utilization of estrogen metabolites through biological processes such as amino acid metabolism, lipid metabolism, carbohydrate metabolism, and the tricarboxylic acid cycle. In summary, the biodegradation of estrogens is coordinated by a metabolic network of estrogen-degrading enzymes, transporters, metabolic enzymes, and other coenzymes. In this study, the metabolic mechanisms by which Rhodococcus equi R-001 degrades various estrogens were analyzed for the first time. A new pollutant metabolism system is outlined, providing a starting point for the construction of engineered estrogen-degrading bacteria.
Collapse
|
8
|
Mao H, Wang K, Wang Z, Peng J, Ren N. Metabolic function, trophic mode, organics degradation ability and influence factor of bacterial and fungal communities in chicken manure composting. BIORESOURCE TECHNOLOGY 2020; 302:122883. [PMID: 32006923 DOI: 10.1016/j.biortech.2020.122883] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The metabolic function and organic degradation behavior of bacterial and fungal communities were detected in 60 days composting of chicken manure and pumice by using Biolog tools, PICRUSt and FUNGuild. Fungal diversity increased from 57 OTUs in fresh chicken manure to 109 OTUs in high temperature stage, while bacterial diversity decreased from 86 OTUs to 44 OTUs after composting treatment. The carbohydrates degradation ability of bacterial community was enhanced in the high temperature stage. Fungal community had relatively higher degradation rates of carboxylic acids and amino acids in the maturation stage. Saprotroph was the main trophic mode of fungal community during the incubation process. The fungal animal pathogen decreased from 12.5% to 1.2% after composting treatment. Bacterial community composition and substrates degradation rate were mainly influenced by redox potential, pH and moisture, while temperature was the main environmental factor influencing on organic degradation of fungal community.
Collapse
Affiliation(s)
- Hailong Mao
- School of Environment, Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090, China
| | - Ke Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090, China.
| | - Zhe Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090, China
| | - Jing Peng
- School of Environment, Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090, China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, 73 Huanghe road, Harbin, Heilongjiang 150090, China
| |
Collapse
|
9
|
Xiong W, Yin C, Wang Y, Lin S, Deng Z, Liang R. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121616. [PMID: 31780289 DOI: 10.1016/j.jhazmat.2019.121616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17β-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17β-hydroxysteroid dehydrogenases (17β-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
10
|
Xiong W, Yin C, Peng W, Deng Z, Lin S, Liang R. Characterization of an 17β-estradiol-degrading bacterium Stenotrophomonas maltophilia SJTL3 tolerant to adverse environmental factors. Appl Microbiol Biotechnol 2019; 104:1291-1305. [PMID: 31834439 DOI: 10.1007/s00253-019-10281-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023]
Abstract
Bioremediation of environmental estrogens requires microorganisms with stable degradation efficiency and great stress tolerance in complex environments. In this work, Stenotrophomonas maltophilia SJTL3 isolated from wastewater was found to be able to degrade over 90% of 10 μg/mL 17β-estradiol (E2) in a week and the degradation dynamic was fitted by the first-order kinetic equations. Estrone was the first and major intermediate of E2 biodegradation. Strain SJTL3 exhibited strong tolerance to several adverse conditions like extreme pH (3.0-11.0), high osmolality (2%), co-existing heavy metals (6.25 μg/mL of Cu2+) and surfactants (5 CMC of Tween 80), and retained normal cell vitality and stable E2-degradaing efficiency. In solid soil, strain SJTL3 could remove nearly 100% of 1 μg/mL of E2 after the bacteria inoculation and 8-day culture. As to the contamination of 10 μg/mL E2 in soil, the biodegradation efficiency was about 90%. The further obtainment of the whole genome of strain SJTL3 and genome analysis revealed that this strain contained not only the potential genes responsible for estrogen degradation, but also the genes encoding proteins involved in stress tolerance. This work could promote the estrogen-biodegrading mechanism study and provide insights into the bioremediation application.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
11
|
Qiu Q, Wang P, Kang H, Wang Y, Tian K, Huo H. Genomic Analysis of a New Estrogen-Degrading Bacterial Strain, Acinetobacter sp. DSSKY-A-001. Int J Genomics 2019; 2019:2804134. [PMID: 31281826 PMCID: PMC6589213 DOI: 10.1155/2019/2804134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/06/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, we isolated a new estrogen-degrading bacterium from a soil sample collected near a pharmaceutical factory in Beijing, China. Morphological observations, physiological and biochemical analyses, and sequence analysis showed that the strain was in the genus Acinetobacter, and it was named DSSKY-A-001. The estrogen degradation rate and growth density of strain DSSKY-A-001 were determined by high-performance liquid chromatography and a growth assay using a microplate reader, respectively. The estrogen degradation rate was 76% on the third day and 90% on the sixth day of culture. Three kinds of estrogen metabolism intermediates were detected by high-performance liquid chromatography and mass spectrometry, and the estrogen metabolic pathway and possible estrogen-degrading enzymes were predicted. RT-PCR was used to verify whether the three putative enzymes, catechol 1,2-dioxygenase, dioxygenase, and 7α-hydroxysteroid dehydrogenase, were expressed in the strain. The results of the validation were consistent with the predictions that these three enzymes were present and expressed in Acinetobacter DSSKY-A-001. To further understand the estrogen-degrading activity of the strain at the genetic level, we sequenced the genome and performed a functional gene annotation. Through this gene sequence analysis, we identified genes predicted to encode the previously detected enzymes, catechol 1,2-dioxygenase, dioxygenase, and 7α-hydroxysteroid dehydrogenase, as well as six other enzymes that may be involved in estrogen degradation. Therefore, a total of nine enzymes related to estrogen degradation were found.
Collapse
Affiliation(s)
- Qing Qiu
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Nanguan District, Changchun City, Jilin Province, China
| | - Ping Wang
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Nanguan District, Changchun City, Jilin Province, China
| | - Hui Kang
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Nanguan District, Changchun City, Jilin Province, China
| | - Yu Wang
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Nanguan District, Changchun City, Jilin Province, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| |
Collapse
|
12
|
Shin YH, Schideman L, Plewa MJ, Zhang P, Scott J, Zhang Y. Fate and transport of estrogenic compounds in an integrated swine manure treatment systems combining algal-bacterial bioreactor and hydrothermal processes for improved water quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16800-16813. [PMID: 31001778 DOI: 10.1007/s11356-019-04969-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
An integrated manure treatment system, including a mixed algal-bacterial bioreactor (MABB) and hydrothermal processing of biomass solids, was found to remove 76.4-97.0% of the total estrogenic hormones (estrone (E1), 17β-estradiol (E2), and estriol (E3)) from the liquid portion of animal manure (LPAM). The mixed biomass was converted into either biocrude oil with a yield up to 40% via hydrothermal liquefaction (HTL) or syngas with a yield up to 54% yield via catalytic hydrothermal gasification (CHG). Adding granular activated carbon (GAC) in the MABB enhanced the removal of estrogenic hormones (+ 7.2%), cytotoxicity (+ 58%), and heavy metals (+ 10.5%). After the integrated system with the MABB, HTL, and CHG processes, the overall percent removal of heavy metals from the LPAM ranged from 27.1 to 40.3%. The concentrations of potentially toxic heavy metals (lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr)) in the aqueous phase after HTL and CHG tests ranged from 0.01 to 25.3 mg/L.
Collapse
Affiliation(s)
- Young Hwan Shin
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, IL, 61801, USA.
- Smart construction team, Daewoo Institute of Construction Technology, 20 Suil-ro 123 beon-gil Jangan-gu, Suwon-si, Gyeonggi-do, 16297, South Korea.
| | - Lance Schideman
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Hazelwood Drive, Champaign, IL, 61820, USA
| | - Michael J Plewa
- Department of Crop Sciences and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 W. Peabody, Urbana, IL, 61801, USA
| | - Peng Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, IL, 61801, USA
| | - John Scott
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Hazelwood Drive, Champaign, IL, 61820, USA
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
Bai L, Zhang Q, Wang C, Yao X, Zhang H, Jiang H. Effects of natural dissolved organic matter on the complexation and biodegradation of 17α-ethinylestradiol in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:782-789. [PMID: 30623834 DOI: 10.1016/j.envpol.2018.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Natural dissolved organic matter (DOM) produced in algal blooms and overgrowths of macrophyte changes the elimination and ecotoxicity of estrogens in freshwater lakes. The complexation of 17α-ethinylestradiol (EE2) and various DOMs, including the water- and sediment-derived DOMs from the algal-dominant zone in Lake Taihu (TW and TS, respectively) and the macrophyte-dominant zone in Poyang Lake (PW and PS, respectively), and the humic acid (HA), was investigated along with the subsequent effects on EE2 biodegradation. Dialysis equilibrium experiments showed that binding to DOM significantly decreased the freely soluble concentrations of EE2. The binding capacity of the five DOMs followed the order of PW < TW < PS ≈ TS < HA. A negative correlation was found between the organic-carbon-normalized sorption coefficient (logKDOC) and the absorption ratio (E2/E3) of DOM, indicating that the large sized, aromatic molecules were involved in the complexation. The reduced freely soluble concentrations of EE2 did not inhibit its biodegradation by an EE2-degrading strain, Rhodobacter blasticus. Conversely, the autochthonous-dominated water-derived DOMs stimulated a more extensive biodegradation of EE2 than the sediment-derived DOMs, and the existence of HA resulted in the smallest increase in EE2 biodegradation. The promoting effect was associated with the increased concentration, activity, and transforming rate of R. blasticus by the bioavailable components in DOM. The present study suggests that the significant impact of natural DOM should be fully considered when assessing the fate and ecological risks of estrogens in eutrophic waters.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
14
|
Cydzik-Kwiatkowska A, Zielińska M. Microbial composition of biofilm treating wastewater rich in bisphenol A. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:385-392. [PMID: 29173057 DOI: 10.1080/10934529.2017.1404326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Although microbial degradation plays a major role in the removal of bisphenol A (BPA) from water environments, there is little information on the effect of BPA on microorganisms in wastewater treatment systems. The aim of this study was to determine the dynamics of the microbial communities in biofilm growing on porous ceramic supports in a column up-flow reactor during exposure to BPA at increasing concentrations from 0 to 10 mg L-1. Independent of BPA load, the efficiency of BPA removal was about 90%. Groups of microorganisms that differ in their sensitivity to the presence of BPA in wastewater were identified. The core microbial genera in the biofilm were Acidovorax, Pseudoxanthomonas and Acinetobacter. Arenimonas sp., Thauera sp. and Acidobacterium sp. were the main components of the biofilm in the absence of BPA in wastewater. Increased abundances of Pseudomonas sp., Acidovorax sp. and Luteimonas sp. in BPA-exposed biofilm indicate that these genera may have played important roles in BPA biodegradation. A correlation between Pseudomonas sp. abundance and BPA removal efficiency indicates that BPA was used directly as a source of carbon and energy for growth. This study indicates that the use of the biofilm reactor enables effective BPA removal from wastewater and expands knowledge about the microbial structure of communities responsible for BPA degradation.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- a University of Warmia and Mazury in Olsztyn , Department of Environmental Biotechnology , Słoneczna, Olsztyn , Poland
| | - Magdalena Zielińska
- a University of Warmia and Mazury in Olsztyn , Department of Environmental Biotechnology , Słoneczna, Olsztyn , Poland
| |
Collapse
|
15
|
Du Z, Chen Y, Li X. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions. WATER RESEARCH 2017; 123:361-368. [PMID: 28686938 DOI: 10.1016/j.watres.2017.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/12/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions.
Collapse
Affiliation(s)
- Zhe Du
- Department of Civil Engineering, University of Nebraska-Lincoln, USA
| | - Yinguang Chen
- Department of Environmental Engineering, Tongji University, China
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
16
|
Fernández L, Louvado A, Esteves VI, Gomes NCM, Almeida A, Cunha Â. Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:359-366. [PMID: 27233210 DOI: 10.1016/j.jhazmat.2016.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Endocrine disrupting compounds (EDCs) are considered as high research priority being a source of potential adverse ecological health effects in environmental waters. 17β-Estradiol (E2), a recalcitrant natural estrogen, is typically encountered in wastewater treatment plants (WWTPs) at levels ranging 10-30ngL-1 in the influent flow and 1-3ngL-1 in the effluent flow. The exposure to even extremely low concentrations of E2 may interfere with the normal function of the endocrine system of organisms. In this study, five bacteria isolated from enrichment cultures of sediments of mud volcanoes of the Gulf of Cadiz (Moroccan-Iberian margin) were identified as aerobic E2 biodegraders, which produce low amounts of biotransformed estrone (E1). Analysis of 16S rDNA gene sequences identified three of them as Virgibacillus halotolerans, Bacillus flexus and Bacillus licheniformis. Among the set of strains, Bacillus licheniformis showed also ability to biodegrade E2 under anaerobic conditions.
Collapse
Affiliation(s)
- Lucía Fernández
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal; Department of Chemistry and CESAM, University of Aveiro, Aveiro 3810-193, Portugal; Department of Chemistry and Organic Chemistry, Natural and Agro-Food Products (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - António Louvado
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Adelaide Almeida
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Ângela Cunha
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
17
|
Yang L, Cheng Q, Tam NFY, Lin L, Su W, Luan T. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4324-4334. [PMID: 26984110 DOI: 10.1021/acs.est.5b06196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific.
Collapse
Affiliation(s)
- Lihua Yang
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
- State Key Laboratory in Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR China
| | - Qiao Cheng
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| | - Nora F Y Tam
- State Key Laboratory in Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR China
| | - Li Lin
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| | - Weiqi Su
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou 510275, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University , Guangzhou 510275, China
| |
Collapse
|
18
|
Zhou L, Luo Q, Lu J, Huang Q. Transformation of 17β-Estradiol by Phanerochaete chrysosporium in Different Culture Media. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:265-271. [PMID: 25952700 DOI: 10.1007/s00128-015-1557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
The removal of 17β-estradiol (E2) by white-rot fungus Phanerochaete chrysosporium cultured in classic Kirk or potato medium was systematically investigated. Results demonstrated that E2 can be efficiently removed regardless of culture media type. However, the reaction intermediates and transformation pathways varied in different media. Estrone (E1) and estriol (E3) were sequentially generated as intermediates in the potato medium, but these intermediates were absent in Kirk medium. Such results were found to correlate to the peroxidases produced in Kirk medium. These enzymes catalyzed one-electron oxidation of E2 to form radicals that can undergo oxidative coupling. Similar enzymes were not detected in the potato medium, thus E2 underwent in vitro oxidation to form E1 and E3 sequentially. Adding glucose to the potato medium further accelerated such processes. The findings in this study provide insights into estrogen reactions mediated by P. chrysosporium and for potential development of biodegradation methods to reduce estrogen contamination levels.
Collapse
Affiliation(s)
- Lina Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | |
Collapse
|
19
|
Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 2013; 79:4701-11. [PMID: 23728808 DOI: 10.1128/aem.01239-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents.
Collapse
|
20
|
Yu CP, Deeb RA, Chu KH. Microbial degradation of steroidal estrogens. CHEMOSPHERE 2013; 91:1225-35. [PMID: 23517889 DOI: 10.1016/j.chemosphere.2013.01.112] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 05/26/2023]
Abstract
Steroidal estrogens, widespread in the environment, are contaminants of potential concern because exposure to these compounds can cause adverse impacts on aquatic life. Intensive research efforts have been undertaken in order to better understand the environmental occurrence of these compounds. In addition to physical/chemical reactions, biological processes - microbial biodegradation of steroidal estrogens - play a vital role in determining the fate and transport of these compounds in built and natural environments. This review summarizes the current state of knowledge on the microbiology of estrogen biodegradation. Aerobic and anaerobic estrogen-degrading microorganisms are phylogenetically diverse; they are mainly isolated from soils, activated sludge, dental plaque and intestines. Estrogens can be degraded via growth-linked and non-growth-linked reactions, as well as through abiotic degradation in the presence of selective microorganisms. Current knowledge on estrogen biodegradation kinetics and pathways is limited. Molecular methods are useful in deciphering estrogen-degrading microbial community and tracking the quantity of known degraders in bioreactors with different operating conditions. Future research efforts aimed at bridging knowledge gaps on estrogen biodegradation are also proposed.
Collapse
Affiliation(s)
- Chang-Ping Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | |
Collapse
|
21
|
Bagnall JP, Ito A, McAdam EJ, Soares A, Lester JN, Cartmell E. Resource dependent biodegradation of estrogens and the role of ammonia oxidising and heterotrophic bacteria. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:56-63. [PMID: 22738770 DOI: 10.1016/j.jhazmat.2012.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 06/01/2023]
Abstract
The influence of ammonia oxidising bacteria and bulk organic competition was assessed during laboratory scale activated sludge treatment. Under short and long hydraulic retention time (HRT) and solid retention time (SRT) conditions, bioreactors were supplied with synthetic sewage spiked with 0.04-2.1 mg m(3) d(-1) of steroid estrogens with and without ammonia as a nitrogen source. Non acclimated biomass that had previously not been exposed to estrogens was capable of biodegrading estrogens (89% and 78%) within 24 h in the short HRT/SRT and long HRT/SRT conditions respectively. Changing the nitrogen source from ammonia to nitrate caused reductions in ammonia oxidising bacteria (AOB) numbers from 2.47×10(8) to 1.17×10(7)AOB mL(-1) and 5.15×10(9) to 4.27×10(7)AOB mL(-1) for the short and long HRT/SRT conditions respectively. Despite these reductions, biodegradation of estrogens was unaffected, which demonstrated that heterotrophic bacteria were able to biodegrade estrogens. Estrogen biodegradation was unrestricted and estrogen could be removed at higher than environmental concentrations following a pseudo-first order relationship. During this study, bulk organic loading appeared not to have any appreciable influence upon estrogen biodegradation. These results suggest heterotrophic bacteria, capable of scavenging a broad spectrum of organic material, carry out estrogen biodegradation.
Collapse
Affiliation(s)
- J P Bagnall
- Cranfield Water Science Institute, School of Applied Sciences, Cranfield University, Bedfordshire, MK43 0AL, UK
| | | | | | | | | | | |
Collapse
|
22
|
The effect of ozone on the biodegradation of 17α-ethinylestradiol and sulfamethoxazole by mixed bacterial cultures. Appl Microbiol Biotechnol 2012; 97:2201-10. [DOI: 10.1007/s00253-012-4054-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/07/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
23
|
Ho L, Grasset C, Hoefel D, Dixon MB, Leusch FDL, Newcombe G, Saint CP, Brookes JD. Assessing granular media filtration for the removal of chemical contaminants from wastewater. WATER RESEARCH 2011; 45:3461-3472. [PMID: 21529882 DOI: 10.1016/j.watres.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/25/2011] [Accepted: 04/02/2011] [Indexed: 05/30/2023]
Abstract
Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10(-3) h(-1). GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA > NMOR > NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants.
Collapse
Affiliation(s)
- Lionel Ho
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide SA 5000, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Muller M, Combalbert S, Delgenès N, Bergheaud V, Rocher V, Benoît P, Delgenès JP, Patureau D, Hernandez-Raquet G. Occurrence of estrogens in sewage sludge and their fate during plant-scale anaerobic digestion. CHEMOSPHERE 2010; 81:65-71. [PMID: 20673956 DOI: 10.1016/j.chemosphere.2010.06.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 05/29/2023]
Abstract
Estrogens, which contribute greatly to the endocrine-disrupting activity in sewage, are partially sorbed onto particulate matter during sewage treatment. We thus investigated the occurrence of estrogens in different kinds of sludge and throughout a plant-scale anaerobic digestion process. The analytical method was first validated when sorption interaction between spiked estrogens and sludge could occur. Hence, the recovery ratio of estrone (E1), 17beta-estradiol (E2), estriol (E3) and 17alpha-ethinylestradiol (EE2) were determined when added to liquid sludge and mixed under various conditions. We show that minor non-extractable residues were formed (5-10%), suggesting that the sorption interaction established with sludge did not limit estrogen extraction. Estrogen concentrations measured in collected samples varied with sludge type. Secondary sludge showed higher E1 contents than primary sludge: respectively, 43 and 8 ng g(-1) dry weight (dw). Two pathways of E1 production during secondary treatment are proposed to explain such a result. Higher estrogen concentrations were found in secondary sludge from a conventional plant (55 ng g(-1)dw) compared to those from an advanced plant (13 ng g(-1)dw). Based on estimated estrogen concentrations in sewage, we conclude that operating parameters play a role in the sorption of estrogens during secondary treatment. Also, the hydrophobic properties of the estrogens influenced the individual adsorption of each molecule. Thus, E3 showed the highest estimated concentrations in sewage but very low concentrations in sludge. Finally, plant-scale anaerobic digestion showed low efficiency (<40%) for removing estrogens and, regarding the final dewatering process, concentrations increased for E2 and EE2.
Collapse
Affiliation(s)
- Mathieu Muller
- INRA, UR050, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol 2010; 86:1671-92. [DOI: 10.1007/s00253-010-2547-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/06/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
|