1
|
Schwardmann LS, Benninghaus L, Lindner SN, Wendisch VF. Prospects of formamide as nitrogen source in biotechnological production processes. Appl Microbiol Biotechnol 2024; 108:105. [PMID: 38204134 PMCID: PMC10781810 DOI: 10.1007/s00253-023-12962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024]
Abstract
This review presents an analysis of formamide, focussing on its occurrence in nature, its functional roles, and its promising applications in the context of the bioeconomy. We discuss the utilization of formamide as an innovative nitrogen source achieved through metabolic engineering. These approaches underscore formamide's potential in supporting growth and production in biotechnological processes. Furthermore, our review illuminates formamide's role as a nitrogen source capable of safeguarding cultivation systems against contamination in non-sterile conditions. This attribute adds an extra layer of practicality to its application, rendering it an attractive candidate for sustainable and resilient industrial practices. Additionally, the article unveils the versatility of formamide as a potential carbon source that could be combined with formate or CO2 assimilation pathways. However, its attributes, i.e., enriched nitrogen content and comparatively limited energy content, led to conclude that formamide is more suitable as a co-substrate and that its use as a sole source of carbon for biomass and bio-production is limited. Through our exploration of formamide's properties and its applications, this review underscores the significance of formamide as valuable resource for a large spectrum of industrial applications. KEY POINTS: • Formidases enable access to formamide as source of nitrogen, carbon, and energy • The formamide/formamidase system supports non-sterile fermentation • The nitrogen source formamide supports production of nitrogenous compounds.
Collapse
Affiliation(s)
- Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- , Aminoverse B.V., Daelderweg 9, 6361 HK, Nuth, Beekdaelen, The Netherlands
| | - Leonie Benninghaus
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Steffen N Lindner
- Department of Biochemistry, Charite Universitatsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
2
|
Poethe SS, Junker N, Meyer F, Wendisch VF. Sustainable production of the drug precursor tyramine by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2024; 108:499. [PMID: 39476177 PMCID: PMC11525245 DOI: 10.1007/s00253-024-13319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Tyramine has attracted considerable interest due to recent findings that it is an excellent starting material for the production of high-performance thermoplastics and hydrogels. Furthermore, tyramine is a precursor of a diversity of pharmaceutically relevant compounds, contributing to its growing importance. Given the limitations of chemical synthesis, including lack of selectivity and laborious processes with harsh conditions, the biosynthesis of tyramine by decarboxylation of L-tyrosine represents a promising sustainable alternative. In this study, the de novo production of tyramine from simple nitrogen and sustainable carbon sources was successfully established by metabolic engineering of the L-tyrosine overproducing Corynebacterium glutamicum strain AROM3. A phylogenetic analysis of aromatic-L-amino acid decarboxylases (AADCs) revealed potential candidate enzymes for the decarboxylation of tyramine. The heterologous overexpression of the respective AADC genes resulted in successful tyramine production, with the highest tyramine titer of 1.9 g L-1 obtained for AROM3 overexpressing the tyrosine decarboxylase gene of Levilactobacillus brevis. Further metabolic engineering of this tyramine-producing strain enabled tyramine production from the alternative carbon sources ribose and xylose. Additionally, up-scaling of tyramine production from xylose to a 1.5 L bioreactor batch fermentation was demonstrated to be stable, highlighting the potential for sustainable tyramine production. KEY POINTS: • Phylogenetic analysis revealed candidate l-tyrosine decarboxylases • C. glutamicum was engineered for de novo production of tyramine • Tyramine production from alternative carbon substrates was enabled.
Collapse
Affiliation(s)
- Sara-Sophie Poethe
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
da Silva Lameira C, Münßinger S, Yang L, Eikmanns BJ, Bellinzoni M. Corynebacterium glutamicum pyruvate:quinone oxidoreductase: an enigmatic metabolic enzyme with unusual structural features. FEBS J 2024; 291:4501-4521. [PMID: 39080980 DOI: 10.1111/febs.17232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 10/17/2024]
Abstract
Pyruvate:quinone oxidoreductase (PQO) is a flavin-containing peripheral membrane enzyme catalyzing the decarboxylation of pyruvate to acetate and CO2 with quinone as an electron acceptor. Here, we investigate PQO activity in Corynebacterium glutamicum, examine purified PQO, and describe the crystal structure of the native enzyme and a truncated version. The specific PQO activity was highest in stationary phase cells grown in complex medium, lower in cells grown in complex medium containing glucose or acetate, and lowest in cells grown in minimal acetate-medium. A similar pattern with about 30-fold higher specific PQO activities was observed in C. glutamicum with plasmid-bound pqo expression under the control of the tac promoter, indicating that the differences in PQO activity are likely due to post-transcriptional control. Continuous cultivation of C. glutamicum at dilution rates between 0.05 and 0.4 h-1 revealed a negative correlation between PQO activity and growth rate. Kinetic analysis of PQO enzymes purified from cells grown in complex or in minimal acetate-medium revealed substantial differences in specific activity (72.3 vs. 11.9 U·mg protein-1) and turnover number (kcat: 440 vs. 78 s-1, respectively), suggesting post-translational modifications affecting PQO activity. Structural analysis of PQO revealed a homotetrameric arrangement very similar to the Escherichia coli pyruvate oxidase PoxB except for the C-terminal membrane binding domain, which exhibited a conformation markedly different from its PoxB counterpart. A truncated PQO variant lacking 17 C-terminal amino acids showed higher affinity to pyruvate and was independent of detergent activation, highlighting the importance of the C-terminus for enzyme activation and lipid binding.
Collapse
Affiliation(s)
| | - Sini Münßinger
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Germany
| | - Lu Yang
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, Paris, France
| | - Bernhard J Eikmanns
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Germany
| | - Marco Bellinzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, Paris, France
| |
Collapse
|
4
|
Göttl VL, Meyer F, Schmitt I, Persicke M, Peters-Wendisch P, Wendisch VF, Henke NA. Enhancing astaxanthin biosynthesis and pathway expansion towards glycosylated C40 carotenoids by Corynebacterium glutamicum. Sci Rep 2024; 14:8081. [PMID: 38582923 PMCID: PMC10998873 DOI: 10.1038/s41598-024-58700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher β-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the β-carotene hydroxylase gene crtZ and β-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-β-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Ina Schmitt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Marcus Persicke
- CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
- Omics Core Facility - Proteom-Metabolom Unit (In Development), Bielefeld University, 33615, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
- CZS Junior Research Group, Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
5
|
Tabata H, Nishijima H, Yamada Y, Miyake R, Yamamoto K, Kato S, Nakanishi S. Microbial Biomanufacturing Using Chemically Synthesized Non-Natural Sugars as the Substrate. Chembiochem 2024; 25:e202300760. [PMID: 38063314 DOI: 10.1002/cbic.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Indexed: 12/20/2023]
Abstract
The bioproduction of valuable materials using biomass sugars is attracting attention as an environmentally friendly technology. However, its ability to fulfil the enormous demand to produce fuels and chemical products is limited. With a view towards the future development of a novel bioproduction process that addresses these concerns, this study investigated the feasibility of bioproduction of valuable substances using Corynebacterium glutamicum (C. glutamicum) with a chemically synthesized non-natural sugar solution. Cells were grown using the synthesized sugar solution as the sole carbon source and they produced lactate under oxygen-limited conditions. It was also found that some of the sugars produced by the series of chemical reactions inhibited cell growth since prior removal of these sugars increased the cell growth rate. The results obtained in this study indicate that chemically synthesized sugars have the potential to resolve the concerns regarding future biomass sugar supply in microbial biomanufacturing.
Collapse
Affiliation(s)
- Hiro Tabata
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroaki Nishijima
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yuki Yamada
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Rika Miyake
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Keisuke Yamamoto
- Green Earth Research Centre, Green Earth Institute Co., Ltd., 2-5-9 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Souichiro Kato
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Lee CH, Kim S, Seo H, Kim KJ. Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from Corynebacterium glutamicum. J Microbiol Biotechnol 2023; 33:1595-1605. [PMID: 38151830 PMCID: PMC10772564 DOI: 10.4014/jmb.2305.05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 12/29/2023]
Abstract
Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.
Collapse
Affiliation(s)
- Chan Hwi Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangwoo Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Elkasaby T, Hanh DD, Kawaguchi H, Kondo A, Ogino C. Effect of different metabolic pathways on itaconic acid production in engineered Corynebacterium glutamicum. J Biosci Bioeng 2023:S1389-1723(23)00139-1. [PMID: 37328405 DOI: 10.1016/j.jbiosc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Itaconic acid (IA), a C5-dicarboxylic acid, is a potential bio-based building block for the polymer industry. There are three pathways for IA production from natural IA producers; however, most of the engineered strains were used for IA production by heterologous expression of cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus. In this study, IA was produced by an engineered Corynebacterium glutamicum ATCC 13032 expressing two different types of genes from two distinct pathways. The first involves the mammalian immunoresponsive gene1 (Irg1) derived from Mus musculus. The second (termed here the trans-pathway) involves two genes from the natural IA producer Ustilago maydis which are aconitate-delta-isomerase (Adi1) and trans-aconitate decarboxylase (Tad1) genes. The constructed strains developing the two distinct IA production pathways: C. glutamicum ATCC 13032 pCH-Irg1opt and C. glutamicum ATCC 13032 pCH-Tad1optadi1opt were used for production of IA from different carbon sources. The results reflect the possibility for IA production from C. glutamicum expressing the trans-pathway (Adi1/Tad1 genes) and cis-pathway (Irg1 gene) other than the well-known cis-pathway that depends mainly on cadA gene from A. terreus. The developed strain expressing trans-pathway from U. maydis; however, proved to be better at IA production with high titers of 12.25, 11.34, and 11.02 g/L, and a molar yield of 0.22, 0.42, and 0.43 mol/mol from glucose, maltose, and sucrose, respectively, via fed-batch fermentation. The present study suggests that trans-pathway is better than cis-pathway for IA production in engineered C. glutamicum.
Collapse
Affiliation(s)
- Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria St, Mansoura 35516, Egypt
| | - Dao Duy Hanh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
8
|
Ma SY, Amoah OJ, Nguyen HT, Sohng JK. Glucosylation of Isoeugenol and Monoterpenes in Corynebacterium glutamicum by YdhE from Bacillus lichenformis. Molecules 2023; 28:molecules28093789. [PMID: 37175199 PMCID: PMC10180135 DOI: 10.3390/molecules28093789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Corynebacterium glutamicum has been regarded as a food-grade microorganism. In recent years, the research to improve the activities of beneficial therapeutics and pharmaceutical substances has resulted in the engineering of the therapeutically favorable cell factory system of C. glutamicum. In this study, we successfully glucosylated isoeugenol and other monoterpene derivatives in C. glutamicum using a promiscuous YdhE, which is a glycosyltransferase from Bacillus lichenformis. For efficient glucosylation, cultivation conditions such as the production time, substrate concentration, carbon source, and culture medium were optimized. Our system successfully converted about 93% of the isoeugenol to glucosylated compounds in the culture. The glucoside compounds were then purified, analyzed, and identified as isoeugenol-1-O-β-d-glucoside and isoeugenol-1-O-β-d-(2″-acetyl)-glucoside.
Collapse
Affiliation(s)
- Su Yeong Ma
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Obed Jackson Amoah
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-ro 221, Tangjeong-myeon, Asan-si 31460, Republic of Korea
| |
Collapse
|
9
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
10
|
Nie L, Xu K, Zhong B, Wu X, Ding Z, Chen X, Zhang B. Enhanced L-ornithine production from glucose and sucrose via manipulation of the fructose metabolic pathway in Corynebacterium glutamicum. BIORESOUR BIOPROCESS 2022; 9:11. [PMID: 38647759 PMCID: PMC10992749 DOI: 10.1186/s40643-022-00503-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/03/2022] [Indexed: 12/25/2022] Open
Abstract
L-Ornithine, an important non-essential amino acid, has considerable medicinal value in the treatment of complex liver diseases. Microbial fermentation strategies using robust engineered strains have remarkable potential for producing L-ornithine. We showed that glucose and sucrose co-utilization accumulate more L-ornithine in Corynebacterium glutamicum than glucose alone. Further manipulating the expression of intracellular fructose-1-phosphate kinase through the deletion of pfkB1resulted in the engineered strain C. glutamicum SO30 that produced 47.6 g/L of L-ornithine, which represents a 32.8% increase than the original strain C. glutamicum SO26 using glucose as substrate (35.88 g/L). Moreover, fed-batch cultivation of C. glutamicum SO30 in 5-L fermenters produced 78.0 g/L of L-ornithine, which was a 78.9% increase in yield compared with that produced by C. glutamicum SO26. These results showed that manipulating the fructose metabolic pathway increases L-ornithine accumulation and provides a reference for developing C. glutamicum to produce valuable metabolites.
Collapse
Affiliation(s)
- Libin Nie
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kexin Xu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongtao Ding
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xuelan Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
11
|
Li C, Swofford CA, Rückert C, Chatzivasileiou AO, Ou RW, Opdensteinen P, Luttermann T, Zhou K, Stephanopoulos G, Jones Prather KL, Zhong-Johnson EZL, Liang S, Zheng S, Lin Y, Sinskey AJ. Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. BIORESOURCE TECHNOLOGY 2021; 341:125782. [PMID: 34419880 DOI: 10.1016/j.biortech.2021.125782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases. In fed-batch fermentation, 1,054 mg/L of α-carotene was produced by the best strain, which is the highest reported titer achieved in microbial fermentation. The success of increased α-carotene production suggests that the multi-copy chromosomal integration method can be a useful metabolic engineering tool for overexpression of key enzymes in C. glutamicum and other bacterium as well.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Charles A Swofford
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Christian Rückert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Alkiviadis Orfefs Chatzivasileiou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Rui Wen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Patrick Opdensteinen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tobias Luttermann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kristala L Jones Prather
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.
| |
Collapse
|
12
|
De la Torre LI, Vergara Meza JG, Cabarca S, Costa-Martins AG, Balan A. Comparison of carbohydrate ABC importers from Mycobacterium tuberculosis. BMC Genomics 2021; 22:841. [PMID: 34798821 PMCID: PMC8603345 DOI: 10.1186/s12864-021-07972-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis, the etiological agent of tuberculosis, has at least four ATP-Binding Cassette (ABC) transporters dedicated to carbohydrate uptake: LpqY/SugABC, UspABC, Rv2038c-41c, and UgpAEBC. LpqY/SugABC transporter is essential for M. tuberculosis survival in vivo and potentially involved in the recycling of cell wall components. The three-dimensional structures of substrate-binding proteins (SBPs) LpqY, UspC, and UgpB were described, however, questions about how these proteins interact with the cognate transporter are still being explored. Components of these transporters, such as SBPs, show high immunogenicity and could be used for the development of diagnostic and therapeutic tools. In this work, we used a phylogenetic and structural bioinformatics approach to compare the four systems, in an attempt to predict functionally important regions. RESULTS Through the analysis of the putative orthologs of the carbohydrate ABC importers in species of Mycobacterium genus it was shown that Rv2038c-41c and UgpAEBC systems are restricted to pathogenic species. We showed that the components of the four ABC importers are phylogenetically separated into four groups defined by structural differences in regions that modulate the functional activity or the interaction with domain partners. The regulatory region in nucleotide-binding domains, the periplasmic interface in transmembrane domains and the ligand-binding pocket of the substrate-binding proteins define their substrates and segregation in different branches. The interface between transmembrane domains and nucleotide-binding domains show conservation of residues and charge. CONCLUSIONS The presence of four ABC transporters in M. tuberculosis dedicated to uptake and transport of different carbohydrate sources, and the exclusivity of at least two of them being present only in pathogenic species of Mycobacterium genus, highlights their relevance in virulence and pathogenesis. The significant differences in the SBPs, not present in eukaryotes, and in the regulatory region of NBDs can be explored for the development of inhibitory drugs targeting the bacillus. The possible promiscuity of NBDs also contributes to a less specific and more comprehensive control approach.
Collapse
Affiliation(s)
- Lilia I De la Torre
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil
- Biomedical Research Group, University of Sucre, Sucre, Colombia
| | - José G Vergara Meza
- Biomedical Research Group, University of Sucre, Sucre, Colombia
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Sindy Cabarca
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil
- Biomedical Research Group, University of Sucre, Sucre, Colombia
| | - André G Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil.
- Laboratory of Applied Structural Biology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374; Cidade Universitária, São Paulo, Brazil.
| |
Collapse
|
13
|
Ijoma GN, Nkuna R, Mutungwazi A, Rashama C, Matambo TS. Applying PICRUSt and 16S rRNA functional characterisation to predicting co-digestion strategies of various animal manures for biogas production. Sci Rep 2021; 11:19913. [PMID: 34620937 PMCID: PMC8497515 DOI: 10.1038/s41598-021-99389-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
An estimated 25 million tons of animal manure is produced globally every year, causing considerable impact to the environment. These impacts can be managed through the use of anaerobic digestion (AD) This process achieves waste degradation through enzymatic activity, the efficiency of the AD process is directly related to microorganisms that produce these enzymes. Biomethane potential (BMP) assays remain the standard theoretical framework to pre-determine biogas yield and have been used to determine the feasibility of substrates or their combination for biogas production. However, an integrated approach that combines substrate choice and co-digestion would provide an improvement to the current predictive models. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) addresses the limitations of assays in this regard. In this paper, the biochemical functions of horse, cow, and pig manures are predicted. A total of 135 predicted KEGG Orthologies (KOs) showed amino acids, carbohydrate, energy, lipid, and xenobiotic metabolisms in all the samples. Linear discriminant analysis (LDA) combined with the effect size measurements (LEfSe), showed that fructose, mannose, amino acid and nucleotide sugar, phosphotransferase (PST) as well as starch and sucrose metabolisms were significantly higher in horse manure samples. 36 of the KOs were related to the acidogenesis and/or acetogenesis AD stages. Extended bar plots showed that 11 significant predictions were observed for horse-cow, while 5 were predicted for horse-pig and for cow-pig manures. Based on these predictions, the AD process can be enhanced through co-digestion strategies that takes into account the predicted metabolic contributions of the manure samples. The results supported the BMP calculations for the samples in this study. Biogas yields can be improved if this combined approach is employed in routine analysis before co-digesting different substrates.
Collapse
Affiliation(s)
- Grace N Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa.
| | - Rosina Nkuna
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| | - Asheal Mutungwazi
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| | - Charles Rashama
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| | - Tonderayi S Matambo
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort, 1709, South Africa
| |
Collapse
|
14
|
Gauttam R, Desiderato CK, Radoš D, Link H, Seibold GM, Eikmanns BJ. Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine. Front Bioeng Biotechnol 2021; 9:748510. [PMID: 34631687 PMCID: PMC8495162 DOI: 10.3389/fbioe.2021.748510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is an acetylated amino sugar nucleotide that naturally serves as precursor in bacterial cell wall synthesis and is involved in prokaryotic and eukaryotic glycosylation reactions. UDP-GlcNAc finds application in various fields including the production of oligosaccharides and glycoproteins with therapeutic benefits. At present, nucleotide sugars are produced either chemically or in vitro by enzyme cascades. However, chemical synthesis is complex and non-economical, and in vitro synthesis requires costly substrates and often purified enzymes. A promising alternative is the microbial production of nucleotide sugars from cheap substrates. In this study, we aimed to engineer the non-pathogenic, Gram-positive soil bacterium Corynebacterium glutamicum as a host for UDP-GlcNAc production. The native glmS, glmU, and glmM genes and glmM of Escherichia coli, encoding the enzymes for UDP-GlcNAc synthesis from fructose-6-phosphate, were over-expressed in different combinations and from different plasmids in C. glutamicum GRS43, which lacks the glucosamine-6-phosphate deaminase gene (nagB) for glucosamine degradation. Over-expression of glmS, glmU and glmM, encoding glucosamine-6-phosphate synthase, the bifunctional glucosamine-1-phosphate acetyltransferase/N-acetyl glucosamine-1-phosphate uridyltransferase and phosphoglucosamine mutase, respectively, was confirmed using activity assays or immunoblot analysis. While the reference strain C. glutamicum GlcNCg1 with an empty plasmid in the exponential growth phase contained intracellularly only about 0.25 mM UDP-GlcNAc, the best engineered strain GlcNCg4 accumulated about 14 mM UDP-GlcNAc. The extracellular UDP-GlcNAc concentrations in the exponential growth phase did not exceed 2 mg/L. In the stationary phase, about 60 mg UDP-GlcNAc/L was observed extracellularly with strain GlcNCg4, indicating the potential of C. glutamicum to produce and to release the activated sugar into the culture medium. To our knowledge, the observed UDP-GlcNAc levels are the highest obtained with microbial hosts, emphasizing the potential of C. glutamicum as a suitable platform for activated sugar production.
Collapse
Affiliation(s)
- Rahul Gauttam
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | - Dušica Radoš
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gerd M. Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
15
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
16
|
Ramp P, Lehnert A, Matamouros S, Wirtz A, Baumgart M, Bott M. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease. Metab Eng 2021; 67:173-185. [PMID: 34224896 DOI: 10.1016/j.ymben.2021.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Lehnert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
17
|
Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms 2021; 9:670. [PMID: 33805131 PMCID: PMC8064071 DOI: 10.3390/microorganisms9040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023] Open
Abstract
Corynebacterium glutamicum is a prominent production host for various value-added compounds in white biotechnology. Gene repression by dCas9/clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) allows for the identification of target genes for metabolic engineering. In this study, a CRISPRi-based library for the repression of 74 genes of C. glutamicum was constructed. The chosen genes included genes encoding enzymes of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, regulatory genes, as well as genes of the methylerythritol phosphate and carotenoid biosynthesis pathways. As expected, CRISPRi-mediated repression of the carotenogenesis repressor gene crtR resulted in increased pigmentation and cellular content of the native carotenoid pigment decaprenoxanthin. CRISPRi screening identified 14 genes that affected decaprenoxanthin biosynthesis when repressed. Carotenoid biosynthesis was significantly decreased upon CRISPRi-mediated repression of 11 of these genes, while repression of 3 genes was beneficial for decaprenoxanthin production. Largely, but not in all cases, deletion of selected genes identified in the CRISPRi screen confirmed the pigmentation phenotypes obtained by CRISPRi. Notably, deletion of pgi as well as of gapA improved decaprenoxanthin levels 43-fold and 9-fold, respectively. The scope of the designed library to identify metabolic engineering targets, transfer of gene repression to stable gene deletion, and limitations of the approach were discussed.
Collapse
Affiliation(s)
| | | | | | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (V.L.G.); (I.S.); (K.B.); (P.P.-W.); (N.A.H.)
| | | |
Collapse
|
18
|
Ruan H, Yu H, Xu J. The glucose uptake systems in Corynebacterium glutamicum: a review. World J Microbiol Biotechnol 2020; 36:126. [PMID: 32712859 DOI: 10.1007/s11274-020-02898-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
The phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) is the major uptake system responsible for transporting glucose, and is involved in glucose translocation and phosphorylation in Corynebacterium glutamicum. For the longest time, the PTSGlc was considered as the only uptake system for glucose. However, some PTS-independent glucose uptake systems (non-PTSGlc) were discovered in recent years, such as the coupling system of inositol permeases and glucokinases (IPGS) and the coupling system of β-glucoside-PTS permease and glucokinases (GPGS). The products (e.g. lysine, phenylalanine and leucine) will be increased because of the increasing intracellular level of phosphoenolpyruvate (PEP), while some by-products (e.g. lactic acid, alanine and acetic acid) will be reduced when this system become the main uptake pathway for glucose. In this review, we survey the uptake systems for glucose in C. glutamicum and their composition. Furthermore, we summarize the latest research of the regulatory mechanisms among these glucose uptake systems. Detailed strategies to manipulate glucose uptake system are addressed based on this knowledge.
Collapse
Affiliation(s)
- Haozhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
19
|
Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. Microorganisms 2020; 8:microorganisms8060866. [PMID: 32521697 PMCID: PMC7356990 DOI: 10.3390/microorganisms8060866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
The N-functionalized amino acid N-methylanthranilate is an important precursor for bioactive compounds such as anticancer acridone alkaloids, the antinociceptive alkaloid O-isopropyl N-methylanthranilate, the flavor compound O-methyl-N-methylanthranilate, and as a building block for peptide-based drugs. Current chemical and biocatalytic synthetic routes to N-alkylated amino acids are often unprofitable and restricted to low yields or high costs through cofactor regeneration systems. Amino acid fermentation processes using the Gram-positive bacterium Corynebacterium glutamicum are operated industrially at the million tons per annum scale. Fermentative processes using C. glutamicum for N-alkylated amino acids based on an imine reductase have been developed, while N-alkylation of the aromatic amino acid anthranilate with S-adenosyl methionine as methyl-donor has not been described for this bacterium. After metabolic engineering for enhanced supply of anthranilate by channeling carbon flux into the shikimate pathway, preventing by-product formation and enhancing sugar uptake, heterologous expression of the gene anmt encoding anthranilate N-methyltransferase from Ruta graveolens resulted in production of N-methylanthranilate (NMA), which accumulated in the culture medium. Increased SAM regeneration by coexpression of the homologous adenosylhomocysteinase gene sahH improved N-methylanthranilate production. In a test bioreactor culture, the metabolically engineered C. glutamicum C1* strain produced NMA to a final titer of 0.5 g·L−1 with a volumetric productivity of 0.01 g·L−1·h−1 and a yield of 4.8 mg·g−1 glucose.
Collapse
|
20
|
Xu JZ, Ruan HZ, Yu HB, Liu LM, Zhang W. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar. Microb Cell Fact 2020; 19:39. [PMID: 32070345 PMCID: PMC7029506 DOI: 10.1186/s12934-020-1294-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of l-lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum. l-lysine production was further increased through replacement of phosphoenolpyruvate-dependent glucose and fructose uptake system (PTSGlc and PTSFru) by inositol permeases (IolT1 and IolT2) and ATP-dependent glucokinase (ATP-GlK). However, the shortage of intracellular ATP has a significantly negative impact on sugar consumption rate, cell growth and l-lysine production. To overcome this defect, the recombinant strain was modified to co-express bifunctional ADP-dependent glucokinase (ADP-GlK/PFK) and NADH dehydrogenase (NDH-2) as well as to inactivate SigmaH factor (SigH), thus reducing the consumption of ATP and increasing ATP regeneration. Combination of these genetic modifications resulted in an engineered C. glutamicum strain K-8 capable of producing 221.3 ± 17.6 g/L l-lysine with productivity of 5.53 g/L/h and carbon yield of 0.71 g/g glucose in fed-batch fermentation. As far as we know, this is the best efficiency of l-lysine production from mixed sugar. This is also the first report for improving the efficiency of l-lysine production by systematic modification of carbohydrate metabolism systems.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China.
| | - Hao-Zhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| | - Hai-Bo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| |
Collapse
|
21
|
Xu JZ, Yu HB, Han M, Liu LM, Zhang WG. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production. ACTA ACUST UNITED AC 2019; 46:937-949. [DOI: 10.1007/s10295-019-02170-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Abstract
Traditional amino acid producers typically exhibit the low glucose uptake rate and growth deficiency, resulting in a long fermentation time because of the accumulation of side mutations in breeding of strains. In this study, we demonstrate that the efficiency of l-lysine production in traditional l-lysine producer Corynebacterium glutamicum ZL-9 can be improved by rationally engineering glucose uptake systems. To do this, different bypasses for glucose uptake were investigated to reveal the best glucose uptake system for l-lysine production in traditional l-lysine producer. This study showed that overexpression of the key genes in PTSGlc or non-PTSGlc increased the glucose consumption, growth rate, and l-lysine production. However, increasing the function of PTSGlc in glucose uptake led to the increase of by-products, especially for plasmid-mediated expression system. Increasing the participation of non-PTSGlc in glucose utilization showed the best glucose uptake system for l-lysine production. The final strain ZL-92 with increasing the expression level of iolT1, iolT2 and ppgK could produce 201.6 ± 13.8 g/L of l-lysine with a productivity of 5.04 g/L/h and carbon yield of 0.65 g/(g glucose) in fed-batch culture. This is the first report of a rational modification of glucose uptake systems that improve the efficiency of l-lysine production through increasing the participation of non-PTSGlc in glucose utilization in traditional l-lysine producer. Similar strategies can be also used for producing other amino acids or their derivatives.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi People’s Republic of China
| | - Hai-Bo Yu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi People’s Republic of China
| | - Mei Han
- 0000 0004 0431 6539 grid.469163.f Shanghai Business School 2271 Zhongsha West-Road 200235 Shanghai People’s Republic of China
| | - Li-Ming Liu
- 0000 0001 0708 1323 grid.258151.a State Key Laboratory of Food Science and Technology, School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi People’s Republic of China
| | - Wei-Guo Zhang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi People’s Republic of China
| |
Collapse
|
22
|
Choi JW, Jeon EJ, Jeong KJ. Recent advances in engineering Corynebacterium glutamicum for utilization of hemicellulosic biomass. Curr Opin Biotechnol 2019; 57:17-24. [DOI: 10.1016/j.copbio.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
23
|
Brüsseler C, Späth A, Sokolowsky S, Marienhagen J. Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum. Metab Eng Commun 2019; 9:e00090. [PMID: 31016135 PMCID: PMC6475665 DOI: 10.1016/j.mec.2019.e00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Corynebacterium glutamicum can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic xylXABCD operon from Caulobacter crescentus is heterologously expressed. More recently, it could be demonstrated that the C. glutamicum wild type accumulates the Weimberg pathway intermediate d-xylonate when cultivated in the presence of d-xylose. Reason for this is the activity of the endogenous dehydrogenase IolG, which can also oxidize d-xylose. This raised the question whether additional endogenous enzymes in C. glutamicum contribute to the catabolization of d-xylose via the Weimberg pathway. In this study, analysis of the C. glutamicum genome in combination with systematic reduction of the heterologous xylXABCD operon revealed that the hitherto unknown and endogenous dehydrogenase KsaD (Cg0535) can also oxidize α-ketoglutarate semialdehyde to the tricarboxylic acid cycle intermediate α-ketoglutarate, the final enzymatic step of the Weimberg pathway. Furthermore, heterologous expression of either xylX or xylD, encoding for the two dehydratases of the Weimberg pathway in C. crescentus, is sufficient for enabling C. glutamicum to grow on d-xylose as sole carbon and energy source. Finally, several variants for the carbon-efficient microbial production of α-ketoglutarate from d-xylose were constructed. In comparison to cultivation solely on d-glucose, the best strain accumulated up to 1.5-fold more α-ketoglutarate in d-xylose/d-glucose mixtures. C. glutamicum requires only one additional dehydratase to grow on d-xylose. XylX or XylD can be used to establish the Weimberg pathway in C. glutamicum. cg0535 (ksaD) encodes for an α-ketoglutarate semialdehyde dehydrogenase. C. glutamicum accumulates α-ketoglutarate from d-xylose via the Weimberg pathway.
Collapse
Affiliation(s)
- Christian Brüsseler
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Anja Späth
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Sascha Sokolowsky
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| |
Collapse
|
24
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
25
|
Zhang J, Yang F, Yang Y, Jiang Y, Huo YX. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb Cell Fact 2019; 18:60. [PMID: 30909908 PMCID: PMC6432761 DOI: 10.1186/s12934-019-1109-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/19/2019] [Indexed: 11/10/2022] Open
Abstract
Background Corynebacterium glutamicum is an important industrial strain for the production of a diverse range of chemicals. Cpf1 nucleases are highly specific and programmable, with efficiencies comparable to those of Cas9. Although the Francisella novicida (Fn) CRISPR-Cpf1 system has been adapted for genome editing in C. glutamicum, the editing efficiency is currently less than 15%, due to false positives caused by the poor targeting efficiency of the crRNA. Results To address this limitation, a screening strategy was developed in this study to systematically evaluate crRNA targeting efficiency in C. glutamicum. We quantitatively examined various parameters of the C. glutamicum CRISPR-Cpf1 system, including the protospacer adjacent motif (PAM) sequence, the length of the spacer sequence, and the type of repair template. We found that the most efficient C. glutamicum crRNA contained a 5′-NYTV-3′ PAM and a 21 bp spacer sequence. Moreover, we observed that linear DNA could be used to repair double strand breaks. Conclusions Here, we identified optimized PAM-related parameters for the CRISPR-Cpf1 system in C. glutamicum. Our study sheds light on the function of the FnCpf1 endonuclease and Cpf1-based genome editing. This optimized system, with higher editing efficiency, could be used to increase the production of bulk chemicals, such as isobutyrate, in C. glutamicum. Electronic supplementary material The online version of this article (10.1186/s12934-019-1109-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Fayu Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yunpeng Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China.,UCLA Institute of Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China. .,UCLA Institute of Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
26
|
Chen Z, Liu G, Zhang J, Bao J. A preliminary study on l-lysine fermentation from lignocellulose feedstock and techno-economic evaluation. BIORESOURCE TECHNOLOGY 2019; 271:196-201. [PMID: 30268811 DOI: 10.1016/j.biortech.2018.09.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
l-Lysine is a commodity amino acid produced from starch feedstock. Various alternative feedstocks had been used for l-lysine production, but the yield was very low. This study took the first preliminary investigation on l-lysine production from lignocellulose for the replacement of food-crop starch. Corn stover was dry acid pretreated and biodetoxified, then used for enzymatic hydrolysis and l-lysine fermentation by an industrial Corynebacterium glutamicum strain. Various fermentation parameters, nutrient additions, and operation variables were applied and finally 33.8 g/L of l-lysine was obtained. This l-lysine titer is still below that of starch based fermentation, but already 3-5 folds greater than that of other alternative feedstocks based fermentation. A techno-economic analysis was conducted and the minimum selling price of l-lysine (hydrochloride form) was calculated to be $2.445 per kg. The cost reduction by the future improvement could fill the technical and economic gap between the cellulosic and starch based l-lysine production.
Collapse
Affiliation(s)
- Zeyu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
27
|
Goldbeck O, Eck AW, Seibold GM. Real Time Monitoring of NADPH Concentrations in Corynebacterium glutamicum and Escherichia coli via the Genetically Encoded Sensor mBFP. Front Microbiol 2018; 9:2564. [PMID: 30405597 PMCID: PMC6207642 DOI: 10.3389/fmicb.2018.02564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Analyses of intracellular NADPH concentrations are prerequisites for the design of microbial production strains and process optimization. mBFP was described as metagenomics derived, blue fluorescent protein showing NADPH-dependent fluorescence. Characterization of mBFP showed a high specificity for binding of NADPH (KD 0.64 mM) and no binding of NADH, the protein exclusively amplified fluorescence of NADPH. mBFP catalyzed the NADPH-dependent reduction of benzaldehyde and further aldehydes, which fits to its classification as short chain dehydrogenase. For in vivo NADPH analyses a codon-optimized gene for mBFP was introduced into Corynebacterium glutamicum WT and the phosphoglucoisomerase-deficient strain C. glutamicum Δpgi, which accumulates high levels of NADPH. For determination of intracellular NADPH concentrations by mBFP a calibration method with permeabilized cells was developed. By this means an increase of intracellular NADPH concentrations within seconds after the addition of glucose to nutrient-starved cells of both C. glutamicum WT and C. glutamicum Δpgi was observed; as expected the internal NADPH concentration was significantly higher for C. glutamicum Δpgi (0.31 mM) when compared to C. glutamicum WT (0.19 mM). Addition of paraquat to E. coli cells carrying mBFP led as expected to an immediate decrease of intracellular NADPH concentrations, showing the versatile use of mBFP as intracellular sensor.
Collapse
Affiliation(s)
- Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Alexander W Eck
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany.,Institute for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Sgobba E, Blöbaum L, Wendisch VF. Production of Food and Feed Additives From Non-food-competing Feedstocks: Valorizing N-acetylmuramic Acid for Amino Acid and Carotenoid Fermentation With Corynebacterium glutamicum. Front Microbiol 2018; 9:2046. [PMID: 30319554 PMCID: PMC6165865 DOI: 10.3389/fmicb.2018.02046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of food and feed amino acids such as L-glutamate and L-lysine and has been engineered for production of carotenoids such as lycopene. These fermentation processes are based on sugars present in molasses and starch hydrolysates. Due to competing uses of starch and sugars in human nutrition, this bacterium has been engineered for utilization of alternative feedstocks, for example, pentose sugars present in lignocellulosic and hexosamines such as glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc). This study describes strain engineering and fermentation using N-acetyl-D-muramic acid (MurNAc) as non-food-competing feedstock. To this end, the genes encoding the MurNAc-specific PTS subunits MurP and Crr and the etherase MurQ from Escherichia coli K-12 were expressed in C. glutamicumΔnanR. While MurP and MurQ were required to allow growth of C. glutamicumΔnanR with MurNAc, heterologous Crr was not, but it increased the growth rate in MurNAc minimal medium from 0.15 h-1 to 0.20 h-1. When in addition to murP-murQ-crr the GlcNAc-specific PTS gene nagE from C. glycinophilum was expressed in C. glutamicumΔnanR, the resulting strain could utilize blends of GlcNAc and MurNAc. Fermentative production of the amino acids L-glutamate and L-lysine, the carotenoid lycopene, and the L-lysine derived chemicals 1,5-diaminopentane and L-pipecolic acid either from MurNAc alone or from MurNAc-GlcNAc blends was shown. MurNAc and GlcNAc are the major components of the bacterial cell wall and bacterial biomass is an underutilized side product of large-scale bacterial production of organic acids, amino acids or enzymes. The proof-of-concept for valorization of MurNAc reached here has potential for biorefinery applications to convert non-food-competing feedstocks or side-streams to valuable products such as food and feed additives.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
29
|
Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl Microbiol Biotechnol 2018; 102:8685-8705. [DOI: 10.1007/s00253-018-9289-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
|
30
|
Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng 2018; 49:220-231. [PMID: 30048680 DOI: 10.1016/j.ymben.2018.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Methanol is a promising feedstock for bioproduction of fuels and chemicals, thus massive efforts have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. Herein, we rationally designed and experimentally engineered the industrial workhorse Corynebacterium glutamicum to serve as a methanol-dependent synthetic methylotroph. The cell growth of the methanol-dependent strain relies on co-utilization of methanol and xylose, and most notably methanol is an indispensable carbon source. Due to the methanol-dependent characteristic, adaptive laboratory evolution was successfully applied to improving methanol utilization. The evolved mutant showed a 20-fold increase in cell growth on methanol-xylose minimal medium and utilized methanol and xylose with a high mole ratio of 3.83:1. 13C-labeling experiments demonstrated that the carbon derived from methanol was assimilated into intracellular building blocks, high-energy carriers, cofactors, and biomass (up to 63% 13C-labeling). By inhibiting cell wall biosynthesis, methanol-dependent glutamate production was also achieved, demonstrating the potential application in bioconversion of methanol into useful chemicals. Genetic mutations detected in the evolved strains indicate the importance of intracellular NAD+/NADH ratio, substrate uptake, and methanol tolerance on methanol utilization. This study reports significant improvement in the area of developing fully synthetic methylotrophs.
Collapse
Affiliation(s)
- Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Science, University of Science and Technology of China, Hefei 230026, China
| | - Qiongqiong Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qinggang Li
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
31
|
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5901-5910. [DOI: 10.1007/s00253-018-9085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
32
|
Santos AS, Ramos RT, Silva A, Hirata R, Mattos-Guaraldi AL, Meyer R, Azevedo V, Felicori L, Pacheco LGC. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species. Funct Integr Genomics 2018; 18:593-610. [PMID: 29752561 DOI: 10.1007/s10142-018-0610-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.
Collapse
Affiliation(s)
- André S Santos
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Rommel T Ramos
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Raphael Hirata
- Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana L Mattos-Guaraldi
- Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Roberto Meyer
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Vasco Azevedo
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Felicori
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luis G C Pacheco
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| |
Collapse
|
33
|
Brüsseler C, Radek A, Tenhaef N, Krumbach K, Noack S, Marienhagen J. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2018; 249:953-961. [PMID: 29145122 DOI: 10.1016/j.biortech.2017.10.098] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 05/22/2023]
Abstract
Corynebacterium glutamicum has been engineered to utilize d-xylose as sole carbon and energy source. Recently, a C. glutamicum strain has been optimized for growth on defined medium containing d-xylose by laboratory evolution, but the mutation(s) attributing to the improved-growth phenotype could not be reliably identified. This study shows that loss of the transcriptional repressor IolR is responsible for the increased growth performance on defined d-xylose medium in one of the isolated mutants. Underlying reason is derepression of the gene for the glucose/myo-inositol permease IolT1 in the absence of IolR, which could be shown to also contribute to d-xylose uptake in C. glutamicum. IolR-regulation of iolT1 could be successfully repealed by rational engineering of an IolR-binding site in the iolT1-promoter. This minimally engineered C. glutamicum strain bearing only two nucleotide substitutions mimics the IolR loss-of-function phenotype and allows for a high growth rate on d-xylose-containing media (µmax = 0.24 ± 0.01 h-1).
Collapse
Affiliation(s)
- Christian Brüsseler
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Andreas Radek
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany.
| |
Collapse
|
34
|
Henke NA, Frohwitter J, Peters-Wendisch P, Wendisch VF. Carotenoid Production by Recombinant Corynebacterium glutamicum: Strain Construction, Cultivation, Extraction, and Quantification of Carotenoids and Terpenes. Methods Mol Biol 2018; 1852:127-141. [PMID: 30109629 DOI: 10.1007/978-1-4939-8742-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Corynebacterium glutamicum is a workhorse of industrial amino acid production employed for more than five decades for the million-ton-scale production of L-glutamate and L-lysine. This bacterium is pigmented due to the biosynthesis of the carotenoid decaprenoxanthin. Decaprenoxanthin is a carotenoid with 50 carbon atoms, and, thus, C. glutamicum belongs to the rare group of bacteria that produce long-chain C50 carotenoids. C50 carotenoids have been mainly isolated from extremely halophilic archaea (Kelly and Jensen, Acta Chem Scand 21:2578, 1967; Pfander, Pure Appl Chem 66:2369-2374, 1994) and from Gram-positive bacteria of the order Actinomycetales (Netzer et al., J Bacteriol 192:5688-5699, 2010). The characteristic yellow phenotype of C. glutamicum is due to the cyclic C50 carotenoid decaprenoxanthin and its glycosides. Decaprenoxanthin production has been improved by plasmid-borne overexpression of endogenous genes of carotenogenesis. Gene deletion resulted in the production of the C40 carotenoid lycopene, an intermediate of decaprenoxanthin biosynthesis. Heterologous gene expression was required to develop strains overproducing nonnative carotenoids and terpenes, such as astaxanthin (Henke et al., Mar Drugs 14:E124, 2016) and (+)-valencene (Frohwitter et al., J Biotechnol 191:205-213, 2014). Integration of additional copies of endogenous genes expressed from strong promoters improved isoprenoid biosynthesis. Here, we describe C. glutamicum strains, plasmids, and methods for overexpression of endogenous and heterologous genes, gene deletion, replacement, and genomic integration. Moreover, strain cultivation as well as extraction, identification, and quantitative determination of terpenes and carotenoids produced by C. glutamicum is detailed.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Jonas Frohwitter
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
35
|
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M. pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation. J Biotechnol 2017; 259:248-260. [DOI: 10.1016/j.jbiotec.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022]
|
36
|
Pérez-García F, Max Risse J, Friehs K, Wendisch VF. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600646] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Joe Max Risse
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
37
|
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University; Genetics of Prokaryotes, Faculty of Biology and CeBiTec; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
38
|
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M. Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum
under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities. Biotechnol Bioeng 2016; 114:560-575. [DOI: 10.1002/bit.26184] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Michael H. Limberg
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Julia Schulte
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Tita Aryani
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Regina Mahr
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Meike Baumgart
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Michael Bott
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences; IBG-1: Biotechnology; Wilhelm-Johnen-Straße 52425 Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
39
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
40
|
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiol 2016; 16:177. [PMID: 27492186 PMCID: PMC4974736 DOI: 10.1186/s12866-016-0795-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Gram-positive Corynebacterium glutamicum and other members of the suborder Corynebacterianeae, which includes mycobacteria, cell elongation and peptidoglycan biosynthesis is mainly due to polar growth. C. glutamicum lacks an uptake system for the peptidoglycan constituent N-acetylglucosamine (GlcNAc), but is able to catabolize GlcNAc-6-phosphate. Due to its importance in white biotechnology and in order to ensure more sustainable processes based on non-food renewables and to reduce feedstock costs, C. glutamicum strains have previously been engineered to produce amino acids from GlcNAc. GlcNAc also is a constituent of chitin, but it is unknown if C. glutamicum possesses chitinolytic enzymes. RESULTS Chitin was shown here not to be growth substrate for C. glutamicum. However, its genome encodes a putative N-acetylglucosaminidase. The nagA 2 gene product was active as β-N-acetylglucosaminidase with 0.27 mM 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside as substrate supporting half-maximal activity. NagA2 was secreted into the culture medium when overproduced with TAT and Sec dependent signal peptides, while it remained cytoplasmic when overproduced without signal peptide. Heterologous expression of exochitinase gene chiB from Serratia marcescens resulted in chitinolytic activity and ChiB secretion was enhanced when a signal peptide from C. glutamicum was used. Colloidal chitin did not support growth of a strain secreting exochitinase ChiB and β-N-acetylglucosaminidase NagA2. CONCLUSIONS C. glutamicum possesses β-N-acetylglucosaminidase. In the wild type, β-N-acetylglucosaminidase activity was too low to be detected. However, overproduction of the enzyme fused to TAT or Sec signal peptides led to secretion of active β-N-acetylglucosaminidase. The finding that concomitant secretion of endogenous NagA2 and exochitinase ChiB from S. marcescens did not entail growth with colloidal chitin as sole or combined carbon source, may indicate the requirement for higher or additional enzyme activities such as processive chitinase or endochitinase activities.
Collapse
Affiliation(s)
- Christian Matano
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.,Present Address: GSK Vaccines S.r.l., Siena, 53100, Italy
| | - Stephan Kolkenbrock
- Institute for Biology and Biotechnology of Plants, WWU Münster University, 48143, Münster, Germany.,Present address: altona Diagnostics GmbH, 22767, Hamburg, Germany
| | - Stefanie N Hamer
- Institute for Biology and Biotechnology of Plants, WWU Münster University, 48143, Münster, Germany
| | - Elvira Sgobba
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, WWU Münster University, 48143, Münster, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.
| |
Collapse
|
41
|
Christopher M, Anusree M, Mathew AK, Nampoothiri KM, Sukumaran RK, Pandey A. Detoxification of acidic biorefinery waste liquor for production of high value amino acid. BIORESOURCE TECHNOLOGY 2016; 213:270-275. [PMID: 26996259 DOI: 10.1016/j.biortech.2016.03.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 05/14/2023]
Abstract
The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production.
Collapse
Affiliation(s)
- Meera Christopher
- Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Murali Anusree
- Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Anil K Mathew
- Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India.
| | - K Madhavan Nampoothiri
- Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Rajeev Kumar Sukumaran
- Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Ashok Pandey
- Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| |
Collapse
|
42
|
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. J Bacteriol 2016; 198:2204-18. [PMID: 27274030 DOI: 10.1128/jb.00820-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Corynebacterium glutamicum metabolizes sialic acid (Neu5Ac) to fructose-6-phosphate (fructose-6P) via the consecutive activity of the sialic acid importer SiaEFGI, N-acetylneuraminic acid lyase (NanA), N-acetylmannosamine kinase (NanK), N-acetylmannosamine-6P epimerase (NanE), N-acetylglucosamine-6P deacetylase (NagA), and glucosamine-6P deaminase (NagB). Within the cluster of the three operons nagAB, nanAKE, and siaEFGI for Neu5Ac utilization a fourth operon is present, which comprises cg2936, encoding a GntR-type transcriptional regulator, here named NanR. Microarray studies and reporter gene assays showed that nagAB, nanAKE, siaEFGI, and nanR are repressed in wild-type (WT) C. glutamicum but highly induced in a ΔnanR C. glutamicum mutant. Purified NanR was found to specifically bind to the nucleotide motifs A[AC]G[CT][AC]TGATGTC[AT][TG]ATGT[AC]TA located within the nagA-nanA and nanR-sialA intergenic regions. Binding of NanR to promoter regions was abolished in the presence of the Neu5Ac metabolism intermediates GlcNAc-6P and N-acetylmannosamine-6-phosphate (ManNAc-6P). We observed consecutive utilization of glucose and Neu5Ac as well as fructose and Neu5Ac by WT C. glutamicum, whereas the deletion mutant C. glutamicum ΔnanR simultaneously consumed these sugars. Increased reporter gene activities for nagAB, nanAKE, and nanR were observed in cultivations of WT C. glutamicum with Neu5Ac as the sole substrate compared to cultivations when fructose was present. Taken together, our findings show that Neu5Ac metabolism in C. glutamicum is subject to catabolite repression, which involves control by the repressor NanR. IMPORTANCE Neu5Ac utilization is currently regarded as a common trait of both pathogenic and commensal bacteria. Interestingly, the nonpathogenic soil bacterium C. glutamicum efficiently utilizes Neu5Ac as a substrate for growth. Expression of genes for Neu5Ac utilization in C. glutamicum is here shown to depend on the transcriptional regulator NanR, which is the first GntR-type regulator of Neu5Ac metabolism not to use Neu5Ac as effector but relies instead on the inducers GlcNAc-6P and ManNAc-6P. The identification of conserved NanR-binding sites in intergenic regions within the operons for Neu5Ac utilization in pathogenic Corynebacterium species indicates that the mechanism for the control of Neu5Ac catabolism in C. glutamicum by NanR as described in this work is probably conserved within this genus.
Collapse
|
43
|
Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum. Mar Drugs 2016; 14:md14070124. [PMID: 27376307 PMCID: PMC4962014 DOI: 10.3390/md14070124] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum.
Collapse
|
44
|
Jorge JMP, Leggewie C, Wendisch VF. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 2016; 48:2519-2531. [PMID: 27289384 DOI: 10.1007/s00726-016-2272-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Gamma-aminobutyric acid (GABA), a non-protein amino acid widespread in nature, is a component of pharmaceuticals, foods, and the biodegradable plastic polyamide 4. Corynebacterium glutamicum shows great potential for the production of GABA from glucose. GABA added to the growth medium hardly affected growth of C. glutamicum, since a half-inhibitory concentration of 1.1 M GABA was determined. As alternative to GABA production by glutamate decarboxylation, a new route for the production of GABA via putrescine was established in C. glutamicum. A putrescine-producing recombinant C. glutamicum strain was converted into a GABA producing strain by heterologous expression of putrescine transaminase (PatA) and gamma-aminobutyraldehyde dehydrogenase (PatD) genes from Escherichia coli. The resultant strain produced 5.3 ± 0.1 g L-1 of GABA. GABA production was improved further by adjusting the concentration of nitrogen in the culture medium, by avoiding the formation of the by-product N-acetylputrescine and by deletion of the genes for GABA catabolism and GABA re-uptake. GABA accumulation by this strain was increased by 51 % to 8.0 ± 0.3 g L-1, and the volumetric productivity was increased to 0.31 g L-1 h-1; the highest volumetric productivity reported so far for fermentative production of GABA from glucose in shake flasks was achieved.
Collapse
Affiliation(s)
- João M P Jorge
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
45
|
Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 2016; 32:105. [DOI: 10.1007/s11274-016-2060-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/27/2016] [Indexed: 12/14/2022]
|
46
|
Yim SS, Choi JW, Lee SH, Jeong KJ. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass. ACS Synth Biol 2016; 5:334-43. [PMID: 26808593 DOI: 10.1021/acssynbio.5b00228] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hemicellulose, which is the second most abundant polysaccharide in nature after cellulose, has the potential to become a major feedstock for microbial fermentation to produce various biofuels and chemicals. To utilize hemicellulose economically, it is necessary to develop a consolidated bioprocess (CBP), in which all processes from biomass degradation to the production of target products occur in a single bioreactor. Here, we report a modularly engineered Corynebacterium glutamicum strain suitable for CBP using hemicellulosic biomass (xylan) as a feedstock. The hemicellulose-utilizing pathway was divided into three distinct modules, and each module was separately optimized. In the module for xylose utilization, the expression level of the xylose isomerase (xylA) and xylulokinase (xylB) genes was optimized with synthetic promoters of different strengths. Then, the module for xylose transport was engineered with combinatorial sets of synthetic promoters and heterologous transporters to achieve the fastest cell growth rate on xylose (0.372 h(-1)). Next, the module for the enzymatic degradation of xylan to xylose was also engineered with different combinations of promoters and signal peptides to efficiently secrete both endoxylanase and xylosidase into the extracellular medium. Finally, each optimized module was integrated into a single plasmid to construct a highly efficient xylan-utilizing pathway. Subsequently, the direct production of lysine from xylan was successfully demonstrated with the engineered pathway. To the best of our knowledge, this is the first report of the development of a consolidated bioprocessing C. glutamicum strain for hemicellulosic biomass.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Woong Choi
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se Hwa Lee
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, ‡Institute for the BioCentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
47
|
Lee J, Saddler JN, Um Y, Woo HM. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb Cell Fact 2016; 15:20. [PMID: 26801253 PMCID: PMC4722713 DOI: 10.1186/s12934-016-0420-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/29/2022] Open
Abstract
Background An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to β-glucosidases (bG) and cellobiose-specific PTS permease. Results We have engineered and evolved a cellobiose-negative and xylose-negative C. glutamicum that utilizes cellobiose as sole carbon and co-ferments cellobiose and xylose. NGS-genomic and DNA microarray-transcriptomic analysis revealed the multiple genetic mutations for the evolved cellobiose-utilizing strains. As a result, a consortium of mutated transporters and metabolic and auxiliary proteins was responsible for the efficient cellobiose uptake. Evolved and engineered strains expressing an intracellular bG showed a better rate of growth rate on cellobiose as sole carbon source than did other bG-secreting or bG-displaying C. glutamicum strains under aerobic culture. Our strain was also capable of co-fermenting cellobiose and xylose without a biphasic growth, although additional pentose transporter expression did not enhance the xylose uptake rate. We subsequently assessed the strains for simultaneous saccharification and fermentation of cellulosic substrates derived from Canadian Ponderosa Pine. Conclusions The combinatorial strategies of metabolic engineering and adaptive evolution enabled to construct C. glutamicum strains that were able to co-ferment cellobiose and xylose. This work could be useful in development of recombinant C. glutamicum strains for efficient lignocellulosic-biomass conversion to produce value-added chemicals and fuels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0420-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jungseok Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jack N Saddler
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea. .,Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Han Min Woo
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea. .,Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea. .,Green School (Graduate School of Energy and Environment), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
48
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation. Appl Environ Microbiol 2015; 81:7496-508. [PMID: 26276118 DOI: 10.1128/aem.02413-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023] Open
Abstract
Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions.
Collapse
|
50
|
Blombach B, Takors R. CO2 - Intrinsic Product, Essential Substrate, and Regulatory Trigger of Microbial and Mammalian Production Processes. Front Bioeng Biotechnol 2015; 3:108. [PMID: 26284242 PMCID: PMC4522908 DOI: 10.3389/fbioe.2015.00108] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/13/2015] [Indexed: 11/22/2022] Open
Abstract
Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence, CO2/HCO3− dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO2/HCO3− levels for refueling citric acid cycle demands and for enabling oxaloacetate-derived products. At the same time, CO2 is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO2/HCO3− depend on cellular activities and physical constraints such as hydrostatic pressures, aeration, and the efficiency of mixing in large-scale bioreactors. Besides, local CO2/HCO3− levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO2/HCO3− in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity, and transcriptional regulation.
Collapse
Affiliation(s)
- Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart , Stuttgart , Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|