1
|
Xiang C, Cen YK, Yi YL, Zhang LL, Xue YP, Zheng YG. Avermectins and Their Derivatives: Recent Advances in Biosynthesis and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1757-1774. [PMID: 39772536 DOI: 10.1021/acs.jafc.4c07024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Avermectins (AVMs) and their derivatives are the most effective and widely used nematicides, insecticides, and acaricides against endo- and ectoparasites of plants, animals, and humans. Demand for avermectins and their highly effective derivatives has increased due to their high cost-effectiveness and wide range of applications as medicines and crop protection products. Due to the unique structures of these compounds and for industrial production purposes, numerous efforts and strategies have been dedicated to enhancing the production of avermectins and creating new analogues in recent years. Here, we have systemically reviewed the recent studies on the biosynthesis and application of avermectins and their derivatives, including avermectin metabolism and its related bioregulation in Streptomyces avermitilis, approaches for enhancing the bioproduction of avermectins, the structure and toxicology of avermectin derivatives, and future prospects, with a focus on the recent advances in biosynthesis and significance of the superior avermectin derivatives.
Collapse
Affiliation(s)
- Chao Xiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ya-Ling Yi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lu-Lu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
2
|
Yu F, Shen Y, Chen S, Fan H, Pang Y, Liu M, Peng J, Pei X, Liu X. Analysis of the Genomic Sequences and Metabolites of Bacillus velezensis YA215. Biochem Genet 2024; 62:5073-5091. [PMID: 38386213 DOI: 10.1007/s10528-024-10710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.
Collapse
Affiliation(s)
- FuTian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YuanYuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - ShangLi Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - HeLiang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YiYang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - MingYuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - JingJing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoDong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoLing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
3
|
Zhang D, Jiang X, Liu S, Bai M, Lin X, Liu Y, Gao C, Gan Y. High-efficiency breeding of Bacillus siamensis with hyper macrolactins production using physical mutagenesis and a high-throughput culture system. J Biotechnol 2024; 395:71-79. [PMID: 39299520 DOI: 10.1016/j.jbiotec.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Macrolactins have attracted considerable attention due to their value and application in medicine and agriculture. However, poor yields severely hinder their broader application in these fields. This study aimed to improve macrolactins production in Bacillus siamensis using a combined atmospheric and room-temperature plasma mutagenesis and a microbial microdroplet culture system. After 25 days of treatment, a desirable strain with macrolactins production 3.0-fold higher than that of the parental strain was successfully selected. The addition of 30 mg/L ZnSO4 further increased macrolactins production to 503 ± 37.6 μg/mL, representing a 30.9 % improvement in production compared to controls. Based on transcriptome analysis, the synthesis pathways of amino acids, fengycin, and surfactin were found to be downregulated in IMD4036. Further fermentation experiments confirmed that inhibition of the comparative fengycin synthesis pathway was potentially driving the increased production of macrolactins. The strategies and possible mechanisms detailed in this study can provide insight into enhancing the production of other secondary metabolites toxic to the producer strains.
Collapse
Affiliation(s)
- Delin Zhang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Sini Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
4
|
Du G, Yang X, Wu Z, Pan M, Dong Z, Zhang Y, Xiang W, Li S. Influence of Cluster-Situated Regulator PteF in Filipin Biosynthetic Cluster on Avermectin Biosynthesis in Streptomyces avermitilis. BIOLOGY 2024; 13:344. [PMID: 38785828 PMCID: PMC11118972 DOI: 10.3390/biology13050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Crosstalk regulation is widespread in Streptomyces species. Elucidating the influence of a specific regulator on target biosynthetic gene clusters (BGCs) and cell metabolism is crucial for strain improvement through regulatory protein engineering. PteF and PteR are two regulators that control the biosynthesis of filipin, which competes for building blocks with avermectins in Streptomyces avermitilis. However, little is known about the effects of PteF and PteR on avermectin biosynthesis. In this study, we investigated their impact on avermectin biosynthesis and global cell metabolism. The deletion of pteF resulted in a 55.49% avermectin titer improvement, which was 23.08% higher than that observed from pteR deletion, suggesting that PteF plays a more significant role in regulating avermectin biosynthesis, while PteF hardly influences the transcription level of genes in avermectin and other polyketide BGCs. Transcriptome data revealed that PteF exhibited a global regulatory effect. Avermectin production enhancement could be attributed to the repression of the tricarboxylic acid cycle and fatty acid biosynthetic pathway, as well as the enhancement of pathways supplying acyl-CoA precursors. These findings provide new insights into the role of PteF on avermectin biosynthesis and cell metabolism, offering important clues for designing and building efficient metabolic pathways to develop high-yield avermectin-producing strains.
Collapse
Affiliation(s)
- Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Xue Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Zhengxiong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Minghui Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Zhuoxu Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| |
Collapse
|
5
|
Stegmüller J, Rodríguez Estévez M, Shu W, Gläser L, Myronovskyi M, Rückert-Reed C, Kalinowski J, Luzhetskyy A, Wittmann C. Systems metabolic engineering of the primary and secondary metabolism of Streptomyces albidoflavus enhances production of the reverse antibiotic nybomycin against multi-resistant Staphylococcus aureus. Metab Eng 2024; 81:123-143. [PMID: 38072358 DOI: 10.1016/j.ymben.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 μg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.
Collapse
Affiliation(s)
- Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Dai P, Qin Y, Li L, Li H, Lv L, Xu D, Song Y, Huang T, Lin S, Deng Z, Tao M. Enhancing tylosin production by combinatorial overexpression of efflux, SAM biosynthesis, and regulatory genes in hyperproducing Streptomyces xinghaiensis strain. Synth Syst Biotechnol 2023; 8:486-497. [PMID: 37519989 PMCID: PMC10372049 DOI: 10.1016/j.synbio.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Tylosin is a 16-membered macrolide antibiotic widely used in veterinary medicine to control infections caused by Gram-positive pathogens and mycoplasmas. To improve the fermentation titer of tylosin in the hyperproducing Streptomyces xinghaiensis strain TL01, we sequenced its whole genome and identified the biosynthetic gene cluster therein. Overexpression of the tylosin efflux gene tlrC, the cluster-situated S-adenosyl methionine (SAM) synthetase gene metKcs, the SAM biosynthetic genes adoKcs-metFcs, or the pathway-specific activator gene tylR enhanced tylosin production by 18%, 12%, 11%, and 11% in the respective engineered strains TLPH08-2, TLPH09, TLPH10, and TLPH12. Co-overexpression of metKcs and adoKcs-metFcs as two transcripts increased tylosin production by 22% in the resultant strain TLPH11 compared to that in TL01. Furthermore, combinational overexpression of tlrC, metKcs, adoKcs-metFcs, and tylR as four transcripts increased tylosin production by 23% (10.93g/L) in the resultant strain TLPH17 compared to that in TL01. However, a negligible additive effect was displayed upon combinational overexpression in TLPH17 as suggested by the limited increment of fermentation titer compared to that in TLPH08-2. Transcription analyses indicated that the expression of tlrC and three SAM biosynthetic genes in TLPH17 was considerably lower than that of TLPH08-2 and TLPH11. Based on this observation, the five genes were rearranged into one or two operons to coordinate their overexpression, yielding two engineered strains TLPH23 and TLPH24, and leading to further enhancement of tylosin production over TLPH17. In particular, the production of TLPH23 reached 11.35 g/L. These findings indicated that the combinatorial strategy is a promising approach for enhancing tylosin production in high-yielding industrial strains.
Collapse
Affiliation(s)
- Penghui Dai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuyao Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyuan Li
- Zhejiang Apeloa Biotechnology Co., Ltd., Jinhua, 322109, China
| | - Haidi Li
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Lihuo Lv
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Danying Xu
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Yuqing Song
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
7
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
8
|
Yi JS, Kim JM, Ban YH, Yoon YJ. Modular polyketide synthase-derived insecticidal agents: from biosynthesis and metabolic engineering to combinatorial biosynthesis for their production. Nat Prod Rep 2023; 40:972-987. [PMID: 36691749 DOI: 10.1039/d2np00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.
Collapse
Affiliation(s)
- Jeong Sang Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Min Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yeon Hee Ban
- College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Zhao S, Lin C, Cheng M, Zhang K, Wang Z, Zhao T, Yang Q. New insight into the production improvement and resource generation of chaetoglobosin A in Chaetomium globosum. Microb Biotechnol 2022; 15:2562-2577. [PMID: 35930651 PMCID: PMC9518988 DOI: 10.1111/1751-7915.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Chaetoglobosin A is a complex macrocyclic alkaloid with potent antimycotic, antiparasitic and antitumor properties. However, the low output and high cost of chaetoglobosin A biosynthesis have hampered the application and commercialization of chaetoglobosin A in agriculture and biomedicine. Here, the CgMfs1 gene, which encodes the major facilitator superfamily secondary transporter, was identified based on bioinformatics analysis, and an intensive study of its effects on chaetoglobosin A biosynthesis and secretion was performed using CgMfs1‐silencing and CgMfs1‐overexpression strategies. Inactivation of CgMfs1 caused a notable decrease in chaetoglobosin A yield from 58.66 mg/L to 19.95 mg/L (MFS1–3) and 17.13 mg/L (MFS1–4). The use of an efficient expression plasmid in Chaetomium globosum W7 to generate the overexpression mutant OEX13 resulted in the highest chaetoglobosin A increase to 298.77 mg/L. Interestingly, the transcription level of the polyketide synthase gene significantly fluctuated with the change in CgMfs1, confirming that the predicted efflux gene CgMfs1 could play a crucial role in chaetoglobosin A transportation. Effective efflux of chaetoglobosin A could possibly alleviate feedback inhibition, resulting in notable increase in the expression of the polyketide synthase gene. Furthermore, we utilized cornstalk as the fermentation substrate to produce chaetoglobosin A, and scanning electron microscopy and Fourier transform‐infrared spectroscopy revealed that the strain OEX13 could well degrade cornstalk, presenting significant increases in the chaetoglobosin A yield, when compared with that produced by the wild‐type strain (from 40.32 to 191.90 mg/L). Thus, this research provides a novel analogous engineering strategy for the construction of high‐yielding strain and offers new insight into large‐scale chaetoglobosin A production.
Collapse
Affiliation(s)
- Shanshan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Congyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ming Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhengran Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
10
|
Gan Y, Bai M, Lin X, Liu K, Huang B, Jiang X, Liu Y, Gao C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb Cell Fact 2022; 21:147. [PMID: 35854349 PMCID: PMC9294813 DOI: 10.1186/s12934-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. RESULTS Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisDD41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisDD41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. CONCLUSIONS In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.
Collapse
Affiliation(s)
- Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| |
Collapse
|
11
|
Comparative Transcriptome-Based Mining of Genes Involved in the Export of Polyether Antibiotics for Titer Improvement. Antibiotics (Basel) 2022; 11:antibiotics11050600. [PMID: 35625244 PMCID: PMC9138065 DOI: 10.3390/antibiotics11050600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The anti-coccidiosis agent salinomycin is a polyether antibiotic produced by Streptomyces albus BK3-25 with a remarkable titer of 18 g/L at flask scale, suggesting a highly efficient export system. It is worth identifying the involved exporter genes for further titer improvement. In this study, a titer gradient was achieved by varying soybean oil concentrations in a fermentation medium, and the corresponding transcriptomes were studied. Comparative transcriptomic analysis identified eight putative transporter genes, whose transcription increased when the oil content was increased and ranked top among up-regulated genes at higher oil concentrations. All eight genes were proved to be positively involved in salinomycin export through gene deletion and trans-complementation in the mutants, and they showed constitutive expression in the early growth stage, whose overexpression in BK3-25 led to a 7.20–69.75% titer increase in salinomycin. Furthermore, the heterologous expression of SLNHY_0929 or SLNHY_1893 rendered the host Streptomyces lividans with improved resistance to salinomycin. Interestingly, SLNHY_0929 was found to be a polyether-specific transporter because the titers of monensin, lasalocid, and nigericin were also increased by 124.6%, 60.4%, and 77.5%, respectively, through its overexpression in the corresponding producing strains. In conclusion, a transcriptome-based strategy was developed to mine genes involved in salinomycin export, which may pave the way for further salinomycin titer improvement and the identification of transporter genes involved in the biosynthesis of other antibiotics.
Collapse
|
12
|
Chu L, Li S, Dong Z, Zhang Y, Jin P, Ye L, Wang X, Xiang W. Mining and engineering exporters for titer improvement of macrolide biopesticides in Streptomyces. Microb Biotechnol 2022; 15:1120-1132. [PMID: 34437755 PMCID: PMC8966021 DOI: 10.1111/1751-7915.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
Exporter engineering is a promising strategy to construct high-yield Streptomyces for natural product pharmaceuticals in industrial biotechnology. However, available exporters are scarce, due to the limited knowledge of bacterial transporters. Here, we built a workflow for exporter mining and devised a tunable plug-and-play exporter (TuPPE) module to improve the production of macrolide biopesticides in Streptomyces. Combining genome analyses and experimental confirmations, we found three ATP-binding cassette transporters that contribute to milbemycin production in Streptomyces bingchenggensis. We then optimized the expression level of target exporters for milbemycin titer optimization by designing a TuPPE module with replaceable promoters and ribosome binding sites. Finally, broader applications of the TuPPE module were implemented in industrial S. bingchenggensis BC04, Streptomyces avermitilis NEAU12 and Streptomyces cyaneogriseus NMWT1, which led to optimal titer improvement of milbemycin A3/A4, avermectin B1a and nemadectin α by 24.2%, 53.0% and 41.0%, respectively. Our work provides useful exporters and a convenient TuPPE module for titer improvement of macrolide biopesticides in Streptomyces. More importantly, the feasible exporter mining workflow developed here might shed light on widespread applications of exporter engineering in Streptomyces to boost the production of other secondary metabolites.
Collapse
Affiliation(s)
- Liyang Chu
- School of Life ScienceNortheast Agricultural UniversityNo. 59 Mucai Street, Xiangfang DistrictHarbin150030China
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhuoxu Dong
- School of Life ScienceNortheast Agricultural UniversityNo. 59 Mucai Street, Xiangfang DistrictHarbin150030China
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Pinjiao Jin
- School of Life ScienceNortheast Agricultural UniversityNo. 59 Mucai Street, Xiangfang DistrictHarbin150030China
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Lan Ye
- School of Life ScienceNortheast Agricultural UniversityNo. 59 Mucai Street, Xiangfang DistrictHarbin150030China
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xiangjing Wang
- School of Life ScienceNortheast Agricultural UniversityNo. 59 Mucai Street, Xiangfang DistrictHarbin150030China
| | - Wensheng Xiang
- School of Life ScienceNortheast Agricultural UniversityNo. 59 Mucai Street, Xiangfang DistrictHarbin150030China
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
13
|
Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol Adv 2022; 55:107912. [PMID: 35041862 DOI: 10.1016/j.biotechadv.2022.107912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
Abstract
Microbial cell surface layers, which mainly include the cell membrane, cell wall, periplasmic space, outer membrane, capsules, S-layers, pili, and flagella, control material exchange between the cell and the extracellular environment, and have great impact on production titers and yields of various bio-products synthesized by microbes. Recent research work has made exciting achievements in metabolic engineering using microbial cell surface components as novel regulation targets without direct modifications of the metabolic pathways of the desired products. This review article will summarize the accomplishments obtained in this emerging field, and will describe various engineering strategies that have been adopted in bacteria and yeasts for the enhancement of mass transfer across the cell surface, improvement of protein expression and folding, modulation of cell size and shape, and re-direction of cellular resources, all of which contribute to the construction of more efficient microbial cell factories toward the synthesis of a variety of bio-products. The existing problems and possible future directions will also be discussed.
Collapse
|
14
|
Seong J, Shin J, Kim K, Cho BK. Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
de Siqueira KA, Liotti RG, de Sousa JR, Vendruscullo SJ, de Souza GB, de Vasconcelos LG, Januário AH, de Oliveira Mendes TA, Soares MA. Streptomyces griseocarneus R132 expresses antimicrobial genes and produces metabolites that modulate Galleria mellonella immune system. 3 Biotech 2021; 11:396. [PMID: 34422537 DOI: 10.1007/s13205-021-02942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
Actinobacteria is a phylum composed of aerobic, Gram-positive, and filamentous bacteria with a broad spectrum of biological activity, including antioxidant, antitumor, and antibiotic. The crude extract of Streptomyces griseocarneus R132 was fractionated on a C18 silica column and the isolated compound was identified by 1H and 13C nuclear magnetic resonance as 3-(phenylprop-2-enoic acid), also known as trans-cinnamic acid. Antimicrobial activity against human pathogens was assayed in vitro (disk-diffusion qualitative test) and in vivo using Galleria mellonella larvae (RT-qPCR). The methanol fractions 132-F30%, 132-F50%, 132-F70%, and 132-F100% inhibited the Escherichia coli (ATCC 25922) and Staphylococcus aureus (MRSA) growth in vitro the most effectively. Compared with the untreated control (60-80% of larvae death), the fractions and isolated trans-cinnamic acid increased the survival rate and modulated the immune system of G. mellonella larvae infected with pathogenic microorganisms. The anti-infection effect of the S. griseocarneus R132 fermentation product led us to sequence its genome, which was assembled and annotated using the Rast and antiSMASH platforms. The assembled genome consisted of 227 scaffolds represented on a linear chromosome of 8.85 Mb and 71.3% of GC. We detected conserved domains typical of enzymes that produce molecules with biological activity, such as polyketides and non-ribosomal and ribosomal peptides, indicating a great potential for obtaining new antibiotics and molecules with biotechnological application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02942-1.
Collapse
|
16
|
Kaze M, Brooks L, Sistrom M. Antimicrobial resistance in Bacillus-based biopesticide products. MICROBIOLOGY-SGM 2021; 167. [PMID: 34351257 DOI: 10.1099/mic.0.001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crisis of antimicrobial resistant bacterial infections is one of the most pressing public health issues. Common agricultural practices have been implicated in the generation of antimicrobial resistant bacteria. Biopesticides, live bacteria used for pest control, are non-pathogenic and considered safe for consumption. Application of bacteria-based pesticides to crops in high concentrations raises the possibility of unintentional contributions to the movement and generation of antimicrobial resistance genes in the environment. However, the presence of clinically relevant antimicrobial resistance genes and their resistance phenotypes are currently unknown. Here we use a combination of multiple bioinformatic and microbiological techniques to define resistomes of widely used biopesticides and determine how the presence of suspected antimicrobial resistance genes translates to observable resistance phenotypes in several biopesticide products. Our results demonstrate that biopesticide products are reservoirs of clinically relevant antimicrobial resistance genes and bear resistance to multiple drug classes.
Collapse
Affiliation(s)
- Mo Kaze
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| | - Lauren Brooks
- Department of Biology, Utah Valley University, Orem, USA
| | - Mark Sistrom
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| |
Collapse
|
17
|
Li S, Yang B, Tan GY, Ouyang LM, Qiu S, Wang W, Xiang W, Zhang L. Polyketide pesticides from actinomycetes. Curr Opin Biotechnol 2021; 69:299-307. [PMID: 34102376 DOI: 10.1016/j.copbio.2021.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Natural product derived pesticides have increased in popularity worldwide because of their high efficacy, eco-friendly nature and favorable safety profile. The development of polyketide pesticides from actinomycetes reflects this increase in popularity in the past decades. These pesticides, which include avermectins, spinosyns, polynactins, tetramycin and their analogues, have been successfully applied in crop protection. Moreover, the advance of biotechnology has led to continuous improvement in the discovery and production processes. In this review, we summarize these polyketide pesticides, their activities and provide insight into their development. We also discuss engineering strategies and the current status of industrial production for these pesticides. Given that actinomycetes are known to produce a wide range of bioactive secondary metabolites, the description of pesticide development and high yield strain improvement presented herein will facilitate further development of these valuable polyketide pesticides from actinomycetes.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiwen Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Breitling R, Avbelj M, Bilyk O, Carratore F, Filisetti A, Hanko EKR, Iorio M, Redondo RP, Reyes F, Rudden M, Severi E, Slemc L, Schmidt K, Whittall DR, Donadio S, García AR, Genilloud O, Kosec G, De Lucrezia D, Petković H, Thomas G, Takano E. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368:6289918. [PMID: 34057181 PMCID: PMC8195692 DOI: 10.1093/femsle/fnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Oksana Bilyk
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Erik K R Hanko
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Lucija Slemc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Kamila Schmidt
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Dominic R Whittall
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Davide De Lucrezia
- Explora Biotech Srl, Doulix business unit, Via Torino 107, 30133 Venice, Italy
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gavin Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Eriko Takano
- Corresponding author: Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| |
Collapse
|
19
|
Xue H, Sun W, Wang Y, Li C. Refining Metabolic Mass Transfer for Efficient Biosynthesis of Plant Natural Products in Yeast. Front Bioeng Biotechnol 2021; 9:633741. [PMID: 33748083 PMCID: PMC7973218 DOI: 10.3389/fbioe.2021.633741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Plant natural products are important secondary metabolites with several special properties and pharmacological activities, which are widely used in pharmaceutical, food, perfume, cosmetic, and other fields. However, the production of these compounds mainly relies on phytoextraction from natural plants. Because of the low contents in plants, phytoextraction has disadvantages of low production efficiency and severe environmental and ecological problems, restricting its wide applications. Therefore, microbial cell factory, especially yeast cell factory, has become an alternative technology platform for heterologous synthesis of plant natural products. Many approaches and strategies have been developed to construct and engineer the yeast cells for efficient production of plant natural products. Meanwhile, metabolic mass transfer has been proven an important factor to improve the heterologous production. Mass transfer across plasma membrane (trans-plasma membrane mass transfer) and mass transfer within the cell (intracellular mass transfer) are two major forms of metabolic mass transfer in yeast, which can be modified and optimized to improve the production efficiency, reduce the consumption of intermediate, and eliminate the feedback inhibition. This review summarized different strategies of refining metabolic mass transfer process to enhance the production efficiency of yeast cell factory (Figure 1), providing approaches for further study on the synthesis of plant natural products in microbial cell factory.
Collapse
Affiliation(s)
- Haijie Xue
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. Corrigendum: The Application of Regulatory Cascades in Streptomyces: Yield Enhancement and Metabolite Mining. Front Microbiol 2021; 11:614274. [PMID: 33613466 PMCID: PMC7888258 DOI: 10.3389/fmicb.2020.614274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xuming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2021; 105:695-706. [PMID: 33394151 DOI: 10.1007/s00253-020-11044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.
Collapse
Affiliation(s)
- Xinran Wang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Luan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Gummerlich N, Rebets Y, Paulus C, Zapp J, Luzhetskyy A. Targeted Genome Mining-From Compound Discovery to Biosynthetic Pathway Elucidation. Microorganisms 2020; 8:microorganisms8122034. [PMID: 33352664 PMCID: PMC7765855 DOI: 10.3390/microorganisms8122034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Natural products are an important source of novel investigational compounds in drug discovery. Especially in the field of antibiotics, Actinobacteria have been proven to be a reliable source for lead structures. The discovery of these natural products with activity- and structure-guided screenings has been impeded by the constant rediscovery of previously identified compounds. Additionally, a large discrepancy between produced natural products and biosynthetic potential in Actinobacteria, including representatives of the order Pseudonocardiales, has been revealed using genome sequencing. To turn this genomic potential into novel natural products, we used an approach including the in-silico pre-selection of unique biosynthetic gene clusters followed by their systematic heterologous expression. As a proof of concept, fifteen Saccharothrixespanaensis genomic library clones covering predicted biosynthetic gene clusters were chosen for expression in two heterologous hosts, Streptomyceslividans and Streptomycesalbus. As a result, two novel natural products, an unusual angucyclinone pentangumycin and a new type II polyketide synthase shunt product SEK90, were identified. After purification and structure elucidation, the biosynthetic pathways leading to the formation of pentangumycin and SEK90 were deduced using mutational analysis of the biosynthetic gene cluster and feeding experiments with 13C-labelled precursors.
Collapse
Affiliation(s)
- Nils Gummerlich
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
| | - Yuriy Rebets
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
| | - Constanze Paulus
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany;
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
- Actinobacteria Metabolic Engineering Group, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-302-70200
| |
Collapse
|
23
|
Liao Z, Song Z, Xu J, Ma Z, Bechthold A, Yu X. Identification of a gene from Streptomyces rimosus M527 negatively affecting rimocidin biosynthesis and morphological differentiation. Appl Microbiol Biotechnol 2020; 104:10191-10202. [PMID: 33057790 DOI: 10.1007/s00253-020-10955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, was found to be highly effective against a broad range of fungal plant pathogens. Current understanding of the regulatory mechanism of rimocidin biosynthesis and morphological differentiation in S. rimosus M527 is limited. NsdA is considered a negative regulator involved in morphological differentiation and biosynthesis of secondary metabolites in some Streptomyces species. In this study, nsdAsr was cloned from S. rimosus M527. The role of nsdAsr in rimocidin biosynthesis and morphological differentiation was investigated by gene deletion, complementation, and over-expression. A ΔnsdAsr mutant was obtained using CRISPR/Cas9. The mutant produced more rimocidin (46%) and accelerated morphological differentiation than the wild-type strain. Over-expression of nsdAsr led to a decrease in rimocidin production and impairment of morphological differentiation. Quantitative RT-PCR analysis revealed that transcription of rim genes responsible for rimocidin biosynthesis was upregulated in the ΔnsdAsr mutant but downregulated in the nsdAsr over-expression strain. Similar effects have been described for Streptomyces coelicolor M145 and the industrial toyocamycin-producing strain Streptomyces diastatochromogenes 1628. KEY POINTS: • A negative regulator for sporulation and rimocidin production was identified. • The CRISPR/Cas9 system was used for gene deletion in S. rimosus M527.
Collapse
Affiliation(s)
- Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zhangqing Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
24
|
Xie X, Zhu JW, Liu Y, Jiang H. Application of Genetic Engineering Approaches to Improve Bacterial Metabolite Production. Curr Protein Pept Sci 2020; 21:488-496. [DOI: 10.2174/1389203721666191223145827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/28/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023]
Abstract
Genetic engineering is a powerful method to improve the fermentation yield of bacterial
metabolites. Since many biosynthetic mechanisms of bacterial metabolites have been unveiled, genetic
engineering approaches have been applied to various issues of biosynthetic pathways, such as transcription,
translation, post-translational modification, enzymes, transporters, etc. In this article, natamycin,
avermectins, gentamicins, piperidamycins, and β-valienamine have been chosen as examples
to review recent progress in improving their production by genetic engineering approaches. In these
cases, not only yields of target products have been increased, but also yields of by-products have been
decreased, and new products have been created.
Collapse
Affiliation(s)
- Xin Xie
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Wei Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
25
|
Cai D, Zhang B, Zhu J, Xu H, Liu P, Wang Z, Li J, Yang Z, Ma X, Chen S. Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus licheniformis. Front Bioeng Biotechnol 2020; 8:305. [PMID: 32318565 PMCID: PMC7155746 DOI: 10.3389/fbioe.2020.00305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Bacitracin is a broad-spectrum veterinary antibiotic that widely used in the fields of veterinary drug and feed additive. S-Adenosylmethionine (SAM) is a critical factor involved in many biochemical reactions, especially antibiotic production. However, whether SAM affects bacitracin synthesis is still unknown. Here, we want to analyze the relationship between SAM supply and bacitracin synthesis, and then metabolic engineering of SAM synthetic pathway for bacitracin production in Bacillus licheniformis. Firstly, our results implied that SAM exogenous addition benefited bacitracin production, which yield was increased by 12.13% under the condition of 40 mg/L SAM addition. Then, SAM synthetases and Methionine (Met) synthetases from B. licheniformis, Corynebacterium glutamicum, and Saccharomyces cerevisiae were screened and overexpressed to improve SAM accumulation, and the combination of SAM synthetase from S. cerevisiae and Met synthetase from B. licheniformis showed the best performance, and 70.12% increase of intracellular SAM concentration (31.54 mg/L) and 13.08% increase of bacitraicn yield (839.54 U/mL) were achieved in resultant strain DW2-KE. Furthermore, Met transporters MetN and MetP were, respectively, identified as Met exporter and importer, and bacitracin yield was further increased by 5.94% to 889.42 U/mL via deleting metN and overexpressing metP in DW2-KE, attaining strain DW2-KENP. Finally, SAM nucleosidase gene mtnN and SAM decarboxylase gene speD were deleted to block SAM degradation pathways, and bacitracin yield of resultant strain DW2-KENPND reached 957.53 U/mL, increased by 28.97% compared to DW2. Collectively, this study demonstrated that SAM supply served as the critical role in bacitracin synthesis, and a promising strain B. licheniformis DW2-KENPND was attained for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Pei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping, China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
26
|
Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. The Application of Regulatory Cascades in Streptomyces: Yield Enhancement and Metabolite Mining. Front Microbiol 2020; 11:406. [PMID: 32265866 PMCID: PMC7105598 DOI: 10.3389/fmicb.2020.00406] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Streptomyces is taken as an important resource for producing the most abundant antibiotics and other bio-active natural products, which have been widely used in pharmaceutical and agricultural areas. Usually they are biosynthesized through secondary metabolic pathways encoded by cluster situated genes. And these gene clusters are stringently regulated by interweaved transcriptional regulatory cascades. In the past decades, great advances have been made to elucidate the regulatory mechanisms involved in antibiotic production in Streptomyces. In this review, we summarized the recent advances on the regulatory cascades of antibiotic production in Streptomyces from the following four levels: the signals triggering the biosynthesis, the global regulators, the pathway-specific regulators and the feedback regulation. The production of antibiotic can be largely enhanced by rewiring the regulatory networks, such as overexpression of positive regulators, inactivation of repressors, fine-tuning of the feedback and ribosomal engineering in Streptomyces. The enormous amount of genomic sequencing data implies that the Streptomyces has potential to produce much more antibiotics for the great diversities and wide distributions of biosynthetic gene clusters in Streptomyces genomes. Most of these gene clusters are defined cryptic for unknown or undetectable natural products. In the synthetic biology era, activation of the cryptic gene clusters has been successfully achieved by manipulation of the regulatory genes. Chemical elicitors, rewiring regulatory gene and ribosomal engineering have been employed to crack the potential of cryptic gene clusters. These have been proposed as the most promising strategy to discover new antibiotics. For the complex of regulatory network in Streptomyces, we proposed that the discovery of new antibiotics and the optimization of industrial strains would be greatly promoted by further understanding the regulatory mechanism of antibiotic production.
Collapse
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xuming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Zhang B, Zhou YT, Jiang SX, Zhang YH, Huang K, Liu ZQ, Zheng YG. Amphotericin B biosynthesis in Streptomyces nodosus: quantitative analysis of metabolism via LC-MS/MS based metabolomics for rational design. Microb Cell Fact 2020; 19:18. [PMID: 32005241 PMCID: PMC6995120 DOI: 10.1186/s12934-020-1290-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/21/2020] [Indexed: 01/19/2023] Open
Abstract
Background Amphotericin B (AmB) is widely used against fungal infection and produced mainly by Streptomyces nodosus. Various intracellular metabolites of S. nodosus were identified during AmB fermentation, and the key compounds that related to the cell growth and biosynthesis of AmB were analyzed by principal component analysis (PCA) and partial least squares (PLS). Results Rational design that based on the results of metabolomics was employed to improve the AmB productivity of Streptomyces nodosus, including the overexpression of genes involved in oxygen-taking, precursor-acquiring and product-exporting. The AmB yield of modified strain S. nodosus VMR4A was 6.58 g/L, which was increased significantly in comparison with that of strain S. nodosus ZJB2016050 (5.16 g/L). This was the highest yield of AmB reported so far, and meanwhile, the amount of by-product amphotericin A (AmA) was decreased by 45%. Moreover, the fermentation time of strain S. nodosus VMR4A was shortened by 24 h compared with that of strain. The results indicated that strain S. nodosus VMR4A was an excellent candidate for the industrial production of AmB because of its high production yield, low by-product content and the fast cell growth. Conclusions This study would lay the foundation for improving the AmB productivity through metabolomics analysis and overexpression of key enzymes.![]()
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Teng Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Sheng-Xian Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Han Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kai Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Bio-purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
28
|
The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46. Appl Microbiol Biotechnol 2020; 104:2603-2610. [DOI: 10.1007/s00253-020-10414-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
|
29
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Chen X, Ma D, Liu J, Luo Q, Liu L. Engineering the transmission efficiency of the noncyclic glyoxylate pathway for fumarate production in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:132. [PMID: 32760446 PMCID: PMC7379832 DOI: 10.1186/s13068-020-01771-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Fumarate is a multifunctional dicarboxylic acid in the tricarboxylic acid cycle, but microbial engineering for fumarate production is limited by the transmission efficiency of its biosynthetic pathway. RESULTS Here, pathway engineering was used to construct the noncyclic glyoxylate pathway for fumarate production. To improve the transmission efficiency of intermediate metabolites, pathway optimization was conducted by fluctuating gene expression levels to identify potential bottlenecks and then remove them, resulting in a large increase in fumarate production from 8.7 to 16.2 g/L. To further enhance its transmission efficiency of targeted metabolites, transporter engineering was used by screening the C4-dicarboxylate transporters and then strengthening the capacity of fumarate export, leading to fumarate production up to 18.9 g/L. Finally, the engineered strain E. coli W3110△4-P(H)CAI(H)SC produced 22.4 g/L fumarate in a 5-L fed-batch bioreactor. CONCLUSIONS In this study, we offered rational metabolic engineering and flux optimization strategies for efficient production of fumarate. These strategies have great potential in developing efficient microbial cell factories for production of high-value added chemicals.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| | - Danlei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Wuxi Chenming Biotechnology Co. Ltd, Wuxi, 214100 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
31
|
Wu F, Cai D, Li L, Li Y, Yang H, Li J, Ma X, Chen S. Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 103:8799-8812. [DOI: 10.1007/s00253-019-10110-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
|
32
|
Liu C, Yu F, Liu Q, Bian X, Hu S, Yang H, Yin Y, Li Y, Shen Y, Xia L, Tu Q, Zhang Y. Yield improvement of epothilones in Burkholderia strain DSM7029 via transporter engineering. FEMS Microbiol Lett 2019. [PMID: 29529178 DOI: 10.1093/femsle/fny045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transporter engineering has been shown to be a positive approach for enhancing natural product titers in microbial cell factories by expelling target compounds out of feasible hosts. In this work, two multidrug efflux pumps, Orf14 and Orf3, were modulated in the epothilone production strain Burkholderia DSM7029::Tn5-km-epo (named G32) via Red/ET engineering to increase heterologous polyketide epothilone yields. Compared with the prior G32 strain, the total production of several epothilones in the G32::orf14-orf3 mutant was meaningfully doubled according to high-performance liquid chromatography-mass spectrometer analysis. Typically for epothilone B, in simple and clear liquid medium CYMG, the overall productivity in the engineered high-yield producer G32::orf14-orf3 was improved for almost 3-fold, from 2.7 to about 8.1 μg/l. Additionally, the ratio of extracellular to intracellular accumulation of epothilone B was raised from 9.3:1 to 13.7:1 in response to expression of two putative transport genes orf14 and orf3. Hence, we strongly recommend that the Orf14 and Orf3 transporters export epothilone, thus promotes the forward reaction of biosynthesis on epothilone manufacture inside the cells. Our results afford a practical stage for yield improvement of other heterologous natural products in broad chassis cells.
Collapse
Affiliation(s)
- Chenlang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China
| | - Fangnan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China
| | - Qingshu Liu
- Hunan Institute of Microbiology, Xinkaipu Lu 18, Tianxin District, Changsha, Hunan, 410009
| | - Xiaoying Bian
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China
| | - Yulong Yin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China
| | - Yuezhong Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yuemao Shen
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China
| | - Qiang Tu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State key laboratory of freshwater fish development biology, College of Life Science, Hunan Normal University, Lushan Nanlu 36, Changsha 410081, People's Republic of China.,Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
33
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
34
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_44-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Peng Q, Gao G, Lü J, Long Q, Chen X, Zhang F, Xu M, Liu K, Wang Y, Deng Z, Li Z, Tao M. Engineered Streptomyces lividans Strains for Optimal Identification and Expression of Cryptic Biosynthetic Gene Clusters. Front Microbiol 2018; 9:3042. [PMID: 30619133 PMCID: PMC6295570 DOI: 10.3389/fmicb.2018.03042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022] Open
Abstract
Streptomyces lividans is a suitable host for the heterologous expression of biosynthetic gene clusters (BGCs) from actinomycetes to discover “cryptic” secondary metabolites. To improve the heterologous expression of BGCs, herein we optimized S. lividans strain SBT5 via the stepwise integration of three global regulatory genes and two codon-optimized multi-drug efflux pump genes and deletion of a negative regulatory gene, yielding four engineered strains. All optimization steps were observed to promote the heterologous production of polyketides, non-ribosomal peptides, and hybrid antibiotics. The production increments of these optimization steps were additional, so that the antibiotic yields were several times or even dozens of times higher than the parent strain SBT5 when the final optimized strain, S. lividans LJ1018, was used as the heterologous expression host. The heterologous production of these antibiotics in S. lividans LJ1018 and GX28 was also much higher than in the strains from which the BGCs were isolated. S. lividans LJ1018 and GX28 markedly promoted the heterologous production of secondary metabolites, without requiring manipulation of gene expression components such as promoters on individual gene clusters. Therefore, these strains are well-suited as heterologous expression hosts for secondary metabolic BGCs. In addition, we successfully conducted high-throughput library expression and functional screening (LEXAS) of one bacterial artificial chromosome library and two cosmid libraries of three Streptomyces genomes using S. lividans GX28 as the library-expression host. The LEXAS experiments identified clones carrying intact BGCs sufficient for the heterologous production of piericidin A1, murayaquinone, actinomycin D, and dehydrorabelomycin. Notably, due to lower antibiotic production, the piericidin A1 BGC had been overlooked in a previous LEXAS screening using S. lividans SBT5 as the expression host. These results demonstrate the feasibility and superiority of S. lividans GX28 as a host for high-throughput screening of genomic libraries to mine cryptic BGCs and bioactive compounds.
Collapse
Affiliation(s)
- Qinying Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guixi Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Lü
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Streptomyces Differentiation in Liquid Cultures as a Trigger of Secondary Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7020041. [PMID: 29757948 PMCID: PMC6022995 DOI: 10.3390/antibiotics7020041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Streptomyces is a diverse group of gram-positive microorganisms characterised by a complex developmental cycle. Streptomycetes produce a number of antibiotics and other bioactive compounds used in the clinic. Most screening campaigns looking for new bioactive molecules from actinomycetes have been performed empirically, e.g., without considering whether the bacteria are growing under the best developmental conditions for secondary metabolite production. These screening campaigns were extremely productive and discovered a number of new bioactive compounds during the so-called “golden age of antibiotics” (until the 1980s). However, at present, there is a worrying bottleneck in drug discovery, and new experimental approaches are needed to improve the screening of natural actinomycetes. Streptomycetes are still the most important natural source of antibiotics and other bioactive compounds. They harbour many cryptic secondary metabolite pathways not expressed under classical laboratory cultures. Here, we review the new strategies that are being explored to overcome current challenges in drug discovery. In particular, we focus on those aimed at improving the differentiation of the antibiotic-producing mycelium stage in the laboratory.
Collapse
|
37
|
Learn from microbial intelligence for avermectins overproduction. Curr Opin Biotechnol 2017; 48:251-257. [DOI: 10.1016/j.copbio.2017.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022]
|
38
|
Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Appl Microbiol Biotechnol 2017; 102:703-712. [DOI: 10.1007/s00253-017-8658-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
39
|
Xie Y, Ma J, Qin X, Li Q, Ju J. Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis. Microb Cell Fact 2017; 16:177. [PMID: 29065880 PMCID: PMC5655939 DOI: 10.1186/s12934-017-0792-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/14/2017] [Indexed: 01/08/2023] Open
Abstract
Background Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1–T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified. Results In the present study, we have identified the different roles of these three transporters, SgvT1, SgvT2 and SgvT3. SgvT1 is a major facilitator superfamily (MFS) transporter whereas SgvT2 appears to serve as the sole ATP-binding cassette (ABC) transporter within the GV/VG BGC. Both proteins are necessary for efficient GV/VG biosynthesis although SgvT1 plays an especially critical role by averting undesired intracellular GV/VG accumulation during biosynthesis. SgvT3 is an alternative MFS-based transporter that appears to serve as a compensatory transporter in GV/VG biosynthesis. We also have identified the γ-butyrolactone (GBL) signaling pathway as a central regulator of sgvT1–T3 expression. Above all, overexpression of sgvT1 and sgvT2 enhances transmembrane transport leading to steady production of GV/VG in titers ≈ 3-fold greater than seen for the wild-type producer and without any notable disturbances to GV/VG biosynthetic gene expression or antibiotic control. Conclusions Our results shows that SgvT1–T2 are essential and useful in GV/VG biosynthesis and our effort highlight a new and effective strategy by which to better exploit streptogramin-based natural products of which GV and VG are prime examples with clinical potential. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0792-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
40
|
Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. Appl Microbiol Biotechnol 2017; 101:5341-5352. [DOI: 10.1007/s00253-017-8292-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
|
41
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Kuriki Y, Komatsu T, Ycas PD, Coulup SK, Carlson EJ, Pomerantz WCK. Meeting Proceedings ICBS2016-Translating the Power of Chemical Biology to Clinical Advances. ACS Chem Biol 2017; 12:869-877. [PMID: 28303709 DOI: 10.1021/acschembio.7b00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yugo Kuriki
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Sara K. Coulup
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Erick J. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
43
|
He JM, Zhu H, Zheng GS, Liu PP, Wang J, Zhao GP, Zhu GQ, Jiang WH, Lu YH. Direct Involvement of the Master Nitrogen Metabolism Regulator GlnR in Antibiotic Biosynthesis in Streptomyces. J Biol Chem 2016; 291:26443-26454. [PMID: 27875313 PMCID: PMC5159505 DOI: 10.1074/jbc.m116.762476] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
GlnR, an OmpR-like orphan two-component system response regulator, is a master regulator of nitrogen metabolism in the genus Streptomyces In this work, evidence that GlnR is also directly involved in the regulation of antibiotic biosynthesis is provided. In the model strain Streptomyces coelicolor M145, an in-frame deletion of glnR resulted in markedly increased actinorhodin (ACT) production but reduced undecylprodigiosin (RED) biosynthesis when exposed to R2YE culture medium. Transcriptional analysis coupled with DNA binding studies revealed that GlnR represses ACT but activates RED production directly via the pathway-specific activator genes actII-ORF4 and redZ, respectively. The precise GlnR-binding sites upstream of these two target genes were defined. In addition, the direct involvement of GlnR in antibiotic biosynthesis was further identified in Streptomyces avermitilis, which produces the important anthelmintic agent avermectin. We found that S. avermitilis GlnR (GlnRsav) could stimulate avermectin but repress oligomycin production directly through the respective pathway-specific activator genes, aveR and olmRI/RII To the best of our knowledge, this report describes the first experimental evidence demonstrating that GlnR regulates antibiotic biosynthesis directly through pathway-specific regulators in Streptomyces Our results suggest that GlnR-mediated regulation of antibiotic biosynthesis is likely to be universal in streptomycetes. These findings also indicate that GlnR is not only a master nitrogen regulator but also an important controller of secondary metabolism, which may help to balance nitrogen metabolism and antibiotic biosynthesis in streptomycetes.
Collapse
Affiliation(s)
- Juan-Mei He
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
- the University of Chinese Academy of Sciences, Beijing 100049
| | - Hong Zhu
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Guo-Song Zheng
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Pan-Pan Liu
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Jin Wang
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Guo-Ping Zhao
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032
| | - Guo-Qiang Zhu
- the College of Veterinary Medicine, Yangzhou University, Yangzhou 225009,
| | - Wei-Hong Jiang
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032,
- the Jiangsu National Synergetic Innovation Center for Advanced Materials, SICAM, Nanjing 210009, and
| | - Yin-Hua Lu
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032,
- the Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
| |
Collapse
|
44
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
45
|
Lv H, Li J, Wu Y, Garyali S, Wang Y. Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 2016; 100:6119-6130. [PMID: 27209041 DOI: 10.1007/s00253-016-7605-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/26/2023]
Abstract
Secondary metabolites possess a lot of biological activities, and to achieve their functions, transmembrane transportation is crucial. Elucidation of their transport mechanisms in the cell is critical for discovering ways to improve the production. Here, we have summarized the recent progresses for representative secondary metabolite transporters and also the strategies for uncovering the transporter systems in plants and microbes. We have also discussed the transporter engineering strategies being utilized for improving the heterologous natural product production, which exhibits promising future under the guide of synthetic biology.
Collapse
Affiliation(s)
- Huajun Lv
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingying Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sanjog Garyali
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
46
|
Chen J, Miao J, Liu M, Liu X, Bao L, Jiang Y, Wang D, Zhang Q, Zhang L. Different fates of avermectin and artemisinin in China. SCIENCE CHINA-LIFE SCIENCES 2016; 59:634-6. [DOI: 10.1007/s11427-016-5065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 11/30/2022]
|
47
|
Abstract
The 2015 Nobel Prize in Physiology or Medicine has been awarded to avermectins and artemisinin, respectively. Avermectins produced by Streptomyces avermitilis are excellent anthelmintic and potential antibiotic agents. Because wild-type strains only produce low levels of avermectins, much research effort has focused on improvements in avermectin production to meet the ever increasing demand for such compounds. This review describes the strategies that have been widely employed and the future prospects of synthetic biology applications in avermectin yield improvement. With the help of genome sequencing of S. avermitilis and an understanding of the avermectin biosynthetic/regulatory pathways, synthetic and systems biotechnology approaches have been applied for precision engineering. We focus on the design and synthesis of biological chassis, parts, devices, and modules from diverse microbes to reconstruct and optimize their dynamic processes, as well as predict favorable effective overproduction of avermectins by a 4Ms strategy (Mine, Model, Manipulation, and Measurement).
Collapse
Key Words
- APGD, atmospheric pressure glow discharge
- Avermectins
- BCDH, branched-chain alpha-keto acid dehydrogenase
- ChIP, chromatin immunoprecipitation
- DO, dissolved oxygen
- EER, ethanol evolution rate
- GBL, gamma-butyrolactone
- HMGE, high-magnet gravitational environment
- IB-CoA, isobutyryl-CoA
- MB-CoA, 2-methybutyryl-CoA
- MDR-TB, multidrug-resistant tuberculosis
- MM-CoA, methylmalonyl- CoA
- MMS, methyl methanesulphonate
- MRSA, methicillin-resistant Staphylococcus aureus
- MTP, microtiter plates
- Metabolic engineering
- NA, nitrous acid
- NTG, N-methyl-N-nitro-N-nitrosoguanidine
- OUR, oxygen uptake rate
- PBD, Plackett–Burman design
- RF, radio frequency
- RRF, ribosome recycling factor
- SAM, S-adenosylmethionine
- STPK, serine-threonine protein kinases
- Streptomyces avermitilis
- Synthetic biology
- TAR, transformation-assisted recombination
- UV, ultraviolet rays
- XDR-TB, extensively drug-resistant tuberculosis
Collapse
|
48
|
Zhu C, Kang Q, Bai L, Cheng L, Deng Z. Identification and engineering of regulation-related genes toward improved kasugamycin production. Appl Microbiol Biotechnol 2015; 100:1811-1821. [PMID: 26521251 DOI: 10.1007/s00253-015-7082-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Kasugamycin, produced by Streptomyces kasugaensis and Streptomyces microaureus, is an important amino-glycoside family antibiotic and widely used for veterinary and agricultural applications. In the left flanking region of the previously reported kasugamycin gene cluster, four additional genes (two-component system kasW and kasX, MerR-family kasV, and isoprenylcysteine carboxyl methyltransferase kasS) were identified both in the low-yielding S. kasugaensis BCRC12349 and high-yielding S. microaureus XM301. Deletion of regulatory gene kasT abolished kasugamycin production, and its overexpression in BCRC12349 resulted in an increased titer by 186 %. Deletion of kasW, kasX, kasV, and kasS improved kasugamycin production by 12, 19, 194, and 22 %, respectively. qRT-PCR analysis demonstrated that the transcription of kas genes was significantly increased in all the four mutants. Similar gene inactivation was performed in the high-yielding strain S. microaureus XM301. As expected, the deletion of kasW/X resulted in a 58 % increase of the yield from 6 to 9.5 g/L. However, the deletion of kasV and over-expression of kasT had no obvious effect, and the disruption of kasS surprisingly decreased kasugamycin production. In addition, trans-complementation of the kasS mutant with a TTA codon-mutated kasS increased the kasugamycin yield by 20 %. A much higher transcription of kas genes was detected in the high-yielding XM301 than in the low-yielding BCRC12349, which may partially account for the discrepancy of gene inactivation effects between them. Our work not only generated engineered strains with improved kasugamycin yield, but also pointed out that different strategies on manipulating regulatory-related genes should be considered for low-yielding or high-yielding strains.
Collapse
Affiliation(s)
- Chenchen Zhu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lin Cheng
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
49
|
Yang J, Xiong ZQ, Song SJ, Wang JF, Lv HJ, Wang Y. Improving heterologous polyketide production in Escherichia coli by transporter engineering. Appl Microbiol Biotechnol 2015; 99:8691-700. [DOI: 10.1007/s00253-015-6718-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
50
|
Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 2014; 33:15-26. [PMID: 25497361 DOI: 10.1016/j.tibtech.2014.10.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022]
Abstract
Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug-resistant pathogens and the development of new technologies to find and produce such compounds have again attracted interest in this field. Based on improvements in whole-genome sequencing, novel methods have been developed to identify the secondary metabolite biosynthetic gene clusters by genome mining, to clone them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products.
Collapse
Affiliation(s)
- Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ewa Maria Musiol-Kroll
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Hyun Uk Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|