1
|
Li S, Guo Y, Jiang H, Zhang H, Li J, Chen Y, Li J, Mao X, Wang M. Mining Arylsulfatase from Genome-Scale Metabolic Pathways of Pseudoalteromonas sp. SR43-6 and Its Agar-Based Desulfurization Applications. ACS OMEGA 2025; 10:18005-18016. [PMID: 40352500 PMCID: PMC12060045 DOI: 10.1021/acsomega.5c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Arylsulfatase catalyzes the cleavage of sulfate ester bonds and plays a role in agar desulfation, thereby enhancing agar gel strength and quality. While studying the desulfurization pathway in Pseudoalteromonassp. SR43-6, a sequence encoding a potential arylsulfatase-Pseudoalteromonas Ars (Ps-Ars)-was found. The enzyme, with p-nitrophenyl sulfate as a substrate, exhibited optimal activity at 35 °C and pH 8.0. Its relative activity (206 U/mg) exceeded that of the recently identified arylsulfatases. Four hundred units of the enzyme removed 86.4% of sulfate groups from Gelidium amansii agar in 4 h, whereas 800 U of the enzyme removed 71.3% of sulfate groups from Gracilaria lemaneiformis agar in 8 h. After enzymatic treatment, G. amansii agar gel strength was enhanced by 32%, and a similar improvement was observed in G. lemaneiformis agar gel strength. Enzymatic agar desulfurization offers mild, quality-retaining, and environmentally friendly advantages, augmenting industrial application prospects.
Collapse
Affiliation(s)
- Songzhi Li
- College
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Yang Guo
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Hong Jiang
- State
Key Laboratory of Marine Food Processing and Safety Control, College
of Food Science and Engineering, Ocean University
of China, Qingdao 266404, PR China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572025, PR China
| | - Huan Zhang
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| | - Jiayu Li
- State
Key Laboratory of Marine Food Processing and Safety Control, College
of Food Science and Engineering, Ocean University
of China, Qingdao 266404, PR China
| | - Yanli Chen
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572025, PR China
| | - Jie Li
- College
of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xiangzhao Mao
- State
Key Laboratory of Marine Food Processing and Safety Control, College
of Food Science and Engineering, Ocean University
of China, Qingdao 266404, PR China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572025, PR China
| | - Minxiao Wang
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266000, PR China
| |
Collapse
|
2
|
You Y, Gan BK, Luo M, Zheng X, Dong N, Tian Y, Li C, Kong H, Gu Z, Yang D, Li Z. Structure-Informed Insights into Catalytic Mechanism and Multidomain Collaboration in α-Agarase CmAga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7975-7989. [PMID: 40127409 DOI: 10.1021/acs.jafc.5c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
α-Agarases are glycoside hydrolases that cleave α-1,3-glycosidic bonds in agarose to produce bioactive agarooligosaccharides. Despite their great industrial potential, the structures and functional mechanisms of α-agarases remain unclear due to their complex and flexible architecture. Here, we investigated the structure-based catalytic mechanism of α-agarase CmAga from Catenovulum maritimum STB14 by integrated Cryo-EM and AlphaFold2. D994 and E1129 were identified as catalytic residues, with E1129 selectively recognizing α-1,3-glycosidic bonds. Y858, W1201, Y1164, and W1166 facilitate preferential substrate binding at the -3 ∼ +3 subsites. Molecular dynamics simulations and neural relational inference modeling revealed a cooperative mechanism involving the catalytic domain (CD) and four carbohydrate-binding modules (CBMs), with CBM6-1 and CBM6-2 capturing substrates, CBM_like transferring them to the CD, and CBM6-3 stabilizing the active site. D149 and L608 served as pivotal nodes within the interdomain communication pathways. These insights provide a foundation for mechanistic investigations and rational engineering of carbohydrate-active enzymes (CAZymes) with multiple CBMs.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Bee Koon Gan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Xinzhe Zheng
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Nanqing Dong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Yixiong Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Daiwen Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| |
Collapse
|
3
|
Liu YF, Yang L, He QP, Xu YL, Zhu YT, Mi YL, Zhou L, Yang SZ, Gu JD, Mu BZ. Gelling and reducing agents are potential carbon and energy sources in culturing of anaerobic microorganisms. Appl Environ Microbiol 2025; 91:e0227624. [PMID: 39936905 PMCID: PMC11921371 DOI: 10.1128/aem.02276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
The majority of microorganisms in the environment have yet to be isolated in pure cultures, and the reasons behind this phenomenon remain elusive. In this study, we investigated the possibility of the commonly used gelling agent including agar and gellan gum as a source of carbon and energy in anaerobic roll-tube cultivation from one mangrove sediment sample and two high-temperature oilfield samples. Based on growth tests and genomic evidence, anaerobic gellan degraders were retrieved from genera of Clostridium, Lacrimispora, and lineages from the rarely cultivated phylum Atribacterota. Anaerobic agarolytic microorganisms were found to be members of Bacillus and Clostridium. We also proved the role of carbon and energy sources of L-cysteine, a routine agent used to make culture media anoxic/anaerobic in both enrichment cultures and isolated strains representing Acetomicrobium, Thermodesulfovibrio, Lacrimispora, Clostridium, Bacillus, Coprothermobacter, Citrobacter, and Enterobacter. Furthermore, the isolates and enriched microbial communities utilizing L-cysteine under anaerobic conditions were mainly through L-cysteine desulfuration to pyruvate, ammonia, and sulfide. This study demonstrates that the widely used gelling and reducing agents in the basal medium can serve as carbon and energy sources for anaerobic microorganisms and thus may bias the enrichment and isolation. IMPORTANCE Most microbial species inhabiting natural environments have not been isolated in pure cultures using conventional media and laboratory conditions, but the reason behind this is unclear. Here, we provided a new explanation for the phenomenon, in that both the gelling agents, like agar and gellan gum, and reducing agent L-cysteine-HCl in the media provide extra carbon and energy sources to microorganisms and therefore decrease the chance in isolation specifically for the supplemented substrate which is supposed to be the sole source of carbon and energy. This result demonstrated that further improvement in the effectiveness of isolation of targeted microorganisms will be facilitated by subtracting the overlooked organic ingredients in the medium and more innovations.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Liu Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Qing-Ping He
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Yi-Lin Xu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Tong Zhu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan-Le Mi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Wang C, Long J, Li X, Zhou X, Chen L, Qiu C, Jin Z. Preparation of agar polysaccharides and biological activities and relationships of agar-derived oligosaccharides and monosaccharides: A review. Int J Biol Macromol 2025; 295:139552. [PMID: 39778825 DOI: 10.1016/j.ijbiomac.2025.139552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Agar is one of the three major colloidal linear polysaccharides obtained from marine seaweeds, specifically red macroalgae (Rhodophyta). It has garnered significant attention owing to its diverse industrial applications, potential for bioethanol production, and the physiological activities of its derived saccharides. This review delves into the preparation and degradation processes of agar, focusing on both physical and chemical pretreatments, as well as subsequent hydrolysis through acid and enzymatic methods. It highlights the bioactivities of agar-derived oligosaccharides and monosaccharides, including their antioxidant, anti-inflammatory, antibacterial, immunomodulatory, hypolipidemic effects, as well as their ability to suppress melanin production. Additionally, this review discusses their role in regulating intestinal flora and explores the relationship between the structure of agar-derived saccharides and their applications, emphasizing the impact of the presence of 3,6-anhydro-α-l-galactose at the nonreducing end of the chain on their functionality.
Collapse
Affiliation(s)
- Chen Wang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Mei X, Liu G, Chen G, Zhang Y, Xue C, Chang Y. Structural Determination and Functional Residues Analysis of a CBM99 Family Carbohydrate-Binding Module Targeting Porphyran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4764-4769. [PMID: 39908185 DOI: 10.1021/acs.jafc.4c09912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Porphyran is a bioactive polysaccharide extensively distributed in algae of the genus Porphyra. Carbohydrate-binding modules (CBMs) are independent domains often found in carbohydrate-active enzymes that function to bind carbohydrates and have various applications. Only one porphyran-binding CBM has been hitherto structurally characterized. The founding member (FvCBM99) of the CBM99 family was previously shown to exhibit a specific binding capacity to the primary constituent units of porphyran. In this study, the structure of FvCBM99 was determined at 1.75 Å resolution by X-ray crystallography. The protein adopts an overall β-sandwich fold with two antiparallel β-sheets comprising 7 β-strands. Site-directed mutagenesis analysis confirmed that residues W44, W49, K83, R87, and W93 are indispensable for the interaction of FvCBM99 with porphyran. The work delivers the first structural insights into the CBM99 family, which can guide the practical applications of FvCBM99 and promote the future discovery and characterization of porphyran-binding proteins.
Collapse
Affiliation(s)
- Xuanwei Mei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
6
|
Park SY, Kim KY, Jang WY, Bae YS, Jun DY, Kim YH. 3,6-Anhydro-L-galactose suppresses mouse lymphocyte proliferation by attenuating JAK-STAT growth factor signal transduction and G 1-S cell cycle progression. Int Immunopharmacol 2025; 147:113998. [PMID: 39764992 DOI: 10.1016/j.intimp.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Abstract
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity. L-AHG (25-200 μg/mL), but not NA2, NA4, or NA6, inhibited the proliferation of immobilized anti-CD3/anti-CD28-activated T cells and immobilized anti-CD40 + soluble anti-IgM + interleukin (IL)-4-activated B cells. This inhibition impacted the G1-S traverse in the cell cycle without influencing CD69 expression and p27Kip1 down-regulation, markers of the exit from G0 into G1 phase in activated lymphocytes. L-AHG impeded cyclin-dependent kinases (CDKs)-driven retinoblastoma phosphorylation, necessary for the G1-S traverse, by reducing the activating phosphorylation of CDKs (CDK4, CDK2, and CDK1) and lowering cyclin D3, cyclin A2 and cyclin B1 levels. Furthermore, L-AHG diminished the production of growth factors, including IL-2 in activated T cells and IL-6 in activated B cells. The antiproliferative effect of L-AHG on T cells was partially restored by exogenous IL-2 but was unaffected by exogenous IL-6 on B cells. L-AHG inhibited the activating phosphorylation of Janus kinase 1 (JAK1), affecting signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling. These results demonstrate that L-AHG may serve as a novel immunosuppressant by impairing JAK-STAT growth factor signaling and G1-S cell cycle progression in T and B lymphocytes.
Collapse
Affiliation(s)
- Shin Young Park
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Won Young Jang
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young-Seuk Bae
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Jo E, Gajanayaka ND, Bandara MS, Marasinghe SD, Park GH, Lee SJ, Oh C, Lee Y. Odd-Numbered Agaro-Oligosaccharides Produced by α-Neoagaro-Oligosaccharide Hydrolase Exert Antioxidant Activity in Human Dermal Fibroblasts. Mar Drugs 2024; 22:495. [PMID: 39590775 PMCID: PMC11595537 DOI: 10.3390/md22110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5 (Gaa117) was purified and characterized using an E. coli expression system to produce OAOSs and determine their bioactivity. Recombinant Gaa117 (rGaa117) showed maximum activity at pH 6.0 and 35 °C. rGaa117 retained >80% of its initial activity after 120 min at 30 °C. The activity was enhanced in the presence of Mn2+. Km, Vmax, and Kcat/Km values of the enzyme were 22.64 mM, 246.3 U/mg, and 15 s-1/mM, respectively. rGaa117 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose, producing OAOSs that commonly contained l-AHG. Neoagarobiose and neoagarotetraose mixtures, designated NAO24, and mixtures of l-AHG and agarotriose, designated AO13, were obtained using recombinant rGaa16B (β-agarase) and rGaa117, respectively, and their antioxidant activities were compared. AO13 showed higher hydrogen peroxide-scavenging activity than NAO24 in human dermal fibroblasts in vitro because of structural differences: AOSs have d-galactose at the non-reducing end, whereas NAOSs have l-AHG. In conclusion, OAOSs exhibited high ROS-scavenging activity in H2O2-induced human dermal fibroblasts. They may be applicable in cosmetics and pharmaceuticals for prevention of skin aging.
Collapse
Affiliation(s)
- Eunyoung Jo
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
| | - Navindu Dinara Gajanayaka
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Minthari Sakethanika Bandara
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Svini Dileepa Marasinghe
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gun-Hoo Park
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Su-Jin Lee
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
- Department of Marine Biotechnology, KIOST School, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea; (E.J.); (N.D.G.); (M.S.B.); (S.D.M.); (G.-H.P.); (S.-J.L.)
| |
Collapse
|
8
|
Mardani M, Siahtiri S, Besati M, Baghani M, Baniassadi M, Nejad AM. Microencapsulation of natural products using spray drying; an overview. J Microencapsul 2024; 41:649-678. [PMID: 39133055 DOI: 10.1080/02652048.2024.2389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
AIMS This study examines microencapsulation as a method to enhance the stability of natural compounds, which typically suffer from inherent instability under environmental conditions, aiming to extend their application in the pharmaceutical industry. METHODS We explore and compare various microencapsulation techniques, including spray drying, freeze drying, and coacervation, with a focus on spray drying due to its noted advantages. RESULTS The analysis reveals that microencapsulation, especially via spray drying, significantly improves natural compounds' stability, offering varied morphologies, sizes, and efficiencies in encapsulation. These advancements facilitate controlled release, taste modification, protection from degradation, and extended shelf life of pharmaceutical products. CONCLUSION Microencapsulation, particularly through spray drying, presents a viable solution to the instability of natural compounds, broadening their application in pharmaceuticals by enhancing protection and shelf life.
Collapse
Affiliation(s)
- Mahshid Mardani
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saeed Siahtiri
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Masoud Besati
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Mahdavi Nejad
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Zeng X, Tian Y, Kong H, Li Z, Gu Z, Li C, Hong Y, Cheng L, Ban X. Catalytic Mode and Product Specificity of an α-Agarase Reveal Its Direct Catalysis for the Production of Agarooligosaccharides. Foods 2024; 13:2351. [PMID: 39123543 PMCID: PMC11311870 DOI: 10.3390/foods13152351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Many α-agarases have been characterized and are utilized for producing agarooligosaccharides through the degradation of agar and agarose, which are considered valuable for applications in the food and medicine industries. However, the catalytic mechanism and product transformation process of α-agarase remain unclear, limiting further enzyme engineering for industrial applications. In this study, an α-agarase from Catenovulum maritimus STB14 (Cm-AGA) was employed to degrade agarose oligosaccharides (AGOs) with varying degrees of polymerization (DPs) to investigate the catalytic mechanism of α-agarases. The results demonstrated that Cm-AGA could degrade agarose into agarotetraose and agarohexaose. The reducing ends of agarotetraose and agarohexaose spontaneously release unstable 3,6-anhydro-α-l-galactose molecules, which were further degraded into agarotriose and agaropentose. Cm-AGA cannot act on α-1,3-glucoside bonds in agarotriose, agarotetraose, neoagarobiose, and neoagarotetraose but can act on AGOs with a DP greater than four. The product analysis was further verified by β-galactosidase hydrolysis, which specifically cleaves the non-reducing glycosidic bond of agarooligosaccharides. Multiple sequence alignment results showed that two conserved residues, Asp994 and Glu1129, were proposed as catalytic residues and were further identified by site-directed mutagenesis. Molecular docking of Cm-AGA with agaroheptose revealed the potential substrate binding mode of the α-agarase. These findings enhance the understanding of Cm-AGA's catalytic mode and could guide enzyme engineering for modulating the production of agarooligosaccharides.
Collapse
Affiliation(s)
- Xiaofeng Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
| | - Yixiong Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Z.); (Y.T.); (H.K.); (Z.L.); (Z.G.); (C.L.); (Y.H.); (L.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Zeb A, Khan Y, He H, Zhang D, Shen S. Molecular identification of Halomonas AZ07 and its multifunctional enzymatic activities to degrade Pyropia yezoensis under high-temperature condition. Mol Biol Rep 2024; 51:816. [PMID: 39012539 DOI: 10.1007/s11033-024-09724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Pyropia yezoensis a commercially important red seaweed species, is susceptible to various microorganisms infections, among which bacterial infections are the most prominent ones. Pyropia yezoensis is often affected by harmful bacterial communities under high temperatures that can lead to its degradation and economic losses. The current study aimed to explore Pyropia yezoensis-associated microbiota and further identify potential isolates, which can degrade Pyropia yezoensis under high-temperature conditions. METHODS AND RESULTS The 16S rRNA gene sequencing was used to identify the agarolytic bacterial species. The results showed that Chromohalobacter sp. strain AZ6, Pseudoalteromonas sp. strain AZ, Psychrobacter sp. strain AZ3, Vibrio sp. strain AZ, and Halomonas sp. strain AZ07 exhibited algicidal properties as these strains were more abundant at high temperature (25 °C). Among the five isolated strains, the potential isolate Halomonas sp. strain AZ07 showed high production of agarolytic enzymes, including lipase, protease, cellulase, and amylase. This study confirmed that the isolated strain could produce these four different enzymes. The strain Halomonas AZ07 was co-treated with Pyropia yezoensis cells under two different temperature environments, including 13 °C and 25 °C. The degradation of Pyropia yezoensis occurred at the optimum temperature of 25 °C and effectively degraded their cell wall, proteins, lipids, and carbohydrates. CONCLUSION The successful cultivation of Pyropia yezoensis in coastal farm environments is dependent on specific temperature and environmental factors, and lower temperatures have been observed to be particularly beneficial for the survival and growth of Pyropia yezoensis. The temperature below 13 °C was confirmed to be the best niche for the symbiotic relationship of microbiota associated with Pyropia yezoensis for its growth, development, and production.
Collapse
Affiliation(s)
- Aurang Zeb
- Department of Cell Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Yasmin Khan
- Department of Biology, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hongyan He
- Department of Cell Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Dongren Zhang
- Department of Cell Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Songdong Shen
- Department of Cell Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
12
|
Goda DA, Shalaby NH, Soliman NA. Improvement of Bacillus subtilis PI agarase production, hydrolysate scavenging capability assessment, and saccharification of algal biomass for green ethanol generation. Sci Rep 2024; 14:16417. [PMID: 39013910 PMCID: PMC11252292 DOI: 10.1038/s41598-024-65736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The goal of the current work was to optimize the growth parameters needed to manufacture agarase enzyme from a non-marine PI strain of Bacillus subtilis on an agar-based medium. Using Plackett-Burman design (PBD), nine process parameters were evaluated, and agar, peptone, and yeast-extract were identified as the most significant independent factors influencing agarase production with confidence levels more than 90%. To evaluate the optimal concentrations of the indicated process parameters on agarase production, the Box-Behnken design (BBD) was applied. After optimization, B. subtilis strain PI produced 119.8 U/ml of agarase, representing a 1.36-fold increase. In addition the agar hydrolysate fermented products contain the liberated oligosaccharide acts as strong antioxidant which has 62.4% scavenging activity. Also, the agarase yields increased (1141.12, 1350.253, 1684.854 and 1921.863 U/ml) after substitution the agar with algal biomass of Carolina officinalis at different concentrations (2, 5, 10 and 15%), respectively. After completing the saccharification process, the resulted hydrolysate was used to produce ethanol through fermentation with Pichia pastoris yeast strain as an economical method giving yields (6.68317, 7.09748, 7.75648 and 8.22332 mg/ml), that are higher than using yeast extract peptone dextrose (YPD) medium (4.461 mg/ml).
Collapse
Affiliation(s)
- Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt.
| | - Nagham H Shalaby
- Genetics Department, Faculty of Agriculture (El-Shatby), Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| |
Collapse
|
13
|
Ibrahim SS, Ionescu D, Grossart HP. Tapping into fungal potential: Biodegradation of plastic and rubber by potent Fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173188. [PMID: 38740197 DOI: 10.1016/j.scitotenv.2024.173188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Plastic polymers are present in most aspects of routine daily life. Their increasing leakage into the environment poses a threat to environmental, animal, and human health. These polymers are often resistant to microbial degradation and are predicted to remain in the environment for tens to hundreds of years. Fungi have been shown to degrade complex polymers and are considered good candidates for bioremediation (biological pollutant reduction) of plastics. Therefore, we screened 18 selected fungal strains for their ability to degrade polyurethane (PU), polyethylene (PE), and tire rubber. As a proxy for plastic polymer mineralization, we quantified O2 consumption and CO2 production in an enclosed biodegradation system providing plastic as the sole carbon source. In contrast to most studies we demonstrated that the tested fungi attach to, and colonize the different plastic polymers without any pretreatment of the plastics and in the absence of sugars, which were suggested essential for priming the degradation process. Functional polymer groups identified by Fourier-transform infrared spectroscopy (FTIR), and changes in fungal morphology as seen in light and scanning electron microscopy (SEM) were used as indicators of fungal adaptation to growth on PU as a substrate. Thereby, SEM analysis revealed new morphological structures and deformation of the cell wall of several fungal strains when colonizing PU and utilizing this plastic polymer for cell growth. Strains of Fusarium, Penicillium, Botryotinia cinerea EN41, and Trichoderma demonstrated a high potential to degrade PU, rubber, and PE. Growing on PU, over 90 % of the O2 was consumed in <14 days with 300-500 ppm of CO2 generated in parallel. Our study highlights a high bioremediation potential of some fungal strains to efficiently degrade plastic polymers, largely dependent on plastic type.
Collapse
Affiliation(s)
- Sabreen S Ibrahim
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Danny Ionescu
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany.
| |
Collapse
|
14
|
Jiang C, Wang W, Sun J, Hao J, Mao X. Comparative Study on Enzymatic Characteristics of Two κ-Carrageenases from Carrageenan-Degrading Bacterium Catenovulum agarivorans DS2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12665-12672. [PMID: 38775811 DOI: 10.1021/acs.jafc.4c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
κ-Carrageenase plays an important role in achieving the high-value utilization of carrageenan. Factors such as the reaction temperature, thermal stability, catalytic efficiency, and product composition are key considerations for its large-scale application. Previous studies have shown that the C-terminal noncatalytic domains (nonCDs) could influence the enzymatic properties, of κ-carrageenases, providing a strategy for exploring κ-carrageenases with different properties, especially catalytic products. Accordingly, two κ-carrageenases (CaKC16A and CaKC16B), from the Catenovulum agarivorans DS2, were selected and further characterized. Bioinformatics analysis suggested that CaKC16A contained a nonCD but CaKC16B did not. CaKC16A exhibited better enzymatic properties than CaKC16B, including thermal stability, substrate affinity, and catalytic efficiency. After truncation of the nonCD of CaKC16A, its thermal stability, substrate affinity, and catalytic efficiency have significantly decreased, indicating the vital role of nonCD in maintaining a good enzymatic property. Moreover, CaKC16A degraded κ-carrageenan to produce a highly single κ-neocarratetrose, while CaKC16B produced a single κ-neocarrabiose. CaKC16A could degrade β/κ-carrageenan to produce a highly single desulfated κ-neocarrahexaose, while CaKC16B produced κ-neocarrabiose and desulfated κ-neocarratetrose. Furthermore, it was proposed that CaKC16A and CaKC16B participate in the B/KC metabolic pathway and serve different roles, providing new insight into obtaining κ-carrageenases with different properties.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
15
|
Ahmad T, Erum Ishaq S, Liang L, Hou J, Xie R, Dong Y, Yu T, Wang F. Description of the first cultured representative of "Candidatus Synoicihabitans" genus, isolated from deep-sea sediment of South China Sea. Syst Appl Microbiol 2024; 47:126490. [PMID: 38330528 DOI: 10.1016/j.syapm.2024.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
In this study we describe the first cultured representative of Candidatus Synoicihabitans genus, a novel strain designated as LMO-M01T, isolated from deep-sea sediment of South China Sea. This bacterium is a facultative aerobe, Gram-negative, non-motile, and has a globular-shaped morphology, with light greenish, small, and circular colonies. Analysis of the 16S rRNA gene sequences of strain LMO-M01T showed less than 93% similarity to its closest cultured members. Furthermore, employing advanced phylogenomic methods such as comparative genome analysis, average nucleotide identity (ANI), average amino acids identity (AAI), and digital DNA-DNA hybridization (dDDH), placed this novel species within the candidatus genus Synoicihabitans of the family Opitutaceae, Phylum Verrucomicrobiota. The genomic analysis of strain LMO-M01T revealed 175 genes, encoding putative carbohydrate-active enzymes. This suggests its metabolic potential to degrade and utilize complex polysaccharides, indicating a significant role in carbon cycling and nutrient turnover in deep-sea sediment. In addition, the strain's physiological capacity to utilize diverse biopolymers such as lignin, xylan, starch, and agar as sole carbon source opens up possibilities for sustainable energy production and environmental remediation. Moreover, the genome sequence of this newly isolated strain has been identified across diverse ecosystems, including marine sediment, fresh water, coral, soil, plants, and activated sludge highlighting its ecological significance and adaptability to various environments. The recovery of strain LMO-M01T holds promise for taxonomical, ecological and biotechnological applications. Based on the polyphasic data, we propose that this ecologically important strain LMO-M01T represents a novel genus (previously Candidatus) within the family Opitutaceae of phylum Verrucomicrobiota, for which the name Synoicihabitans lomoniglobus gen. nov., sp. nov. was proposed. The type of strain is LMO-M01T (= CGMCC 1.61593T = KCTC 92913T).
Collapse
Affiliation(s)
- Tariq Ahmad
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Sidra Erum Ishaq
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lewen Liang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jialin Hou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yijing Dong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tiantian Yu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
16
|
Mei X, Liu G, Chen G, Zhang Y, Xue C, Chang Y. Characterization and structural identification of a family 16 carbohydrate-binding module (CBM): First structural insights into porphyran-binding CBM. Int J Biol Macromol 2024; 265:131041. [PMID: 38518929 DOI: 10.1016/j.ijbiomac.2024.131041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Porphyran is a favorable functional polysaccharide widely distributed in Porphyra. It displays a linear structure majorly constituted by alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G) units. Carbohydrate-binding modules (CBMs) are desired tools for the investigation and application of polysaccharides, including in situ visualization, on site and specific assay, and functionalization of biomaterials. However, only one porphyran-binding CBM has been hitherto reported, and its structural knowledge is lacking. Herein, a novel CBM16 family domain from a marine bacterium Aquimarina sp. BL5 was discovered and expressed. The recombinant protein AmCBM16 exhibited the desired specificity for porphyran. Bio-layer interferometry assay revealed that the protein binds to porphyran tetrasaccharide (L6S-G)2 with an association constant of 1.3 × 103 M-1. The structure of AmCBM16 was resolved by the X-ray crystallography, which displays a β-sandwich fold with two antiparallel β-sheets constituted by 10 β-strands. Site-directed mutagenesis analysis demonstrated that the residues Gly-30, Trp-31, Lys-88, Lys-123, Phe-125, and Phe-127 play dominant roles in AmCBM16 binding. This study provides the first structural insights into porphyran-binding CBM.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| |
Collapse
|
17
|
Mei X, Zhang Y, Jiang X, Liu G, Shen J, Xue C, Xiao H, Chang Y. Discovery and characterization of a novel carbohydrate-binding module: a favorable tool for investigating agarose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2792-2797. [PMID: 38010608 DOI: 10.1002/jsfa.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Agarose, mainly composed of 3,6-anhydro-α-l-galactopyranose (LA) and β-d-galactopyranose (G) units, is an important polysaccharide with wide applications in food, biomedical and bioengineering industries. Carbohydrate-binding modules (CBMs) are favorable tools for the investigations of polysaccharides. Few agarose-binding CBMs have been hitherto reported, and their binding specificity is unclear. RESULTS An unknown domain with a predicted β-sandwich fold was discovered from a β-agarase of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T . The expressed protein WfCBM101 could bind to agarose and exhibited relatively weak affinity for porphyran, with no affinity for the other seven examined polysaccharides. The protein binds to the tetrasaccharide (LA-G)2 , but not to the major tetrasaccharide contained in porphyran. The sequence novelty and well-defined binding function of WfCBM101 shed light on a novel CBM family (CBM101). Furthermore, the feasibility of WfCBM101 for visualizing agarose in situ was confirmed. CONCLUSION A novel CBM, WfCBM101, with a desired specificity for agarose was discovered and characterized, which represents a new CBM family. The CBM could be utilized as a promising tool for studies of agarose. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaoxiao Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Reynaga-Navarro W, Wijffels RH, Eppink MHM, Kazbar A. Isolation and quantification of alginate in choline chloride-based deep eutectic solvents. Int J Biol Macromol 2024; 262:130103. [PMID: 38346616 DOI: 10.1016/j.ijbiomac.2024.130103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Extraction of seaweed compounds using Deep Eutectic Solvents (DES) has shown high interest. Quantification, however, is challenging due to interactions with DES components. In this research work, three chemical separation techniques were investigated to isolate and quantify alginate from a set of choline chloride-based DES. While choline chloride served as the hydrogen bond acceptor (HBA); Urea, Ethylene Glycol, Propylene Glycol, Glycerol, Sorbitol, Xylitol and Glucose were used as hydrogen bond donors (HBD). DES containing sodium alginate were subjected to precipitation with sulfuric acid 0.2 M (pH 1.6), ethanol-water mixture (80 % v/v) and calcium chloride (1 % w/v CaCl2·2H2O). Alginate in precipitates was quantified and used to evaluate the performance of each separation technique. The highest recovery yields (51.2 ± 1.3 %) were obtained using the ethanol-water mixture followed by calcium chloride (45.7 ± 1.2 %), except for polyols (e.g. sorbitol). The lowest recovery yields were obtained with acid, with a particularly low recovery yield when urea was used as HBD (9.6 ± 1.3 %). Estimations of ManA/GulA ratios showed lower values for precipitates from DES compared to the ones obtained from water. This research shows ethanolic precipitation as a suitable method for alginate separation from the studied set of choline chloride-based DES.
Collapse
Affiliation(s)
- Wimar Reynaga-Navarro
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands.
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Michel H M Eppink
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
19
|
Mei X, Zhang Y, Liu G, Shen J, Han J, Xue C, Xiao H, Chang Y. Characterization of a novel carbohydrate-binding module specifically binding to the major structural units of porphyran. Int J Biol Macromol 2023; 253:127106. [PMID: 37769778 DOI: 10.1016/j.ijbiomac.2023.127106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Porphyran is a promising bioactive polysaccharide majorly composed of 4-linked α-l-galactopyranose-6-sulfate (L6S) and 3-linked β-d-galactopyranose (G) disaccharide repeating units. Carbohydrate-binding modules (CBMs) have been verified to be essential tools for investigating polysaccharides. However, no confirmed CBM binding to porphyran has been hitherto reported. In this study, an unknown domain with a predicted β-sandwich fold from a potential GH86 porphyranase was discovered, and further recombinantly expressed. The CBM protein (named FvCBM99) presented a desired specificity for porphyran tetrasaccharide with an affinity constant of 1.9 × 10-4 M, while it could not bind to agarose tetrasaccharide. The sequence novelty and well-defined function of FvCBM99 and its homologs reveal a new CBM family, CBM99. Besides, the application potential of FvCBM99 in in situ visualization of porphyran was demonstrated. The discovery of FvCBM99 provides a favorable tool for future studies of porphyran.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jin Han
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| |
Collapse
|
20
|
Maharjan A, Choi W, Kim HT, Park JH. Catalytic hydrolysis of agar using magnetic nanoparticles: optimization and characterization. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:193. [PMID: 38093358 PMCID: PMC10720145 DOI: 10.1186/s13068-023-02441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Agar is used as a gelling agent that possesses a variety of biological properties; it consists of the polysaccharides agarose and porphyrin. In addition, the monomeric sugars generated after agar hydrolysis can be functionalized for use in biorefineries and biofuel production. The main objective of this study was to develop a sustainable agar hydrolysis process for bioethanol production using nanotechnology. Peroxidase-mimicking Fe3O4-MNPs were applied for agar degradation to generate agar hydrolysate-soluble fractions amenable to Saccharomyces cerevisiae and Escherichia coli during fermentation. RESULTS Fe3O4-MNP-treated (Fe3O4-MNPs, 1 g/L) agar exhibited 0.903 g/L of reducing sugar, which was 21-fold higher than that of the control (without Fe3O4-MNP-treated). Approximately 0.0181% and 0.0042% of ethanol from 1% of agar was achieved using Saccharomyces cerevisiae and Escherichia coli, respectively, after process optimization. Furthermore, different analytical techniques (FTIR, SEM, TEM, EDS, XRD, and TGA) were applied to validate the efficiency of Fe3O4-MNPs in agar degradation. CONCLUSIONS To the best of our knowledge, Fe3O4-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Wonho Choi
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong, 27909, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, Korea.
| |
Collapse
|
21
|
Hoshino M, Ota Y, Suyama T, Morishita Y, Tsuneda S, Noda N. Water-in-oil droplet-mediated method for detecting and isolating infectious bacteriophage particles via fluorescent staining. Front Microbiol 2023; 14:1282372. [PMID: 38125569 PMCID: PMC10731258 DOI: 10.3389/fmicb.2023.1282372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Bacteriophages are the most abundant entities on Earth. In contrast with the number of phages considered to be in existence, current phage isolation and screening methods lack throughput. Droplet microfluidic technology has been established as a platform for high-throughput screening of biological and biochemical components. In this study, we developed a proof-of-concept method for isolating phages using water-in-oil droplets (droplets) as individual chambers for phage propagation and co-cultivating T2 phage and their host cell Escherichia coli within droplets. Liquid cultivation of microbes will facilitate the use of microbes that cannot grow on or degrade agar as host cells, ultimately resulting in the acquisition of phages that infect less known bacterial cells. The compartmentalizing characteristic of droplets and the use of a fluorescent dye to stain phages simultaneously enabled the enumeration and isolation of viable phage particles. We successfully recultivated the phages after simultaneously segregating single phage particles into droplets and inoculating them with their host cells within droplets. By recovering individual droplets into 96-well plates, we were able to isolate phage clones derived from single phage particles. The success rate for phage recovery was 35.7%. This study lays the building foundations for techniques yet to be developed that will involve the isolation and rupturing of droplets and provides a robust method for phage enumeration and isolation.
Collapse
Affiliation(s)
- Miu Hoshino
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuri Ota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- On-chip Biotechnologies Co., Ltd., Tokyo, Japan
| | - Tetsushi Suyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
22
|
Phillips EK, Shaffer JMC, Henson MW, Coelho JT, Martin MO, Thrash JC. Genome sequences of four agarolytic bacteria from the Bacteroidia and Gammaproteobacteria. Microbiol Resour Announc 2023; 12:e0066723. [PMID: 37812006 PMCID: PMC10652895 DOI: 10.1128/mra.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Here we present the genomes of four marine agarolytic bacteria belonging to the Bacteroidota and Proteobacteria. Two genomes are closed and two are in draft form, but all are at least 99% complete and offer new opportunities to study agar-degradation in marine bacteria.
Collapse
Affiliation(s)
- Elise K. Phillips
- Department of Biology, University of Puget Sound, Tacoma, Washington, USA
| | | | - Michael W. Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jordan T. Coelho
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Mark O. Martin
- Department of Biology, University of Puget Sound, Tacoma, Washington, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
23
|
Kim J, Kim EJ, Ko HJ, Lee YH, Hong SK, Shin M, Lee JH, Kwak W. Construction of Streptomyces coelicolor A3(2) mutants that exclusively produce NA4/NA6 intermediates of agarose metabolism through mutation induction. Sci Rep 2023; 13:18968. [PMID: 37923760 PMCID: PMC10624881 DOI: 10.1038/s41598-023-46410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
NA4/NA6, an intermediate degradation product of β-agarase, is a high value-added product with anticancer, anti-obesity, and anti-diabetic effects. Therefore, a method that enables the efficient production of NA4/NA6 would be useful from economic and medical perspectives. In this study, we aimed to generate a Streptomyces coelicolor A3(2) mutant M22-2C43 that produces NA4/NA6 as a final product; this method serves as a more efficient alternative to the enzymatic conversion of β-agarase for the generation of these products. The M22-2C43 strain was generated through two rounds of mutagenesis and screening for increased β-agarase activity and effective production of NA4/NA6. We assembled the complete genomes of two mutants, M22 and M22-2C43, which were identified following a two-round screening. Large and small genetic changes were found in these two mutants, including the loss of two plasmids present in wild-type S. coelicolor A3(2) and chromosome circularization of mutant M22-2C43. These findings suggest that mutant M22-2C43 can produce NA4/NA6 as a degradation product due to functional inactivation of the dagB gene through a point mutation (G474A), ultimately preventing further degradation of NA4/NA6 to NA2. To our knowledge, this is the first report of a microbial strain that can effectively produce NA4/NA6 as the main degradation product of β-agarase, opening the door for the use of this species for the large-scale production of this valuable product.
Collapse
Affiliation(s)
- Jina Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Eun Joo Kim
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea
| | - Hye-Jeong Ko
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea
| | - Yeon-Hee Lee
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, 17058, Gyeonggido, Korea
| | - Miyoung Shin
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Je Hyeon Lee
- Dyne Bio Inc., Seongnam-si, Gyeonggido, 13209, Republic of Korea.
| | - Woori Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
24
|
Zhang Y, Chen G, Shen J, Mei X, Liu G, Chang Y, Dong S, Feng Y, Wang Y, Xue C. The characteristic structure of funoran could be hydrolyzed by a GH86 family enzyme (Aga86A_Wa): Discovery of the funoran hydrolase. Carbohydr Polym 2023; 318:121117. [PMID: 37479453 DOI: 10.1016/j.carbpol.2023.121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Funoran, agarose and porphyran all belong to agaran, and share the similar skeleton. Although the glycoside hydrolase for agarose and porphyran, i.e. agarase and porphyranase, have been extensively studied, the enzyme hydrolyzing funoran has not been reported hitherto. The crystal structure of a previously characterized GH86 β-agarase Aga86A_Wa showed a large cavity at subsite -1, which implied its ability to accommodate sulfate ester group. By using glycomics and NMR analysis, the activity of Aga86A_Wa on the characteristic structure of funoran was validated, which signified the first discovery of funoran hydrolase, i.e. funoranase. Aga86A_Wa hydrolyzed the β-1,4 glycosidic bond between β-d-galactopyranose-6-sulfate (G6S) and 3,6-anhydro-α-l-galactopyranose (LA) unit of funoran, and released disaccharide LA-G6S as the predominant end product. Considering the hydrolysis pattern, we proposed to name the activity represented by Aga86A_Wa on funoran as "β-funoranase" and suggested to assign it an EC number.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| |
Collapse
|
25
|
Labade D, Sevamani S, Tabassum H, Madhyastha H, Wani M. Statistical optimization of process variables for agarase production using Microbacterium sp. SS5 strain from non-marine sources. Prep Biochem Biotechnol 2023; 54:393-406. [PMID: 37671950 DOI: 10.1080/10826068.2023.2245866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Agar oligosaccharides are thought to be valuable biomolecules with high bioactivity potential, along with a wide range of applications and advantages. The current study aimed to optimize the culture parameters required to produce agarase enzyme and agar oligosaccharides from industrial waste agar. Microbacterium spp. strain SS5 was isolated from a non-marine source and could synthesize oligo derivatives for use in a variety of industries ranging from food to pharmaceuticals. In addition, the strain and culture conditions were optimized to maximize extracellular agarase production. The bacterium grew best at pH 5.0 - 9.0, with an optimal pH of 7.5 - 8.0; temperatures ranging from 25 to 45 °C, with an optimal of 35 °C; and carbon and nitrogen concentrations of 0.5% each. Plackett-Burman experimental design and response surface methods were used to optimize various process parameters for agarase production by Microbacterium spp. strain SS5. Using the Plackett-Burman experimental design, eleven process factors were screened, and agar, beef extract, CaCl2, and beginning pH were found as the most significant independent variables affecting agarase production with confidence levels above 90%. To determine the optimal concentrations of the identified process factors on agarase production, the Box- Behnken design was used. Agarase production by Microbacterium spp. strain SS5 after optimization was 0.272 U/mL, which was determined to be greater than the result obtained from the basal medium (0.132 U/mL) before screening using Plackett-Burman and BBD with a fold increase of 2.06.
Collapse
Affiliation(s)
- Dinesh Labade
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Rise N' Shine Biotech Pvt. Ltd., Pune, Maharashtra, India
| | - Selvaraju Sevamani
- Chemical Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Salalah, Oman
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Miyazaki University, Miyazaki, Japan
| | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Rise N' Shine Biotech Pvt. Ltd., Pune, Maharashtra, India
| |
Collapse
|
26
|
Bakky MAH, Tran NT, Zhang M, Zhang Y, Liang H, Wang Y, Zhang Y, Ma H, Zheng H, Li S. In vitro fermentation of Gracilaria lemaneiformis and its sulfated polysaccharides by rabbitfish gut microbes. Int J Biol Macromol 2023; 246:125561. [PMID: 37364810 DOI: 10.1016/j.ijbiomac.2023.125561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
This study intended to characterize the Gracilaria lemaneiformis (SW)-derived polysaccharide (GLP) and explore the fermentation aspects of SW and GLP by rabbitfish (Siganus canaliculatus) intestinal microbes. The GLP was mainly composed of galactose and anhydrogalactose (at 2.0:0.75 molar ratio) with the linear mainstay of α-(1 → 4) linked 3,6-anhydro-α-l-galactopyranose and β-(1 → 3)-linked galactopyranose units. The in vitro fermentation results showed that the SW and GLP could reinforce the short-chain fatty (SCFAs) production and change the diversity and composition of gut microbiota. Moreover, GLP boosted the Fusobacteria and reduced the Firmicutes abundance, while SW increased the Proteobacteria abundance. Furthermore, the adequacy of feasibly harmful bacteria (such as Vibrio) declined. Interestingly, most metabolic processes were correlated with the GLP and SW groups than the control and galactooligosaccharide (GOS)-treated groups. In addition, the intestinal microbes degrade the GLP with 88.21 % of the molecular weight reduction from 1.36 × 105 g/mol (at 0 h) to 1.6 × 104 g/mol (at 24 h). Therefore, the findings suggest that the SW and GLP have prebiotic potential and could be applied as functional feed additives in aquaculture.
Collapse
Affiliation(s)
- Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
27
|
Lee HK, Jang WY, Kim YH. Extracellular production of a thermostable Cellvibrio endolytic β-agarase in Escherichia coli for agarose liquefaction. AMB Express 2023; 13:42. [PMID: 37145239 PMCID: PMC10163192 DOI: 10.1186/s13568-023-01551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Four GH16 family β-agarases (GH16A, GH16B, GH16C, and GH16D), originated from an agarolytic bacterium Cellvibrio sp. KY-GH-1, were expressed in an Escherichia coli system and their activities were compared. Only GH16B (597 amino acids, 63.8 kDa), with N-terminal 22-amino acid signal sequence, was secreted into the culture supernatant and demonstrated a robust endolytic agarose hydrolyzing activity for producing neoagarotetraose (NA4) and neoagarohexaose (NA6) as end products. The optimal temperature and pH for the enzyme activity were 50 °C and 7.0, respectively. The enzyme was stable up to 50 °C and over a pH range of 5.0-8.0. The kinetic parameters, including Km, Vmax, kcat, and kcat/Km, of GH16B β-agarases for agarose were 14.40 mg/mL, 542.0 U/mg, 576.3 s-1, and 4.80 × 106 s-1 M-1, respectively. The addition of 1 mM MnCl2 and 15 mM tris(2-carboxyethyl)phosphine enhanced the enzymatic activity. When agarose or neoagaro-oligosaccharides were used as substrates, the end products of enzymatic catalysis were NA4 and NA6, whereas agaropentaose was produced along with NA4 and NA6 when agaro-oligosaccharides were used as substrates. Treatment of 9%[w/v] melted agarose with the enzyme (1.6 µg/mL) under continuous magnetic stirring at 50 °C for 14 h resulted in efficient agarose liquefaction into NA4 and NA6. Purification of NA4 and NA6 from the enzymatic hydrolysate (9%[w/v] agarose, 20 mL) via Sephadex G-15 column chromatography yielded ~ 650 mg NA4/~ 900 mg NA6 (i.e., ~ 85.3% of the theoretical maximum yield). These findings suggest that the recombinant thermostable GH16B β-agarase is useful for agarose liquefaction to produce NA4 and NA6.
Collapse
Affiliation(s)
- Hee Kyoung Lee
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Won Young Jang
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea.
| |
Collapse
|
28
|
Kang JY, Song HY, Kim JM. Agarolytic Pathway in the Newly Isolated Aquimarina sp. Bacterial Strain ERC-38 and Characterization of a Putative β-agarase. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:314-327. [PMID: 37002465 PMCID: PMC10163077 DOI: 10.1007/s10126-023-10206-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/19/2023] [Indexed: 05/06/2023]
Abstract
Marine microbes, particularly Bacteroidetes, are a rich source of enzymes that can degrade diverse marine polysaccharides. Aquimarina sp. ERC-38, which belongs to the Bacteroidetes phylum, was isolated from seawater in South Korea. It showed agar-degrading activity and required an additional carbon source for growth on marine broth 2216. Here, the genome of the strain was sequenced to understand its agar degradation mechanism, and 3615 protein-coding sequences were predicted, which were assigned putative functions according to their annotated functional feature categories. In silico genome analysis revealed that the ERC-38 strain has several carrageenan-degrading enzymes but could not degrade carrageenan because it lacked genes encoding κ-carrageenanase and S1_19A type sulfatase. Moreover, the strain possesses multiple genes predicted to encode enzymes involved in agarose degradation, which are located in a polysaccharide utilization locus. Among the enzymes, Aq1840, which is closest to ZgAgaC within the glycoside hydrolase 16 family, was characterized using a recombinant enzyme expressed in Escherichia coli BL21 (DE3) cells. An enzyme assay revealed that recombinant Aq1840 mainly converts agarose to NA4. Moreover, recombinant Aq1840 could weakly hydrolyze A5 into A3 and NA2. These results showed that Aq1840 is involved in at least the initial agar degradation step prior to the metabolic pathway that uses agarose as a carbon source for growth of the strain. Thus, this enzyme can be applied to development and manufacturing industry for prebiotic and antioxidant food additive. Furthermore, our genome sequence analysis revealed that the strain is a potential resource for research on marine polysaccharide degradation mechanisms and carbon cycling.
Collapse
Affiliation(s)
- Ji Young Kang
- Industrial Microbiology and Bioprocess Research Center, Korea Research, Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Ha-Yeon Song
- Department of Life and Environmental Sciences, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jung-Mi Kim
- Department of Life and Environmental Sciences, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
29
|
Nishiyama T, Hoshino R, Ueda K. Characterization of 5'-nucleotidases secreted from Streptomyces. Appl Microbiol Biotechnol 2023; 107:2289-2302. [PMID: 36820897 DOI: 10.1007/s00253-023-12426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
To study the ability of Streptomyces to utilize environmental nucleotides, we screened for strains exhibiting extracellular 5'-inosine monophosphate (IMP)-dephosphorylating activity in our collection of soil isolates and obtained two producers: NE5-10 and Y2F8-2. The enzyme responsible for the activity was purified from the culture supernatant of each strain, and its mass spectral data were used to identify the coding sequence. The gene was successfully identified in the whole genome sequence of each strain; it was located in a conserved gene cluster of phosphate-related functions and encoded an approximately 600-amino acid long protein containing an N-terminal secretion signal. The mature part of the protein exhibited similarity to a known bacterial 5'-nucleotidase. The locus of the 5'-nucleotidase gene contained genes encoding proteins involved in phosphate utilization. The conserved gene arrangement of the locus in various Streptomyces genomes suggested the genetic region to be involved in phosphate-scavenging in this group of bacteria. Phylogenetic analysis demonstrated that the isolated Streptomyces enzymes represent an uncharacterized group of bacterial 5'-nucleotidases. Enzymatic characterization of the two Streptomyces enzymes demonstrated that both enzymes exhibited 5'-nucleotidase activity but differed in terms of optimal temperature and pH, dependence on divalent cations, and substrate specificity. The Km and Vmax values of the 5'-IMP-dephosphorylating activity were 0.239 mM and 9.47 U/mg, respectively, for NE5-10 and 0.221 mM and 38.17 U/mg, respectively, for Y2F8-2. Enzyme activity in the culture broth of the two Streptomyces producers occurred in a phosphate-limitation-dependent manner, supporting their involvement in the acquisition of phosphorus. KEY POINTS: • We purified and characterized nucleotidases from two Streptomyces. • Two nucleotidases were presumed to be involved in phosphate acquisition. • It showed diversity in phosphate acquisition among microorganisms.
Collapse
Affiliation(s)
- Tatsuya Nishiyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880, Fujisawa, Japan.
| | - Rio Hoshino
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880, Fujisawa, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, 252-0880, Fujisawa, Japan
| |
Collapse
|
30
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
31
|
Bi W, Cai S, Lei T, Wang L. Implementation of blood-brain barrier on microfluidic chip: recent advance and future prospects. Ageing Res Rev 2023; 87:101921. [PMID: 37004842 DOI: 10.1016/j.arr.2023.101921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The complex structure of the blood-brain barrier (BBB) hinders its modeling and the treatment of brain diseases. The microfluidic technology promotes the development of BBB-on-a-chip platforms, which can be used to reproduce the complex brain microenvironment and physiological reactions. Compared with traditional transwell technology, microfluidic BBB-on-a-chip shows great technical advantages in terms of flexible control of fluid shear stress in the chip and fabrication efficiency of the chip system, which can be enhanced by the development of lithography and three-dimensional (3D) printing. It is convenient to accurately monitor the dynamic changes of biochemical parameters of individual cells in the model by integrating an automatic super-resolution imaging sensing platform. In addition, biomaterials, especially hydrogels and conductive polymers, solve the limitations of microfluidic BBB-on-a-chip by compounding onto microfluidic chip to provide a 3D space and special performance on the microfluidic chip. The microfluidic BBB-on-a-chip promotes the development of basic research, including cell migration, mechanism exploration of neurodegenerative diseases, drug barrier permeability, SARS-CoV-2 pathology. This study summarizes the recent advances, challenges and future prospects of microfluidic BBB-on-a-chip, which can help to promote the development of personalized medicine and drug discovery.
Collapse
|
32
|
Long J, Ye Z, Li X, Tian Y, Bai Y, Chen L, Qiu C, Xie Z, Jin Z, Svensson B. Enzymatic preparation and potential applications of agar oligosaccharides: a review. Crit Rev Food Sci Nutr 2022; 64:5818-5834. [PMID: 36547517 DOI: 10.1080/10408398.2022.2158452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligosaccharides derived from agar, that is, agarooligosaccharides and neoagarooligosaccharides, have demonstrated various kinds of bioactivities which have been utilized in a variety of fields. Enzymatic hydrolysis is a feasible approach that principally allows for obtaining specific agar oligosaccharides in a sustainable way at an industrial scale. This review summarizes recent technologies employed to improve the properties of agarase. Additionally, the relationship between the degree of polymerization, bioactivities, and potential applications of agar-derived oligosaccharides for pharmaceutical, food, cosmetic, and agricultural industries are discussed. Engineered agarase exhibited general improvement of enzymatic performance, which is mostly achieved by truncation. Rational and semi-rational design assisted by computational methods present the latest strategy for agarase improvement with greatest potential to satisfy future industrial needs. Agarase immobilized on magnetic Fe3O4 nanoparticles via covalent bond formation showed characteristics well suited for industry. Additionally, albeit with the relationship between the degree of polymerization and versatile bioactivities like anti-oxidants, anti-inflammatory, anti-microbial agents, prebiotics and in skin care of agar-derived oligosaccharides are discussed here, further researches are still needed to unravel the complicated relationship between bioactivity and structure of the different oligosaccharides.
Collapse
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ziying Ye
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Zhang M, Wang J, Zeng R, Wang D, Wang W, Tong X, Qu W. Agarose-Degrading Characteristics of a Deep-Sea Bacterium Vibrio Natriegens WPAGA4 and Its Cold-Adapted GH50 Agarase Aga3420. Mar Drugs 2022; 20:692. [PMID: 36355015 PMCID: PMC9698624 DOI: 10.3390/md20110692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2023] Open
Abstract
Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wenxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiufang Tong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
34
|
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid- Vibrio Symbiosis. Microorganisms 2022; 10:microorganisms10101946. [PMID: 36296224 PMCID: PMC9607633 DOI: 10.3390/microorganisms10101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The Vibrionaceae encompasses a cosmopolitan group that is mostly aquatic and possesses tremendous metabolic and genetic diversity. Given the importance of this taxon, it deserves continued and deeper research in a multitude of areas. This review outlines emerging topics of interest within the Vibrionaceae. Moreover, previously understudied research areas are highlighted that merit further exploration, including affiliations with marine plants (seagrasses), microbial predators, intracellular niches, and resistance to heavy metal toxicity. Agarases, phototrophy, phage shock protein response, and microbial experimental evolution are also fields discussed. The squid-Vibrio symbiosis is a stellar model system, which can be a useful guiding light on deeper expeditions and voyages traversing these "seas of interest". Where appropriate, the squid-Vibrio mutualism is mentioned in how it has or could facilitate the illumination of these various subjects. Additional research is warranted on the topics specified herein, since they have critical relevance for biomedical science, pharmaceuticals, and health care. There are also practical applications in agriculture, zymology, food science, and culinary use. The tractability of microbial experimental evolution is explained. Examples are given of how microbial selection studies can be used to examine the roles of chance, contingency, and determinism (natural selection) in shaping Earth's natural history.
Collapse
Affiliation(s)
- William Soto
- Integrated Science Center Rm 3035, Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
35
|
Abstract
Carbohydrate-active enzymes are important components of the polysaccharide metabolism system in marine bacteria. Carrageenase is indispensable for forming carrageenan catalytic pathways. Here, two GH16_13 carrageenases showed likely hydrolysis activities toward different types of carrageenans (e.g., κ-, hybrid β/κ, hybrid α/ι, and hybrid λ), which indicates that a novel pathway is present in the marine bacterium Flavobacterium algicola to use κ-carrageenan (KC), ι-carrageenan (IC), and λ-carrageenan (LC). A comparative study described the different features with another reported pathway based on the specific carrageenans (κ, ι, and λ) and expanded the carrageenan metabolic versatility in F. algicola. A further comparative genomic analysis of carrageenan-degrading bacteria indicated different distributions of carrageenan metabolism-related genes in marine bacteria. The crucial core genes encoding the GH127 α-3,6-anhydro-d-galactosidase (ADAG) and 3,6-anhydro-d-galactose (d-AHG)-utilized cluster have been conserved during evolution. This analysis further revealed the horizontal gene transfer (HGT) phenomenon of the carrageenan polysaccharide utilization loci (CarPUL) from Bacteroidetes to other bacterial phyla, as well as the versatility of carrageenan catalytic activities in marine bacteria through different metabolic pathways. IMPORTANCE Based on the premise that the specific carrageenan-based pathway involved in carrageenan use by Flavobacterium algicola has been identified, another pathway was further analyzed, and it involved two GH16_13 carrageenases. Among all the characterized carrageenases, the members of GH16_13 accounted for only a small portion. Here, the functional analysis of two GH16_13 carrageenases suggested their hydrolysis effects on different types of carrageenans (e.g., κ, hybrid β/κ, hybrid α/ι-, and hybrid λ-), which led to the identification of another pathway. Further exploration enabled us to elucidate the novel pathway that metabolizes KC and IC in F. algicola successfully. The coexistence of these two pathways may provide improved survivability by F. algicola in the marine environment.
Collapse
|
36
|
Xiang Ping MK, Zhi HW, Aziz NS, Hadri NA, Ghazalli NF, Yusop N. Optimization of agarose–alginate hydrogel bead components for encapsulation and transportation of stem cells. J Taibah Univ Med Sci 2022; 18:104-116. [DOI: 10.1016/j.jtumed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
|
37
|
Huang H, Zheng Z, Zou X, Wang Z, Gao R, Zhu J, Hu Y, Bao S. Genome Analysis of a Novel Polysaccharide-Degrading Bacterium Paenibacillus algicola and Determination of Alginate Lyases. Mar Drugs 2022; 20:md20060388. [PMID: 35736191 PMCID: PMC9227215 DOI: 10.3390/md20060388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are an important characteristic of bacteria in marine systems. We herein describe the CAZymes of Paenibacillus algicola HB172198T, a novel type species isolated from brown algae in Qishui Bay, Hainan, China. The genome of strain HB172198T is a 4,475,055 bp circular chromosome with an average GC content of 51.2%. Analysis of the nucleotide sequences of the predicted genes shows that strain HB172198T encodes 191 CAZymes. Abundant putative enzymes involved in the degradation of polysaccharides were identified, such as alginate lyase, agarase, carrageenase, xanthanase, xylanase, amylases, cellulase, chitinase, fucosidase and glucanase. Four of the putative polysaccharide lyases from families 7, 15 and 38 were involved in alginate degradation. The alginate lyases of strain HB172198T exhibited the maximum activity 152 U/mL at 50 °C and pH 8.0, and were relatively stable at pH 7.0 and temperatures lower than 40 °C. The average degree of polymerization (DP) of the sodium alginate oligosaccharide (AOS) degraded by the partially purified alginate lyases remained around 14.2, and the thin layer chromatography (TCL) analysis indicated that it contained DP2-DP8 oligosaccharides. The complete genome sequence of P. algicola HB172198T will enrich our knowledge of the mechanism of polysaccharide lyase production and provide insights into its potential applications in the degradation of polysaccharides such as alginate.
Collapse
Affiliation(s)
- Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zhiguo Zheng
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Xiaoxiao Zou
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zixu Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Rong Gao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- College of Oceanography, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Jun Zhu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| | - Shixiang Bao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| |
Collapse
|
38
|
Liu L, Cai L, Chu Y, Zhang M. Thermostability mechanisms of β-agarase by analyzing its structure through molecular dynamics simulation. AMB Express 2022; 12:50. [PMID: 35524019 PMCID: PMC9076770 DOI: 10.1186/s13568-022-01394-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
Agarase is a natural catalyst with a good prospect in the industry. However, most of the currently discovered β-agarases are unsuitable for relatively high-temperature and high-pressure conditions required by industrial production. In this study, molecular dynamics simulations were first used to investigate the dynamic changes of folding and unfolding of mesophile and thermophile β-agarases (i.e., 1URX and 3WZ1) to explore the thermostability mechanism at three high temperatures (300 K, 400 K, and 500 K). Results showed that the sequence identity of 3WZ1 and 1URX reaches 48.8%. 1URX has a higher thermal sensitivity and less thermostability than 3WZ1 as more thermostable regions and hydrogen bonds exist in 3WZ1 compared with 1URX. The structures of 1URX and 3WZ1 become unstable with increasing temperatures up to 500 K. The strategies to increase the thermostability of 1URX and 3WZ1 are discussed. This study could provide insights into the design and modification of β-agarases at a high temperature.
Collapse
|
39
|
Song T, Liu L, Tang Q, Xiang S, Wang B, Zhang S, Wang X, Chu Y, Luo D, Lin J. Antioxidant neoagarooligosaccharides (NAOs) and dietary fiber production from red algae Gracilariopsis lemaneiformis using enzyme assisted one-step process. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
41
|
Li G, Guo R, Wu S, Cheng S, Li J, Liu Z, Xie W, Sun X, Zhang Q, Li Z, Xu J, Wu J, Wei Z, Hu F. Characterization of Agarolytic Pathway in a Terrestrial Bacterium Cohnella sp. LGH. Front Microbiol 2022; 13:828687. [PMID: 35432256 PMCID: PMC9008576 DOI: 10.3389/fmicb.2022.828687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we have reported that an endo-type β-agarase AgaW was responsible for the hydrolysis of agarose into the major product neoagarotetraose in a terrestrial agar-degrading bacterium Cohnella sp. LGH. Here, we identify and characterize the following depolymerization pathway in strain LGH through the genomic and enzymatic analysis. In the pathway, neoagarotetraose was depolymerized by a novel α-neoagarooligosaccharide (NAOS) hydrolase CL5012 into 3,6-anhydro-α-L-galactose (L-AHG) and agarotriose; Agarotriose was further depolymerized by a novel agarolytic β-galactosidase CL4994 into D-galactose and neoagarobiose; Neoagarobiose was finally depolymerized by CL5012 into L-AHG and D-galactose. Although α-agarase has not been identified in strain LGH, the combined action of CL5012 and CL4994 unexpectedly plays a critical role in the depolymerization of agarotetraose, one theoretical product of α-agarase hydrolysis of agarose. In this pathway, agarotetraose was depolymerized by CL4994 into D-galactose and neoagarotriose; Neoagarotriose was then depolymerized by CL5012 into L-AHG and agarobiose. Furthermore, another novel endo-type β-agarase CL5055 was identified as an isozyme of AgaW with different pH preference in the hydrolysis of agarose into α-NAOSs. Strain LGH seemed to lack a common exo-type β-agarase responsible for the direct depolymerization of agarose or neoagarooligosaccharide into neoagarobiose. These results highlight the diversity of agarolytic manner in bacteria and provide a novel insight on the diversity of agarolytic pathways.
Collapse
Affiliation(s)
- Gen Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Nanjing, China
| | - Rui Guo
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Si Cheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wangliang Xie
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiuyi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zihan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - JiaZheng Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jun Wu,
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant Immunity, Nanjing, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
43
|
Uçar N, Bakhtiari S, Doustkhah E, Yarmohammadi M, Pedram MZ, Alyamaç E, Seydibeyoğlu MÖ. Biodegradation of plastic-based waste materials. BIODEGRADATION AND BIODETERIORATION AT THE NANOSCALE 2022:175-212. [DOI: 10.1016/b978-0-12-823970-4.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Park H, Jo CY, Lee KB, Mun S. Standing wave design and optimization of a tandem size-exclusion simulated moving bed process for high-throughput recovery of neoagarohexaose from neoagarooligosaccharides. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Khalil H, Legin E, Kurek B, Perre P, Taidi B. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 2021; 21:318. [PMID: 34784888 PMCID: PMC8597199 DOI: 10.1186/s12866-021-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.
Collapse
Affiliation(s)
- Hassan Khalil
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Estelle Legin
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Patrick Perre
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France.
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
46
|
Use of Alternative Gelling Agents Reveals the Role of Rhamnolipids in Pseudomonas aeruginosa Surface Motility. Biomolecules 2021; 11:biom11101468. [PMID: 34680106 PMCID: PMC8533327 DOI: 10.3390/biom11101468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a motile bacterium able to exhibit a social surface behaviour known as swarming motility. Swarming requires the polar flagellum of P. aeruginosa as well as the secretion of wetting agents to ease the spread across the surface. However, our knowledge on swarming is limited to observed phenotypes on agar-solidified media. To study the surface behaviour and the impact of wetting agents of P. aeruginosa on other surfaces, we assessed surface motility capabilities of the prototypical strain PA14 on semi-solid media solidified with alternative gelling agents, gellan gum and carrageenan. We found that, on these alternative surfaces, the characteristic dendritic spreading pattern of P. aeruginosa is drastically altered. One striking feature is the loss of dependence on rhamnolipids to spread effectively on plates solidified with these alternative gelling agents. Indeed, a rhlA-null mutant unable to produce its wetting agents still spreads effectively, albeit in a circular shape on both the gellan gum- and carrageenan-based media. Our data indicate that rhamnolipids do not have such a crucial role in achieving surface colonization of non-agar plates, suggesting a strong dependence on the physical properties of the tested surface. The use of alternative gelling agent provides new means to reveal unknown features of bacterial surface behaviour.
Collapse
|
47
|
Anggraeni SR, Ansorge-Schumacher MB. Characterization and Modeling of Thermostable GH50 Agarases from Microbulbifer elongatus PORT2. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:809-820. [PMID: 34595592 PMCID: PMC8551122 DOI: 10.1007/s10126-021-10065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Viewing the considerable potential of marine agar as a source for the sustainable production of energy as well as nature-derived pharmaceutics, this work investigated the catalytic activity of three novel GH50 agarases from the mesophilic marine bacterium Microbulbifer elongatus PORT2 isolated from Indonesian coastal seawaters. The GH50 agarases AgaA50, AgaB50, and AgaC50 were identified through genome analysis; the corresponding genes were cloned and expressed in Escherichia coli BL21 (DE3). All recombinant agarases hydrolyzed β-p-nitrophenyl galactopyranoside, indicating β-glycosidase characteristics. AgaA50 and AgaB50 were able to cleave diverse natural agar species derived from Indonesian agarophytes, indicating a promising tolerance of these enzymes for substrate modifications. All three GH50 agarases degraded agarose, albeit with remarkable diversity in their catalytic activity and mode of action. AgaA50 and AgaC50 exerted exolytic activity releasing differently sized neoagarobioses, while AgaB50 showed additional endolytic activity in dependence on the substrate size. Surprisingly, AgaA50 and AgaB50 revealed considerable thermostability, retaining over 75% activity after 1-h incubation at 50 °C. Considering the thermal properties of agar, this makes these enzymes promising candidates for industrial processing.
Collapse
Affiliation(s)
- Santi Rukminita Anggraeni
- Professur Für Molekulare Biotechnologie, Technische Universität Dresden, Dresden, 01062, Germany.
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung, 45363, Indonesia.
| | | |
Collapse
|
48
|
Park H, Kim JW, Chang YK, Mun S. The first attempt at simulated-moving-bed separation of medically utilizable ingredients from neoagarooligosaccharides generated through the β-agarase hydrolysis of agarose in red algae. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Bäumgen M, Dutschei T, Bornscheuer UT. Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization. Chembiochem 2021; 22:2247-2256. [PMID: 33890358 PMCID: PMC8360166 DOI: 10.1002/cbic.202100078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo- and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate-active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| |
Collapse
|
50
|
Sarma A, Das MK. Improving the sustainable performance of Biopolymers using nanotechnology. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1937645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anupam Sarma
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Assam, India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|