1
|
Liu X, Park H, Ackermann YS, Avérous L, Ballerstedt H, Besenmatter W, Blázquez B, Bornscheuer UT, Branson Y, Casey W, de Lorenzo V, Dong W, Floehr T, Godoy MS, Ji Y, Jupke A, Klankermayer J, León DS, Liu L, Liu X, Liu Y, Manoli MT, Martínez-García E, Narancic T, Nogales J, O'Connor K, Osterthun O, Perrin R, Prieto MA, Pollet E, Sarbu A, Schwaneberg U, Su H, Tang Z, Tiso T, Wang Z, Wei R, Welsing G, Wierckx N, Wolter B, Xiao G, Xing J, Zhao Y, Zhou J, Tan T, Blank LM, Jiang M, Chen GQ. Exploring biotechnology for plastic recycling, degradation and upcycling for a sustainable future. Biotechnol Adv 2025; 81:108544. [PMID: 40024585 DOI: 10.1016/j.biotechadv.2025.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The persistent demand for plastic commodities, inadequate recycling infrastructure, and pervasive environmental contamination due to plastic waste present a formidable global challenge. Recycling, degradation and upcycling are the three most important ways to solve the problem of plastic pollution. Sequential enzymatic and microbial degradation of mechanically and chemically pre-treated plastic waste can be orchestrated, followed by microbial conversion into value-added chemicals and polymers through mixed culture systems. Furthermore, plastics-degrading enzymes can be optimized through protein engineering to enhance their specific binding capacities, stability, and catalytic efficiency across a broad spectrum of polymer substrates under challenging high salinity and temperature conditions. Also, the production and formulation of enzyme mixtures can be fine-tuned to suit specific waste compositions, facilitating their effective deployment both in vitro, in vivo and in combination with chemical technologies. Here, we emphasized the comprehensive strategy leveraging microbial processes to transform mixed plastics of fossil-derived polymers such as PP, PE, PU, PET, and PS, most notably polyesters, in conjunction with potential biodegradable alternatives such as PLA and PHA. Any residual material resistant to enzymatic degradation can be reintroduced into the process loop following appropriate physicochemical treatment.
Collapse
Affiliation(s)
- Xu Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; PhaBuilder Biotechnology Co. Ltd, Shunyi District, Beijing 101309, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | | | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Blas Blázquez
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Yannick Branson
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Víctor de Lorenzo
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tilman Floehr
- Everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Yu Ji
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - David San León
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Luo Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xianrui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yizhi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Maria T Manoli
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Esteban Martínez-García
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Juan Nogales
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Kevin O'Connor
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ole Osterthun
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zequn Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Zishuai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ren Wei
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Gina Welsing
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Birger Wolter
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianmin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing 100190, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| |
Collapse
|
2
|
Weldon M, Ganguly S, Euler C. Co-consumption for plastics upcycling: A perspective. Metab Eng Commun 2025; 20:e00253. [PMID: 39802937 PMCID: PMC11717657 DOI: 10.1016/j.mec.2024.e00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes. We aim to understand the current feasibility of combining these into a single, closed-loop process. Our analysis shows that microbial plastic degradation is currently the rate-limiting step to "closing the loop", with reported rates that are orders of magnitude lower than those of pathways to upcycle plastic degradation products. We further find that neither degradation nor upcycling have been demonstrated at rates sufficiently high to justify industrialization at present. As a potential way to address these limitations, we suggest more investigation into mixotrophic approaches, showing that those which leverage the unique properties of plastic degradation products such as ethylene glycol might improve rates sufficiently to motivate industrial process development.
Collapse
Affiliation(s)
- Michael Weldon
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Sanniv Ganguly
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Christian Euler
- Department of Chemical Engineering, University of Waterloo, Canada
| |
Collapse
|
3
|
Kim HJ, Kim BC, Lim G, Han Y, Jeong Y, Kim HT, Jeon WY, Ahn J, Bhatia SK, Yang YH. Enhanced production of microbial levulinic acid through deletion of the levulinic acid transcriptional regulator (lvaR) in engineered Pseudomonas putida KT2440. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03175-9. [PMID: 40387897 DOI: 10.1007/s00449-025-03175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Levulinic acid (LA) is a platform compound regarded as a promising organic intermediate for the synthesis of various chemicals such as fuel additives, plasticizers, solvents, and pharmaceuticals. Traditionally, LA is produced via acid-catalyzed dehydration and hydrolysis of lignocellulosic biomass, but this process involves challenges such as high temperatures and pressures, the use of strong acids, byproducts formation, and limitations in recovery and purification. To provide an alternative for chemical synthesis, we previously designed an integrated process to produce LA from glucose using genetically engineered Pseudomonas putida KT2440. However, as the consumption of the produced LA could not be completely prevented, its overall yield was limited. Therefore, in this study we constructed P. putida strains with additional knock-out of the lva operon genes (lvaAB, lvaE, and lvaR) in a pcaIJ knock-out strain, and introduced the aroG, asbF, and adc genes to design an LA production pathway. The pcaIJ, lvaR double knock-out strain P. putida HP205 produced 20.42 mM of LA from glycerol, and culture condition including temperature, glucose concentration, and nitrogen source were optimized. Under optimal conditions, P. putida HP205 produced 73.9 mM (8.58 g/L) LA in fed-batch fermentation. When crude glycerol was used as the substrate, both LA production and cell growth were enhanced. This study presents the impact of the LA transcriptional regulator and demonstrates a strategy for enhanced LA production in P. putida.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Chan Kim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gaeun Lim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yebin Han
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yunhee Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Woo-Young Jeon
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Foka K, Ferousi C, Topakas E. Polyester-derived monomers as microbial feedstocks: Navigating the landscape of polyester upcycling. Biotechnol Adv 2025; 82:108589. [PMID: 40354902 DOI: 10.1016/j.biotechadv.2025.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Since their large-scale adoption in the early 20th century, plastics have become indispensable to modern life. However, inadequate disposal and recycling methods have led to severe environmental consequences. While traditional end-of-life plastics management had predominantly relied on landfilling, a paradigm shift towards recycling and valorization emerged in the 1970s, leading to the development of various, mostly mechanochemical, recycling strategies, together with the more recent approach of biological depolymerization and upcycling. Plastic upcycling, which converts plastic waste into higher-value products, is gaining attention as a sustainable strategy to reduce environmental impact and reliance on virgin materials. Microbial plastic upcycling relies on efficient depolymerization methods to generate monomeric substrates, which are subsequently metabolized by native or engineered microbial systems yielding valuable bioproducts. This review focuses on the second phase of microbial polyester upcycling, examining the intracellular metabolic pathways that enable the assimilation and bioconversion of polyester-derived monomers into industrially relevant compounds. Both biodegradable and non-biodegradable polyesters with commercial significance are considered, with emphasis on pure monomeric feedstocks to elucidate intracellular carbon assimilation pathways. Understanding these metabolic processes provides a foundation for future metabolic engineering efforts, aiming to optimize microbial systems for efficient bioconversion of mixed plastic hydrolysates into valuable bioproducts.
Collapse
Affiliation(s)
- Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| |
Collapse
|
5
|
Orimaco R, Donnelly P, Sexton S, McLoughlin A, Kelly S, O'Connor KE, Wierckx N, Narančić T. Characterisation and Harnessing of 5-Hydroxymethylfurfural Metabolism in Pseudomonas umsongensis GO16 for the Production of 2,5-Furandicarboxylic Acid. Microb Biotechnol 2025; 18:e70159. [PMID: 40346906 PMCID: PMC12064950 DOI: 10.1111/1751-7915.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/12/2025] Open
Abstract
In the search for biobased alternatives to traditional fossil plastics, 2,5-furandicarboxylic acid (FDCA) represents a potential substitute to terephthalic acid (TPA), a monomer of the ubiquitous polyester, polyethylene terephthalate (PET). Pseudomonas umsongensis GO16, which can metabolise TPA and ethylene glycol (EG), can also oxidise 5-hydroxymethylfurfural (HMF), a precursor to FDCA. The enzymes involved in the oxidation to FDCA, PsfA and PsfG, were identified and characterised. Deletion of FDCA decarboxylase HmfF involved in the conversion of FDCA to furoic acid, and subsequently to a central metabolic intermediate, 2-ketoglutarate, allowed for the accumulation of FDCA. GO16 ΔhmfF cells were grown on glycerol, TPA, EG or mock PET hydrolysate, and the catalyst was then used for the biotransformation of HMF to FDCA. When TPA was used as a growth substrate and to power the biotransformation, the transport of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) into the cytoplasm represented a rate-limiting step in HMF oxidation. De-bottlenecking transport limitations through in trans overexpression of the HMFCA transporter (HmfT) along with the PsfA aldehyde dehydrogenase and PsfG alcohol dehydrogenase allowed 100% conversion of 50 mM HMF to FDCA within 24 h when TPA, EG or mock PET hydrolysate were used to grow the biocatalyst and subsequently to power the biotransformation. This expands the repertoire of valuable products obtained from engineered P. umsongensis GO16 in the strategy to bio-upcycle post-consumer PET.
Collapse
Affiliation(s)
- Rhys Orimaco
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| | - Pauric Donnelly
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| | - Seán Sexton
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| | - Aoife McLoughlin
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| | - Sophie Kelly
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| | - Kevin E. O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| | - Nick Wierckx
- Institute of bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Tanja Narančić
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- BiOrbic ‐ Bioeconomy Research CentreIreland, University College DublinDublin 4Ireland
| |
Collapse
|
6
|
Hammami K, Souii A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Souissi Y, Neifar M. Experimental and Computational Insights into Polyurethane Plastic Waste Conversion to Microbial Bioplastic. Curr Microbiol 2025; 82:227. [PMID: 40178692 DOI: 10.1007/s00284-025-04218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
In this study, a seven-factor Hoke experimental design and the response surface methodology were used to optimize the fermentation conditions for the maximum polyhydroxyalkanoates (PHA) yield using polyurethane plastic waste (PUPW) as a source of carbon and energy for the microbial growth and biobased polyester production. The highest PHA yield (0.80 g/L ± 0.01) was obtained under a pH of 8; a temperature of 35 °C; a NaCl concentration of 5%; a PUPW concentration of 1%; an inoculum size of 15%, a monoculture of Pseudomonas rhizophila S211; and an incubation time of 6 days. The response values predicted by the Hoke design model at each combination of factor levels aligned with the experimental results, and the analysis of variance demonstrated the predictability and accuracy of the postulated model. In addition to the experimental evidences, P. rhizophila genome was explored to predict the PUPW-degrading enzymes and the associated protein secretion systems. Moreover, physicochemical properties, phylogenetic analysis, and 3D structure of S211 LipA2 polyurethanase were elucidated through an in-silico approach. Taken all together, integrated experimental tests and computational modeling suggest that P. rhizophila S211 has the necessary enzymatic machinery to effectively convert the non-biodegradable PUPW into PHA bioplastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied On the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", University of Monastir, 5100, Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Mohamed Neifar
- APVA-LR16ES20, Biological Department, National School of Engineers of Sfax (ENIS), University of Sfax, 3038, Sfax, Tunisia.
- Common Services Unit "Bioreactor Coupled With an Ultrafilter", ENIS, University of Sfax, 3030, Sfax, Tunisia.
| |
Collapse
|
7
|
Roman EKB, Ramos MA, Tomazetto G, Foltran BB, Galvão MH, Ciancaglini I, Tramontina R, de Almeida Rodrigues F, da Silva LS, Sandano ALH, Fernandes DGDS, Almeida DV, Baldo DA, de Oliveira Junior JM, Garcia W, Damasio A, Squina FM. Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174876. [PMID: 39067601 DOI: 10.1016/j.scitotenv.2024.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling.
Collapse
Affiliation(s)
- Ellen Karen Barreto Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Murilo Antonio Ramos
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Geizecler Tomazetto
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bruno Botega Foltran
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | | | | | - Diógenes G da S Fernandes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Denicezar Angelo Baldo
- Laboratory of Applied Nuclear Physics, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabio Marcio Squina
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
8
|
Guo R, Cen X, Ni BJ, Zheng M. Bioplastic polyhydroxyalkanoate conversion in waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122866. [PMID: 39405858 DOI: 10.1016/j.jenvman.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) have been proposed as a promising solution for plastic pollution due to their biodegradability and diverse applications. To promote PHA as a competitive commercial product, an attractive alternative is to produce and recover PHA in the use of mixed cultures such as waste activated sludge from wastewater treatment plants. PHA can accumulate in sludge with a potential range of 40%-65% g PHA/g VSS. However, wider challenges with PHA production efficiency, stability, and economic viability still persist for PHA application. This work provides an overview of the current understanding and status of PHA bioconversion in waste sludge with particular attention given to metabolic pathways, operation modes, factors affecting the process, and applications. Challenges and future prospectives for PHA bioconversion in sludge are discussed.
Collapse
Affiliation(s)
- Rui Guo
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
9
|
Safdar A, Ismail F, Safdar M, Imran M. Eco-friendly approaches for mitigating plastic pollution: advancements and implications for a greener future. Biodegradation 2024; 35:493-518. [PMID: 38310578 DOI: 10.1007/s10532-023-10062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Plastic pollution has become a global problem since the extensive use of plastic in industries such as packaging, electronics, manufacturing and construction, healthcare, transportation, and others. This has resulted in an environmental burden that is continually growing, which has inspired many scientists as well as environmentalists to come up with creative solutions to deal with this problem. Numerous studies have been reviewed to determine practical, affordable, and environmentally friendly solutions to regulate plastic waste by leveraging microbes' innate abilities to naturally decompose polymers. Enzymatic breakdown of plastics has been proposed to serve this goal since the discovery of enzymes from microbial sources that truly interact with plastic in its naturalistic environment and because it is a much faster and more effective method than others. The scope of diverse microbes and associated enzymes in polymer breakdown is highlighted in the current review. The use of co-cultures or microbial consortium-based techniques for the improved breakdown of plastic products and the generation of high-value end products that may be utilized as prototypes of bioenergy sources is highlighted. The review also offers a thorough overview of the developments in the microbiological and enzymatic biological degradation of plastics, as well as several elements that impact this process for the survival of our planet.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Maryem Safdar
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Imran
- Institute of Advanced Study, Shenzhen University, Shenzhen, 5180600, Guangdong Province, China.
| |
Collapse
|
10
|
Almustafa W, Schubert DW, Grishchuk S, Sebastian J, Grun G. Chemical Synthesis of Atactic Poly-3-hydroxybutyrate (a-P3HB) by Self-Polycondensation: Catalyst Screening and Characterization. Polymers (Basel) 2024; 16:1655. [PMID: 38932005 PMCID: PMC11207747 DOI: 10.3390/polym16121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Poly-3-hydroxybutyrate (P3HB) is a biodegradable polyester produced mainly by bacterial fermentation in an isotactic configuration. Its high crystallinity (about 70%) and brittle behavior have limited the process window and the application of this polymer in different sectors. Atactic poly-3-hydroxybutyrate (a-P3HB) is an amorphous polymer that can be synthesized chemically and blended with the isotactic P3HB to reduce its crystallinity and improve its processability Ring-opening polymerization (ROP) is the most cited synthesis route for this polymer in the literature. In this work, a new synthesis route of a-P3HB by self-polycondensation of racemic ethyl 3-hydroxybutyrate will be demonstrated. Different catalysts were tested regarding their effectiveness, and the reaction parameters were optimized using titanium isopropoxide as the catalyst. The resulting polymers were compared by self-polycondensation for their properties with those of a-P3HB obtained by the ROP and characterized by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC), and the double bond content (DBC) was determined by UV-VIS spectroscopy by using 3-butenoic acid as a standard. Additionally, a life cycle analysis (LCA) of the new method of synthesizing has been carried out to assess the environmental impact of a-P3HB.
Collapse
Affiliation(s)
- Wael Almustafa
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| | - Dirk W. Schubert
- Institute of Polymer Materials, Department of Materials Science, Faculty of Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstr. 7, 91058 Erlangen, Germany
| | - Sergiy Grishchuk
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| | - Jörg Sebastian
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| | - Gregor Grun
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| |
Collapse
|
11
|
Hahn T, Alzate MO, Leonhardt S, Tamang P, Zibek S. Current trends in medium-chain-length polyhydroxyalkanoates: Microbial production, purification, and characterization. Eng Life Sci 2024; 24:2300211. [PMID: 38845815 PMCID: PMC11151071 DOI: 10.1002/elsc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) have gained interest recently due to their biodegradability and versatility. In particular, the chemical compositions of medium-chain-length (mcl)-PHAs are highly diverse, comprising different monomers containing 6-14 carbon atoms. This review summarizes different feedstocks and fermentation strategies to enhance mcl-PHA production and briefly discusses the downstream processing. This review also provides comprehensive details on analytical tools for determining the composition and properties of mcl-PHA. Moreover, this study provides novel information by statistically analyzing the data collected from several reports on mcl-PHA to determine the optimal fermentation parameters (specific growth rate, PHA productivity, and PHA yield from various structurally related and unrelated substrates), mcl-PHA composition, molecular weight (MW), and thermal and mechanical properties, in addition to other relevant statistical values. The analysis revealed that the median PHA productivity observed in the fed-batch feeding strategy was 0.4 g L-1 h-1, which is eight times higher than that obtained from batch feeding (0.05 g L-1 h-1). Furthermore, 3-hydroxyoctanoate and -decanoate were the primary monomers incorporated into mcl-PHA. The investigation also determined the median glass transition temperature (-43°C) and melting temperature (47°C), which indicated that mcl-PHA is a flexible amorphous polymer at room temperature with a median MW of 104 kDa. However, information on the monomer composition or heterogeneity and the associated physical and mechanical data of mcl-PHAs is inadequate. Based on their mechanical values, the mcl-PHAs can be classified as semi-crystalline polymers (median crystallinity 23%) with rubber-like properties and a median elongation at break of 385%. However, due to the limited mechanical data available for mcl-PHAs with known monomer composition, identifying suitable processing tools and applications to develop mcl-PHAs further is challenging.
Collapse
Affiliation(s)
- Thomas Hahn
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Melissa Ortega Alzate
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Department of Chemical EngineeringUniversity of AntioquiaEl Carmen de ViboralColombia
| | - Steven Leonhardt
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Pravesh Tamang
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Susanne Zibek
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Institute of Interfacial Engineering and Plasma Technology IGVPUniversity of StuttgartStuttgartGermany
| |
Collapse
|
12
|
Weiland F, Kohlstedt M, Wittmann C. Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry. Curr Opin Biotechnol 2024; 86:103079. [PMID: 38422776 DOI: 10.1016/j.copbio.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Polyethylene terephthalate (PET) has revolutionized the industrial sector because of its versatility, with its predominant uses in the textiles and packaging materials industries. Despite the various advantages of this polymer, its synthesis is, unfavorably, tightly intertwined with nonrenewable fossil resources. Additionally, given its widespread use, accumulating PET waste poses a significant environmental challenge. As a result, current research in the areas of biological recycling, upcycling, and de novo synthesis is intensifying. Biological recycling involves the use of micro-organisms or enzymes to breakdown PET into monomers, offering a sustainable alternative to traditional recycling. Upcycling transforms PET waste into value-added products, expanding its potential application range and promoting a circular economy. Moreover, studies of cascading biological and chemical processes driven by microbial cell factories have explored generating PET using renewable, biobased feedstocks such as lignin. These avenues of research promise to mitigate the environmental footprint of PET, underlining the importance of sustainable innovations in the industry.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
13
|
Kuang ZY, Yang H, Shen SW, Lin YN, Sun SW, Neureiter M, Yue HT, Ye JW. Bio-conversion of organic wastes towards polyhydroxyalkanoates. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:118-126. [PMID: 39416913 PMCID: PMC11446391 DOI: 10.1016/j.biotno.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 10/19/2024]
Abstract
The bio-manufacturing of products with substantial commercial value, particularly polyhydroxyalkanoates (PHA), using cost-effective carbon sources through microorganisms, has garnered heightened attention from both the scientific community and industry over the past few decades. Opting for industrial PHA production from various organic wastes, spanning industrial, agricultural, municipal, and food-based sources, emerges as a wiser choice. This strategy not only eases the burden of recycling organic waste and curbs environmental pollution but also trims down PHA production costs, rendering these materials more competitive in commercial markets. In addition, PHAs are a family of renewable, environmentally friendly, fully biodegradable and biocompatible polyesters with a multitude of applications. This review provides an overview of recent developments in PHA production from organic wastes. It covers the optimization of diverse metabolic pathways for producing various types of PHA from organic waste sources, pre-treatment and downstream processing for PHA using unrelated organic wastes, and challenges in industrial production of PHA using unrelated organic waste feedstocks and the challenges faced in industrial PHA production from organic wastes, along with potential solutions. Lastly, this study suggests underlying research endeavors aimed at further enhancing of the feasibility of industrial PHA production from organic wastes as an alternative to current petroleum-based plastics in the near future.
Collapse
Affiliation(s)
- Zhe-Yi Kuang
- School of Future Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Shi-Wei Shen
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Yi-Na Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Shu-Wen Sun
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Markus Neureiter
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Hai-Tao Yue
- School of Future Technology, Xinjiang University, Urumqi, 830017, PR China
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
14
|
Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable production and degradation of plastics using microbes. Nat Microbiol 2023; 8:2253-2276. [PMID: 38030909 DOI: 10.1038/s41564-023-01529-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Plastics are indispensable in everyday life and industry, but the environmental impact of plastic waste on ecosystems and human health is a huge concern. Microbial biotechnology offers sustainable routes to plastic production and waste management. Bacteria and fungi can produce plastics, as well as their constituent monomers, from renewable biomass, such as crops, agricultural residues, wood and organic waste. Bacteria and fungi can also degrade plastics. We review state-of-the-art microbial technologies for sustainable production and degradation of bio-based plastics and highlight the potential contributions of microorganisms to a circular economy for plastics.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Hye Eun Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea.
- BioInformatics Research Center, KAIST, Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Cerrone F, Zhou B, Mouren A, Avérous L, Conroy S, Simpson JC, O'Connor KE, Narancic T. Pseudomonas umsongensis GO16 as a platform for the in vivo synthesis of short and medium chain length polyhydroxyalkanoate blends. BIORESOURCE TECHNOLOGY 2023; 387:129668. [PMID: 37572888 DOI: 10.1016/j.biortech.2023.129668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biological polyesters, viewed as a replacement for petrochemical plastic. However, they suffer from suboptimal physical and mechanical properties. Here, it was shown that a metabolically versatile Pseudomonas umsongensis GO16 can synthesise a blend of short chain length (scl) and medium chain length (mcl)-PHA. A defined mix of butyric (BA) and octanoic acid (OA) in different ratios was used. The PHA monomer composition varied depending on the feeding strategy. When OA and BA were fed at 80:20 ratio it showed 14, 8, 77 and 1 mol% of (R)-3-hydroxybutyrate, (R)-3-hydroxyhexanoate, (R)-3-hydroxyoctanoate and (R)-3-hydroxydecanoate respectively. The polymer characterisation clearly shows that polyhydroxybutyrate (PHB) and mcl-PHA are produced individually. The two polymers are blended on the PHA granule level, as demonstrated by fluorescence microscopy and yeast two-hybrid assay. The resulting blend has a specific viscoelasticity compared to PHB and PHO. Mcl-PHA acts as a plasticiser and reduces PHB brittleness.
Collapse
Affiliation(s)
- Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Stephen Conroy
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Science Centre West, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; BiOrbic - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Schaerer L, Putman L, Bigcraft I, Byrne E, Kulas D, Zolghadr A, Aloba S, Ong R, Shonnard D, Techtmann S. Coexistence of specialist and generalist species within mixed plastic derivative-utilizing microbial communities. MICROBIOME 2023; 11:224. [PMID: 37838714 PMCID: PMC10576394 DOI: 10.1186/s40168-023-01645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Plastic-degrading microbial isolates offer great potential to degrade, transform, and upcycle plastic waste. Tandem chemical and biological processing of plastic wastes has been shown to substantially increase the rates of plastic degradation; however, the focus of this work has been almost entirely on microbial isolates (either bioengineered or naturally occurring). We propose that a microbial community has even greater potential for plastic upcycling. A microbial community has greater metabolic diversity to process mixed plastic waste streams and has built-in functional redundancy for optimal resilience. RESULTS Here, we used two plastic-derivative degrading communities as a model system to investigate the roles of specialist and generalist species within the microbial communities. These communities were grown on five plastic-derived substrates: pyrolysis treated high-density polyethylene, chemically deconstructed polyethylene terephthalate, disodium terephthalate, terephthalamide, and ethylene glycol. Short-read metagenomic and metatranscriptomic sequencing were performed to evaluate activity of microorganisms in each treatment. Long-read metagenomic sequencing was performed to obtain high-quality metagenome assembled genomes and evaluate division of labor. CONCLUSIONS Data presented here show that the communities are primarily dominated by Rhodococcus generalists and lower abundance specialists for each of the plastic-derived substrates investigated here, supporting previous research that generalist species dominate batch culture. Additionally, division of labor may be present between Hydrogenophaga terephthalate degrading specialists and lower abundance protocatechuate degrading specialists. Video Abstract.
Collapse
Affiliation(s)
- Laura Schaerer
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Lindsay Putman
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Emma Byrne
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Daniel Kulas
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Ali Zolghadr
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Sulihat Aloba
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Rebecca Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - David Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Stephen Techtmann
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
17
|
Bao T, Qian Y, Xin Y, Collins JJ, Lu T. Engineering microbial division of labor for plastic upcycling. Nat Commun 2023; 14:5712. [PMID: 37752119 PMCID: PMC10522701 DOI: 10.1038/s41467-023-40777-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Teng Bao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuanchao Qian
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - James J Collins
- Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Son J, Lim SH, Kim YJ, Lim HJ, Lee JY, Jeong S, Park C, Park SJ. Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. BIORESOURCE TECHNOLOGY 2023; 371:128607. [PMID: 36638894 DOI: 10.1016/j.biortech.2023.128607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Preventing catastrophic climate events warrants prompt action to delay global warming, which threatens health and food security. In this context, waste management using engineered microbes has emerged as a long-term eco-friendly solution for addressing the global climate crisis and transitioning to clean energy. Notably, Pseudomonas putida can valorize industry-derived synthetic wastes including plastics, oils, food, and agricultural waste into products of interest, and it has been extensively explored for establishing a fully circular bioeconomy through the conversion of waste into bio-based products, including platform chemicals (e.g., cis,cis-muconic and adipic acid) and biopolymers (e.g., medium-chain length polyhydroxyalkanoate). However, the efficiency of waste pretreatment technologies, capability of microbial cell factories, and practicability of synthetic biology tools remain low, posing a challenge to the industrial application of P. putida. The present review discusses the state-of-the-art, challenges, and future prospects for divergent biosynthesis of versatile products from waste-derived feedstocks using P. putida.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
19
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
20
|
de Witt J, Ernst P, Gätgens J, Noack S, Hiller D, Wynands B, Wierckx N. Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate. Metab Eng 2023; 75:205-216. [PMID: 36581064 PMCID: PMC9875883 DOI: 10.1016/j.ymben.2022.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
In recent years branched short-chain dicarboxylates (BSCD) such as itaconic acid gained increasing interest in both medicine and biotechnology. Their use as building blocks for plastics urges for developing microbial upcycling strategies to provide sustainable end-of-life solutions. Furthermore, many BSCD exhibit anti-bacterial properties or exert immunomodulatory effects in macrophages, indicating a medical relevance for this group of molecules. For both of these applications, a detailed understanding of the microbial metabolism of these compounds is essential. In this study, the metabolic pathway of BSCD degradation from Pseudomonas aeruginosa PAO1 was studied in detail by heterologously transferring it to Pseudomonas putida. Heterologous expression of the PA0878-0886 itaconate metabolism gene cluster enabled P. putida KT2440 to metabolize itaconate, (S)- and (R)-methylsuccinate, (S)-citramalate, and mesaconate. The functions of the so far uncharacterized genes PA0879 and PA0881 were revealed and proven to extend the substrate range of the core degradation pathway. Furthermore, the uncharacterized gene PA0880 was discovered to encode a 2-hydroxyparaconate (2-HP) lactonase that catalyzes the cleavage of the itaconate derivative 2-HP to itatartarate. Interestingly, 2-HP was found to inhibit growth of the engineered P. putida on itaconate. All in all, this study extends the substrate range of P. putida to include BSCD for bio-upcycling of high-performance polymers, and also identifies 2-HP as promising candidate for anti-microbial applications.
Collapse
Affiliation(s)
- Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Davina Hiller
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany,Corresponding author.
| |
Collapse
|
21
|
Khare R, Khare S. Polymer and its effect on environment. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2022.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Lomwongsopon P, Varrone C. Critical Review on the Progress of Plastic Bioupcycling Technology as a Potential Solution for Sustainable Plastic Waste Management. Polymers (Basel) 2022; 14:polym14224996. [PMID: 36433123 PMCID: PMC9692586 DOI: 10.3390/polym14224996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Plastic production worldwide has doubled in the last two decades and is expected to reach a four-fold increase by 2050. The durability of plastic makes them a perfect material for many applications, but it is also a key limitation to their end-of-life management. The current plastic lifecycle is far from circular, with only 13% being collected for recycling and 9% being successfully recycled, indicating the failure of current recycling technology. The remaining plastic waste streams are thus incinerated, landfilled, or worse, mismanaged, leading to them leaking into the environment. To promote plastic circularity, keeping material in the loop is a priority and represents a more sustainable solution. This can be achieved through the reuse of plastic items, or by using plastic waste as a resource for new materials, instead of discarding them as waste. As the discovery of plastic-degrading/utilizing microorganisms and enzymes has been extensively reported recently, the possibility of developing biological plastic upcycling processes is opening up. An increasing amount of studies have investigated the use of plastic as a carbon source for biotechnological processes to produce high-value compounds such as bioplastics, biochemicals, and biosurfactants. In the current review, the advancements in fossil-based plastic bio- and thermochemical upcycling technologies are presented and critically discussed. In particular, we highlight the developed (bio)depolymerization coupled with bioconversion/fermentation processes to obtain industrially valuable products. This review is expected to contribute to the future development and scale-up of effective plastic bioupcycling processes that can act as a drive to increase waste removal from the environment and valorize post-consumer plastic streams, thus accelerating the implementation of a circular (plastic) economy.
Collapse
|
23
|
Kim NK, Lee SH, Park HD. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. BIORESOURCE TECHNOLOGY 2022; 363:127931. [PMID: 36100185 DOI: 10.1016/j.biortech.2022.127931] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The production of polyethylene terephthalate (PET) has drastically increased in the past half-century, reaching 30 million tons every year. The accumulation of this recalcitrant waste now threatens diverse ecosystems. Despite efforts to recycle PET wastes, its rate of recycling remains limited, as the current PET downcycling is mostly unremunerative. To address this problem, PET bio-upcycling, which integrates microbial depolymerization of PET followed by repolymerization of PET-derived monomers into value-added products, has been suggested. This article critically reviews current understanding of microbial PET hydrolysis, the metabolic mechanisms involved in PET degradation, PET hydrolases, and their genetic improvement. Furthermore, this review includes the use of meta-omics approaches to search PET-degrading microbiomes, microbes, and putative hydrolases. The current development of biosynthetic technologies to convert PET-derived materials into value-added products is also comprehensively discussed. The integration of various depolymerization and repolymerization biotechnologies enhances the prospects of a circular economy using waste PET.
Collapse
Affiliation(s)
- Na-Kyung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
24
|
Brandenberg OF, Schubert OT, Kruglyak L. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression. Microb Cell Fact 2022; 21:119. [PMID: 35717313 PMCID: PMC9206389 DOI: 10.1186/s12934-022-01849-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Biocatalysis offers a promising path for plastic waste management and valorization, especially for hydrolysable plastics such as polyethylene terephthalate (PET). Microbial whole-cell biocatalysts for simultaneous PET degradation and growth on PET monomers would offer a one-step solution toward PET recycling or upcycling. We set out to engineer the industry-proven bacterium Pseudomonas putida for (i) metabolism of PET monomers as sole carbon sources, and (ii) efficient extracellular expression of PET hydrolases. We pursued this approach for both PET and the related polyester polybutylene adipate co-terephthalate (PBAT), aiming to learn about the determinants and potential applications of bacterial polyester-degrading biocatalysts. RESULTS P. putida was engineered to metabolize the PET and PBAT monomer terephthalic acid (TA) through genomic integration of four tphII operon genes from Comamonas sp. E6. Efficient cellular TA uptake was enabled by a point mutation in the native P. putida membrane transporter MhpT. Metabolism of the PET and PBAT monomers ethylene glycol and 1,4-butanediol was achieved through adaptive laboratory evolution. We then used fast design-build-test-learn cycles to engineer extracellular PET hydrolase expression, including tests of (i) the three PET hydrolases LCC, HiC, and IsPETase; (ii) genomic versus plasmid-based expression, using expression plasmids with high, medium, and low cellular copy number; (iii) three different promoter systems; (iv) three membrane anchor proteins for PET hydrolase cell surface display; and (v) a 30-mer signal peptide library for PET hydrolase secretion. PET hydrolase surface display and secretion was successfully engineered but often resulted in host cell fitness costs, which could be mitigated by promoter choice and altering construct copy number. Plastic biodegradation assays with the best PET hydrolase expression constructs genomically integrated into our monomer-metabolizing P. putida strains resulted in various degrees of plastic depolymerization, although self-sustaining bacterial growth remained elusive. CONCLUSION Our results show that balancing extracellular PET hydrolase expression with cellular fitness under nutrient-limiting conditions is a challenge. The precise knowledge of such bottlenecks, together with the vast array of PET hydrolase expression tools generated and tested here, may serve as a baseline for future efforts to engineer P. putida or other bacterial hosts towards becoming efficient whole-cell polyester-degrading biocatalysts.
Collapse
Affiliation(s)
- Oliver F Brandenberg
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, USA.
| | - Olga T Schubert
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, USA.,Department of Environmental Microbiology, EAWAG, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zurich, 8092, Zürich, Switzerland
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
25
|
Direct production of polyhydroxybutyrate and alginate from crude glycerol by Azotobacter vinelandii using atmospheric nitrogen. Sci Rep 2022; 12:8032. [PMID: 35672418 PMCID: PMC9174451 DOI: 10.1038/s41598-022-11728-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
While biodiesel is drawing attention as an eco-friendly fuel, the use of crude glycerol, a byproduct of the fuel production process, has increasingly become a concern to be addressed. Here we show the development of a low-cost fermentation technology using an atmospheric nitrogen-fixing bacterium to recycle crude glycerol into functional biopolymers. Azotobacter vinelandii showed substantial growth on tap water-diluted crude glycerol without any pretreatment. The number of viable A. vinelandii cells increased over 1000-fold under optimal growth conditions. Most of the glycerol content (~ 0.2%) in the crude glycerol medium was completely depleted within 48 h of culture. Useful polymers, such as polyhydroxybutyrate and alginate, were also produced. Polyhydroxybutyrate productivity was increased ten-fold by blocking the alginate synthesis pathway. Although there are few examples of using crude glycerol directly as a carbon source for microbial fermentation, there are no reports on the use of crude glycerol without the addition of a nitrogen source. This study demonstrated that it is possible to develop a technology to produce industrially useful polymers from crude glycerol through energy-saving and energy-efficient fermentation using the atmospheric nitrogen-fixing microorganism A. vinelandii.
Collapse
|
26
|
Sarkar B, Dissanayake PD, Bolan NS, Dar JY, Kumar M, Haque MN, Mukhopadhyay R, Ramanayaka S, Biswas JK, Tsang DCW, Rinklebe J, Ok YS. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2022; 207:112179. [PMID: 34624271 DOI: 10.1016/j.envres.2021.112179] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 05/06/2023]
Abstract
The accumulation of microplastics (MPs) and nanoplastics (NPs) in terrestrial and aquatic ecosystems has raised concerns because of their adverse effects on ecosystem functions and human health. Plastic waste management has become a universal problem in recent years. Hence, sustainable plastic waste management techniques are vital for achieving the United Nations Sustainable Development Goals. Although many reviews have focused on the occurrence and impact of micro- and nanoplastics (MNPs), there has been limited focus on the management of MNPs. This review first summarizes the ecotoxicological impacts of plastic waste sources and issues related to the sustainable management of MNPs in the environment. This paper then critically evaluates possible approaches for incorporating plastics into the circular economy in order to cope with the problem of plastics. Pollution associated with MNPs can be tackled through source reduction, incorporation of plastics into the circular economy, and suitable waste management. Appropriate infrastructure development, waste valorization, and economically sound plastic waste management techniques and viable alternatives are essential for reducing MNPs in the environment. Policymakers must pay more attention to this critical issue and implement appropriate environmental regulations to achieve environmental sustainability.
Collapse
Affiliation(s)
- Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Soils and Plant Nutrition Division, Coconut Research Institute, Lunuwila 61150, Sri Lanka
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jaffer Yousuf Dar
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
| | - Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Md Niamul Haque
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Department of Marine Science, College of Natural Sciences & Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
| | - Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Gao R, Pan H, Kai L, Han K, Lian J. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World J Microbiol Biotechnol 2022; 38:89. [PMID: 35426614 DOI: 10.1007/s11274-022-03270-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
The polyethylene terephthalate (PET) is one of the major plastics with a huge annual production. Alongside with its mass production and wide applications, PET pollution is threatening and damaging the environment and human health. Although mechanical or chemical methods can deal with PET, the process suffers from high cost and the hydrolyzed monomers will cause secondary pollution. Discovery of plastic-degrading microbes and the corresponding enzymes emerges new hope to cope with this issue. Combined with synthetic biology and metabolic engineering, microbial cell factories not only provide a promising approach to degrade PET, but also enable the conversion of its monomers, ethylene glycol (EG) and terephthalic acid (TPA), into value-added compounds. In this way, PET wastes can be handled in environment-friendly and more potentially cost-effective processes. While PET hydrolases have been extensively reviewed, this review focuses on the microbes and metabolic pathways for the degradation of PET monomers. In addition, recent advances in the biotransformation of TPA and EG into value-added compounds are discussed in detail.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lei Kai
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 22116, Xuzhou, China.,Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Kun Han
- Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
28
|
Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP, Chen EYX, Leibfarth FA, Sardon H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022; 603:803-814. [PMID: 35354997 DOI: 10.1038/s41586-021-04350-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
The vast majority of commodity plastics do not degrade and therefore they permanently pollute the environment. At present, less than 20% of post-consumer plastic waste in developed countries is recycled, predominately for energy recovery or repurposing as lower-value materials by mechanical recycling. Chemical recycling offers an opportunity to revert plastics back to monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymer. For plastic waste that is either cost prohibitive or infeasible to mechanically or chemically recycle, the nascent field of chemical upcycling promises to use chemical or engineering approaches to place plastic waste at the beginning of a new value chain. Here state-of-the-art methods are highlighted for upcycling plastic waste into value-added performance materials, fine chemicals and specialty polymers. By identifying common conceptual approaches, we critically discuss how the advantages and challenges of each approach contribute to the goal of realizing a sustainable plastics economy.
Collapse
Affiliation(s)
- Coralie Jehanno
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.,POLYKEY, Donostia-San Sebastian, Spain
| | - Jill W Alty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martijn Roosen
- Laboratory for Circular Process Engineering, Ghent University, Kortrijk, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering, Ghent University, Kortrijk, Belgium.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
| |
Collapse
|
29
|
Singh Jadaun J, Bansal S, Sonthalia A, Rai AK, Singh SP. Biodegradation of plastics for sustainable environment. BIORESOURCE TECHNOLOGY 2022; 347:126697. [PMID: 35026422 DOI: 10.1016/j.biortech.2022.126697] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Plastics are a kind of utility product that has become part and parcel of one's life. Their continuous usage, accumulation, and contamination of soil and water pose a severe threat to the biotic and abiotic components of the environment. It not only increases the carbon footprints but also contributes to global warming. This calls for an urgent need to develop novel strategies for the efficient degradation of plastics. The microbial strains equipped with the potential of degrading plastic materials, which can further be converted into usable products, are blessings for the ecosystem. This review comprehensively summarizes the microbial technologies to degrade different plastic types, such as polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), and polyurethane (PU). The study also describes the utilization of degraded plastic material as feedstock for its conversion into high-value chemicals.
Collapse
Affiliation(s)
- Jyoti Singh Jadaun
- Department of Botany, Dayanand Girls Postgraduate College, Kanpur 208001, Uttar Pradesh, India
| | - Shilpi Bansal
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 10012, India
| | - Ankit Sonthalia
- SRM Institute of Science and Technology, NCR Campus, Modi Nagar- 201204, Ghaziabad, Uttar Pradesh, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
30
|
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed.
Collapse
|
31
|
Oh YR, Jang YA, Song JK, Eom GT. Secretory production of an engineered cutinase in Bacillus subtilis for efficient biocatalytic depolymerization of polyethylene terephthalate. Bioprocess Biosyst Eng 2022; 45:711-720. [PMID: 35039943 DOI: 10.1007/s00449-022-02690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Polyethylene terephthalate (PET) waste has caused serious environmental pollution. Recently, PET depolymerization by enzymes with PET-depolymerizing activity has received attention as a solution to recycle PET. An engineered variant of leaf-branch compost cutinase (293 amino acid), ICCG (Phe243Ile/Asp238Cys/Ser283Cys/Tyr127Gly), showed excellent depolymerizing activity toward PET at 72 °C, which was the highest depolymerizing activity and thermo-stability ever reported in previous works. However, this enzyme was only produced by heterologous expression in the cytoplasm of Escherichia coli, which requires complex separation and purification steps. To simplify the purification steps of ICCG, we developed a secretory production system using Bacillus subtilis and its 174 types of N-terminal signal peptides. The recombinant strain expressing ICCG with the signal peptide of serine protease secreted the highest amount (9.4 U/mL) of ICCG. We improved the production of ICCG up to 22.6 U/mL (85 μg/mL) by performing batch fermentation of the selected strain in 2 L working volume using a 5-L fermenter, and prepared the crude ICCG solution by concentrating the culture supernatant. The recombinant ICCG successfully depolymerized a PET film with 37% crystallinity at 37 °C and 70 °C. In this study, we developed a secretory production system of the engineered cutinase with PET-depolymerizing activity to obtain high amounts of the enzyme by a relatively simple purification method. This system will contribute to the recycling of PET waste via a more efficient and environmentally friendly method based on enzymes with PET-depolymerizing activity.
Collapse
Affiliation(s)
- Yu-Ri Oh
- Bio-Based Chemistry Research Center, Korea Research Institute of Chemical Technology, Ulsan, 44429, Republic of Korea
| | - Young-Ah Jang
- Bio-Based Chemistry Research Center, Korea Research Institute of Chemical Technology, Ulsan, 44429, Republic of Korea
| | - Jae Kwang Song
- Bio-Based Chemistry Research Center, Korea Research Institute of Chemical Technology (KRICT), 141, Gajeong-ro, Daejeon, 34114, Republic of Korea
| | - Gyeong Tae Eom
- Bio-Based Chemistry Research Center, Korea Research Institute of Chemical Technology, Ulsan, 44429, Republic of Korea. .,Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
32
|
Aloui H, El Ouazari K, Khwaldia K. Functional property optimization of sodium caseinate-based films incorporating functional compounds from date seed co-products using response surface methodology. RSC Adv 2022; 12:15822-15833. [PMID: 35685700 PMCID: PMC9131730 DOI: 10.1039/d2ra01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Novel sodium caseinate films incorporating furfural and date seed oil (DSO) were produced. The effects of furfural and DSO contents on the functional and physical properties of the composite films were assessed using response surface methodology.
Collapse
Affiliation(s)
- Hajer Aloui
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Khawla El Ouazari
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia
| |
Collapse
|
33
|
Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021; 71:77-98. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The plastic crisis requires drastic measures, especially for the plastics' end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
Collapse
Affiliation(s)
- Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Winter
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Johann Hee
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Peter Quicker
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - André Bardow
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany; Institute of Energy and Climate Research (IEK 10), Research Center Jülich GmbH, Germany
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
34
|
Narancic T, Salvador M, Hughes GM, Beagan N, Abdulmutalib U, Kenny ST, Wu H, Saccomanno M, Um J, O'Connor KE, Jiménez JI. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Microb Biotechnol 2021; 14:2463-2480. [PMID: 33404203 PMCID: PMC8601165 DOI: 10.1111/1751-7915.13712] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
The throwaway culture related to the single-use materials such as polyethylene terephthalate (PET) has created a major environmental concern. Recycling of PET waste into biodegradable plastic polyhydroxyalkanoate (PHA) creates an opportunity to improve resource efficiency and contribute to a circular economy. We sequenced the genome of Pseudomonas umsongensis GO16 previously shown to convert PET-derived terephthalic acid (TA) into PHA and performed an in-depth genome analysis. GO16 can degrade a range of aromatic substrates in addition to TA, due to the presence of a catabolic plasmid pENK22. The genetic complement required for the degradation of TA via protocatechuate was identified and its functionality was confirmed by transferring the tph operon into Pseudomonas putida KT2440, which is unable to utilize TA naturally. We also identified the genes involved in ethylene glycol (EG) metabolism, the second PET monomer, and validated the capacity of GO16 to use EG as a sole source of carbon and energy. Moreover, GO16 possesses genes for the synthesis of both medium and short chain length PHA and we have demonstrated the capacity of the strain to convert mixed TA and EG into PHA. The metabolic versatility of GO16 highlights the potential of this organism for biotransformations using PET waste as a feedstock.
Collapse
Affiliation(s)
- Tanja Narancic
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Manuel Salvador
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | - Graham M. Hughes
- UCD Earth Institute and School of Biology and Environmental ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Niall Beagan
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
| | - Umar Abdulmutalib
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | - Shane T. Kenny
- Bioplastech Ltd.NovaUCD, Belfield Innovation ParkUniversity College DublinBelfieldDublin4Ireland
| | - Huihai Wu
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | - Marta Saccomanno
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
| | - Jounghyun Um
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Kevin E. O'Connor
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfieldDublin4Ireland
| | - José I. Jiménez
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
35
|
Fujiwara R, Sanuki R, Ajiro H, Fukui T, Yoshida S. Direct fermentative conversion of poly(ethylene terephthalate) into poly(hydroxyalkanoate) by Ideonella sakaiensis. Sci Rep 2021; 11:19991. [PMID: 34620982 PMCID: PMC8497579 DOI: 10.1038/s41598-021-99528-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
Poly(ethylene terephthalate) (PET) is a widely used plastic in bottles and fibers; its waste products pollute the environment owing to its remarkable durability. Recently, Ideonella sakaiensis 201-F6 was isolated as a unique bacterium that can degrade and assimilate PET, thus paving the way for the bioremediation and bioconversion of PET waste. We found that this strain harbors a poly(hydroxyalkanoate) (PHA) synthesis gene cluster, which is highly homologous with that of Cupriavidus necator, an efficient PHA producer. Cells grown on PET accumulated intracellular PHA at high levels. Collectively, our findings in this study demonstrate that I. sakaiensis can mediate the direct conversion of non-biodegradable PET into environment-friendly plastic, providing a new approach for PET recycling.
Collapse
Affiliation(s)
- Ryoga Fujiwara
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Rikako Sanuki
- Department of Applied Biology, Kyoto Institute of Technology, Saga Ippongi-cho 1, Ukyo-ku, Kyoto, 616-8354, Japan
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Shosuke Yoshida
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
36
|
Qin ZH, Mou JH, Chao CYH, Chopra SS, Daoud W, Leu SY, Ning Z, Tso CY, Chan CK, Tang S, Hathi ZJ, Haque MA, Wang X, Lin CSK. Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. CHEMSUSCHEM 2021; 14:4103-4114. [PMID: 34137191 DOI: 10.1002/cssc.202100752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Although fossil-based plastic products have many attractive characteristics, their production has led to severe environmental burdens that require immediate solutions. Despite these plastics being non-natural chemical compounds, they can be degraded and metabolized by some microorganisms, which suggests the potential application of biotechnologies based on the mechanism of plastic biodegradation. In this context, microbe-based strategies for the degradation, recycling, and valorization of plastic waste offer a feasible approach for alleviating environmental challenges created by the accumulation of plastic waste. This Minireview highlights recent advances in the biotechnology-based biodegradation of both traditional polymers and bio-based plastics, focusing on the mechanisms of biodegradation. From an application perspective, this Minireview also summarizes recent progress in the recycling and valorization of plastic waste, which are feasible solutions for tackling the plastic waste dilemma.
Collapse
Affiliation(s)
- Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | | | | | - Walid Daoud
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Zhi Ning
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510632, P. R. China
| | | | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| |
Collapse
|
37
|
Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, Haugen SJ, Bratti F, Dexter GN, Elmore JR, Huenemann JD, Peabody GL, Johnson CW, Rorrer NA, Salvachúa D, Guss AM, Beckham GT. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab Eng 2021; 67:250-261. [PMID: 34265401 DOI: 10.1016/j.ymben.2021.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, β-ketoadipic acid (βKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L βKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to βKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.
Collapse
Affiliation(s)
- Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Rita Clare
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Thomas D Mand
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Isabel Pardo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Felicia Bratti
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Gara N Dexter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joshua R Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jay D Huenemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - George L Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Adam M Guss
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA.
| |
Collapse
|
38
|
Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Curr Opin Biotechnol 2021; 73:1-13. [PMID: 34242853 DOI: 10.1016/j.copbio.2021.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Significant developments in the understanding and manipulation of microbial metabolism have enabled the use of engineered biological systems toward a more sustainable energy and materials economy. While developments in metabolic engineering have primarily focused on the conversion of carbohydrates, substantial opportunities exist for using these same principles to extract value from more heterogeneous and toxic waste streams, such as those derived from lignin, biomass pyrolysis, or industrial waste. Funneling heterogeneous substrates from these streams toward valuable products, termed biological funneling, presents new challenges in balancing multiple catabolic pathways competing for shared cellular resources and engineering against perturbation from toxic substrates. Solutions to many of these challenges have been explored within the field of lignin valorization. This perspective aims to extend beyond lignin to highlight the challenges and discuss opportunities for use of biological systems to upgrade previously inaccessible waste streams.
Collapse
|
39
|
Tiso T, Narancic T, Wei R, Pollet E, Beagan N, Schröder K, Honak A, Jiang M, Kenny ST, Wierckx N, Perrin R, Avérous L, Zimmermann W, O'Connor K, Blank LM. Towards bio-upcycling of polyethylene terephthalate. Metab Eng 2021; 66:167-178. [PMID: 33865980 DOI: 10.1016/j.ymben.2021.03.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022]
Abstract
Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology. Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics.
Collapse
Affiliation(s)
- Till Tiso
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Tanja Narancic
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; School of Biomolecular and Biomedical Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Niall Beagan
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katja Schröder
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Annett Honak
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Mengying Jiang
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France; SOPREMA, 14 rue de Saint-Nazaire, F-67025 Strasbourg Cedex, France
| | - Shane T Kenny
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nick Wierckx
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rémi Perrin
- SOPREMA, 14 rue de Saint-Nazaire, F-67025 Strasbourg Cedex, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Kevin O'Connor
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; School of Biomolecular and Biomedical Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
40
|
Borrero-de Acuña JM, Rohde M, Saldias C, Poblete-Castro I. Fed-Batch mcl- Polyhydroxyalkanoates Production in Pseudomonas putida KT2440 and Δ phaZ Mutant on Biodiesel-Derived Crude Glycerol. Front Bioeng Biotechnol 2021; 9:642023. [PMID: 33796510 PMCID: PMC8007980 DOI: 10.3389/fbioe.2021.642023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Crude glycerol has emerged as a suitable feedstock for the biotechnological production of various industrial chemicals given its high surplus catalyzed by the biodiesel industry. Pseudomonas bacteria metabolize the polyol into several biopolymers, including alginate and medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs). Although P. putida is a suited platform to derive these polyoxoesters from crude glycerol, the attained concentrations in batch and fed-batch cultures are still low. In this study, we employed P. putida KT2440 and the hyper-PHA producer ΔphaZ mutant in two different fed-batch modes to synthesize mcl-PHAs from raw glycerol. Initially, the cells grew in a batch phase (μmax 0.21 h–1) for 22 h followed by a carbon-limiting exponential feeding, where the specific growth rate was set at 0.1 (h–1), resulting in a cell dry weight (CDW) of nearly 50 (g L–1) at 40 h cultivation. During the PHA production stage, we supplied the substrate at a constant rate of 50 (g h–1), where the KT2440 and the ΔphaZ produced 9.7 and 12.7 gPHA L–1, respectively, after 60 h cultivation. We next evaluated the PHA production ability of the P. putida strains using a DO-stat approach under nitrogen depletion. Citric acid was the main by-product secreted by the cells, accumulating in the culture broth up to 48 (g L–1) under nitrogen limitation. The mutant ΔphaZ amassed 38.9% of the CDW as mcl-PHA and exhibited a specific PHA volumetric productivity of 0.34 (g L–1 h–1), 48% higher than the parental KT2440 under the same growth conditions. The biosynthesized mcl-PHAs had average molecular weights ranging from 460 to 505 KDa and a polydispersity index (PDI) of 2.4–2.6. Here, we demonstrated that the DO-stat feeding approach in high cell density cultures enables the high yield production of mcl-PHA in P. putida strains using the industrial crude glycerol, where the fed-batch process selection is essential to exploit the superior biopolymer production hallmarks of engineered bacterial strains.
Collapse
Affiliation(s)
- José Manuel Borrero-de Acuña
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility of Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cesar Saldias
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Faculty of Life Sciences, Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
41
|
Liu J, He J, Xue R, Xu B, Qian X, Xin F, Blank LM, Zhou J, Wei R, Dong W, Jiang M. Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnol Adv 2021; 48:107730. [PMID: 33713745 DOI: 10.1016/j.biotechadv.2021.107730] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Polyurethanes (PUR) are ranked globally as the 6th most abundant synthetic polymer material. Most PUR materials are specifically designed to ensure long-term durability and high resistance to environmental factors. As the demand for diverse PUR materials is increasing annually in many industrial sectors, a large amount of PUR waste is also being generated, which requires proper disposal. In contrast to other mass-produced plastics such as PE, PP, and PET, PUR is a family of synthetic polymers, which differ considerably in their physical properties due to different building blocks (for example, polyester- or polyether-polyol) used in the synthesis. Despite its xenobiotic properties, PUR has been found to be susceptible to biodegradation by different microorganisms, albeit at very low rate under environmental and laboratory conditions. Discovery and characterization of highly efficient PUR-degrading microbes and enzymes capable of disassembling PUR polymer chains into oligo- and monomeric compounds is of fundamental importance for a circular plastic economy. In this review, the main methods used for screening PUR-degrading microbes and enzymes are summarized and compared in terms of their catalytic mechanisms. Furthermore, recycling and upcycling strategies of waste PUR polymers, including microbial conversion of PUR monomers into value added products, are presented.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Rui Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
42
|
Welsing G, Wolter B, Hintzen HMT, Tiso T, Blank LM. Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative. Methods Enzymol 2021; 648:391-421. [PMID: 33579413 DOI: 10.1016/bs.mie.2020.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The enzymatic degradation of polyethylene terephthalate (PET) results in a hydrolysate consisting almost exclusively of its two monomers, ethylene glycol and terephthalate. To biologically valorize the PET hydrolysate, microbial upcycling into high-value products is proposed. Fatty acid derivatives hydroxyalkanoyloxy alkanoates (HAAs) represent such valuable target molecules. HAAs exhibit surface-active properties and can be exploited in the catalytical conversion to drop-in biofuels as well as in the polymerization to bio-based poly(amide urethane). This chapter presents the genetic engineering methods of pseudomonads for the metabolization of PET monomers and the biosynthesis of HAAs with detailed protocols concerning product purification.
Collapse
Affiliation(s)
- Gina Welsing
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Birger Wolter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Henric M T Hintzen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
43
|
Xu Z, Pan C, Li X, Hao N, Zhang T, Gaffrey MJ, Pu Y, Cort JR, Ragauskas AJ, Qian WJ, Yang B. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:11. [PMID: 33413621 PMCID: PMC7792162 DOI: 10.1186/s13068-020-01861-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy-co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440-for the first time, which simultaneously improved both cell biomass and PHA production. RESULTS Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4-16.1% and PHA content by 29.0-63.2%, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4-4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8-3.5%. The 1H-13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid β-oxidation, and PHA biosynthesis. CONCLUSIONS This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.
Collapse
Affiliation(s)
- Zhangyang Xu
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Chunmei Pan
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Xiaolu Li
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - John R Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bin Yang
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
44
|
Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. mSphere 2020; 5:5/6/e01151-20. [PMID: 33361127 PMCID: PMC7763552 DOI: 10.1128/msphere.01151-20] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
While several research groups are utilizing purified enzymes to break down postconsumer PET to the monomers TPA and ethylene glycol to produce new PET products, here, we present a group of five soil bacteria in culture that are able to partially degrade this polymer. To date, mixed Pseudomonas spp. and Bacillus spp. biodegradation of PET has not been described, and this work highlights the possibility of using bacterial consortia to biodegrade or potentially to biorecycle PET plastic waste. Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of Pseudomonas species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic polymer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associated with PET degradation. Strains and consortia of bacteria were grown in a liquid carbon-free basal medium (LCFBM) with PET as the sole carbon source. We monitored several key physical and chemical properties, including bacterial growth and modification of the plastic surface, using scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy. We detected by-products of hydrolysis of PET using 1H-nuclear magnetic resonance (1H NMR) analysis, consistent with the ATR-FTIR data. The full consortium of five strains containing Pseudomonas and Bacillus species grew synergistically in the presence of PET and the cleavage product bis(2-hydroxyethyl) terephthalic acid (BHET) as sole sources of carbon. Secreted enzymes extracted from the full consortium were capable of fully converting BHET to the metabolically usable monomers terephthalic acid (TPA) and ethylene glycol. Draft genomes provided evidence for mixed enzymatic capabilities between the strains for metabolic degradation of TPA and ethylene glycol, the building blocks of PET polymers, indicating cooperation and ability to cross-feed in a limited nutrient environment with PET as the sole carbon source. The use of bacterial consortia for the biodegradation of PET may provide a partial solution to widespread planetary plastic accumulation. IMPORTANCE While several research groups are utilizing purified enzymes to break down postconsumer PET to the monomers TPA and ethylene glycol to produce new PET products, here, we present a group of five soil bacteria in culture that are able to partially degrade this polymer. To date, mixed Pseudomonas spp. and Bacillus spp. biodegradation of PET has not been described, and this work highlights the possibility of using bacterial consortia to biodegrade or potentially to biorecycle PET plastic waste.
Collapse
|
45
|
Mohanan N, Montazer Z, Sharma PK, Levin DB. Microbial and Enzymatic Degradation of Synthetic Plastics. Front Microbiol 2020; 11:580709. [PMID: 33324366 PMCID: PMC7726165 DOI: 10.3389/fmicb.2020.580709] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Synthetic plastics are pivotal in our current lifestyle and therefore, its accumulation is a major concern for environment and human health. Petroleum-derived (petro-)polymers such as polyethylene (PE), polyethylene terephthalate (PET), polyurethane (PU), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) are extremely recalcitrant to natural biodegradation pathways. Some microorganisms with the ability to degrade petro-polymers under in vitro conditions have been isolated and characterized. In some cases, the enzymes expressed by these microbes have been cloned and sequenced. The rate of polymer biodegradation depends on several factors including chemical structures, molecular weights, and degrees of crystallinity. Polymers are large molecules having both regular crystals (crystalline region) and irregular groups (amorphous region), where the latter provides polymers with flexibility. Highly crystalline polymers like polyethylene (95%), are rigid with a low capacity to resist impacts. PET-based plastics possess a high degree of crystallinity (30-50%), which is one of the principal reasons for their low rate of microbial degradation, which is projected to take more than 50 years for complete degraded in the natural environment, and hundreds of years if discarded into the oceans, due to their lower temperature and oxygen availability. The enzymatic degradation occurs in two stages: adsorption of enzymes on the polymer surface, followed by hydro-peroxidation/hydrolysis of the bonds. The sources of plastic-degrading enzymes can be found in microorganisms from various environments as well as digestive intestine of some invertebrates. Microbial and enzymatic degradation of waste petro-plastics is a promising strategy for depolymerization of waste petro-plastics into polymer monomers for recycling, or to covert waste plastics into higher value bioproducts, such as biodegradable polymers via mineralization. The objective of this review is to outline the advances made in the microbial degradation of synthetic plastics and, overview the enzymes involved in biodegradation.
Collapse
Affiliation(s)
- Nisha Mohanan
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Montazer
- Faculty of Food Engineering, The Educational Complex of Agriculture and Animal Science, Torbat-e-jam, Iran
| | - Parveen K. Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
46
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
47
|
Pardo I, Jha RK, Bermel RE, Bratti F, Gaddis M, McIntyre E, Michener W, Neidle EL, Dale T, Beckham GT, Johnson CW. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1. Metab Eng 2020; 62:260-274. [DOI: 10.1016/j.ymben.2020.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
|
48
|
Li Y, Yang S, Jin D, Jia X. Optimization of medium‐chain‐length polyhydroxyalkanoate production by
Pseudomonas putida
KT2440 from co‐metabolism of glycerol and octanoate. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Li
- Department of Biochemical Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Frontier Science Centre for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Songyuan Yang
- Department of Biochemical Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Frontier Science Centre for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Dayao Jin
- Department of Biochemical Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Frontier Science Centre for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Frontier Science Centre for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin China
| |
Collapse
|
49
|
A four-microorganism three-step fermentation process for producing medium-chain-length polyhydroxyalkanoate from starch. 3 Biotech 2020; 10:352. [PMID: 32766094 DOI: 10.1007/s13205-020-02347-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, a four-microorganism three-step fermentation process was established for producing medium-chain-length polyhydroxyalkanoate (mcl-PHA) from starch, which was used as the sole carbon source. The four microorganisms used for this process were Aspergillus niger, Saccharomyces cerevisiae L2612, Acetobacter orientalis, and Pseudomonas putida KT2440-acs. The initial carbon source starch concentration was set to 30 g/L, the maximum glucose concentration reached 17.66 g/L at 48 h after starch hydrolysis, and then, 2.36 g/L of acetic acid was obtained at 96 h. The final output of mcl-PHA was 0.5 g/L at 144 h, overall productivity for mcl-PHA was 3.47 mg/(L·h) and the total starch to mcl-PHA yield for the process was 16.67 mg/g. Although the overall yield and conversion rate of this process were not high, this is the first attempt to produce mcl-PHA using starch as a substrate, and it provides a feasible strategy for producing PHA from kitchen waste. The production process of mcl-PHA with a clear flora structure and short fermentation cycle was realized.
Collapse
|
50
|
Model-based operational optimisation of a microbial bioprocess converting terephthalic acid to biomass. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|