1
|
Kang X, Yue XR, Wang CX, Wang JR, Zhao JN, Yang ZP, Fu QK, Wu CS, Hu W, Li YZ, Yue XJ. Ribosome engineering of Myxococcus xanthus for enhancing the heterologous production of epothilones. Microb Cell Fact 2024; 23:346. [PMID: 39725983 DOI: 10.1186/s12934-024-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Ribosome engineering is a semi-empirical technique used to select antibiotic-resistant mutants that exhibit altered secondary metabolism. This method has been demonstrated to effectively select mutants with enhanced synthesis of natural products in many bacterial species, including actinomycetes. Myxobacteria are recognized as fascinating producers of natural active products. However, it remains uncertain whether this technique is similarly effective in myxobacteria, especially for the heterologous production of epothilones in Myxococcus xanthus. RESULTS Antibiotics that target the ribosome and RNA polymerase (RNAP) were evaluated for ribosome engineering of the epothilone-producing strain M. xanthus ZE9. The production of epothilone was dramatically altered in different resistant mutants. We screened the mutants resistant to neomycin and rifampicin and found that the yield of epothilones in the resistant mutant ZE9N-R22 was improved by sixfold compared to that of ZE9. Our findings indicate that the improved growth of the mutants, the upregulation of epothilone biosynthetic genes, and specific mutations identified through genome re-sequencing may collectively contribute to the yield improvement. Ultimately, the total titer of epothilones achieved in a 10 L bioreactor reached 93.4 mg/L. CONCLUSIONS Ribosome engineering is an efficient approach to obtain M. xanthus strains with enhanced production of epothilones through various interference mechanisms. Here, we discuss the potential mechanisms of the semi-empirical method.
Collapse
Affiliation(s)
- Xu Kang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
- Taishan College, Shandong University, Jinan, 250100, China
| | - Xiao-Ran Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chen-Xi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jia-Rui Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jun-Ning Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhao-Peng Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qin-Ke Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chang-Sheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
2
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Ye W, Liu T, Zhang WM, Zhang W, Li S. The Improvement of Epothilone D Yield by the Disruption of epoK Gene in Sorangium cellulosum Using TALEN System. Mol Biotechnol 2023; 65:282-289. [PMID: 36401710 DOI: 10.1007/s12033-022-00602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
Epothilones are a kind of 16-member macrolides with strong anticancer activity, which was produced by Sorangium cellulosum. Epothlione D shows better drug resistance and safety than taxol in clinical trials. However, the low yield of epothilone D in Sorangium cellulosum and thereof toxicity limited the application of epothilone D. In this study, the epoK gene in gene cluster for epothilone was firstly inactivated by the employment of TALEN gene knockout system. The qRT-PCR analysis and sequencing were performed to confirm the gene deletion of epoK, resulting in the epothilone D yield improvement by 34.9±1.6% and the decrease of epothilone B yield by 34.2±2.5%, which was demonstrated by LC-MS analysis. This study would lay a foundation for the yield improvement of epothilones D, B and thereof derivatives in S. cellulosum by genetic engineering, thus promoting the applications of epothilones in the field of anticancer.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wei-Min Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Weiyang Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
4
|
Li X, Zhang L, Jiang Z, Liu L, Wang J, Zhong L, Yang T, Zhou Q, Dong W, Zhou J, Ye X, Li Z, Huang Y, Cui Z. A novel cold-active GH8 xylanase from cellulolytic myxobacterium and its application in food industry. Food Chem 2022; 393:133463. [PMID: 35751210 DOI: 10.1016/j.foodchem.2022.133463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Although xylanase have a wide range of applications, cold-active xylanases have received less attention. In this study, a novel glycoside hydrolase family 8 (GH8) xylanase from Sorangium cellulosum with high activity at low temperatures was identified. The recombinant xylanase (XynSc8) was most active at 50 °C, demonstrating 20% of its maximum activity and strict substrate specificity towards beechwood and corncob xylan at 4 °C with Vmax values of 968.65 and 1521.13 μmol/mg/min, respectively. Mesophilic XynSc8 was active at a broad range of pH and hydrolyzed beechwood and corncob xylan into xylooligosaccharides (XOS) with degree of polymerization greater than 3. Moreover, incorporation of XynSc8 (0.05-0.2 mg/kg flour) provided remarkable improvement (28-30%) in bread specific volume and textural characteristics of bread compared to commercial xylanase. This is the first report on a novel cold-adapted GH8 xylanase from myxobacteria, suggesting that XynSc8 may be a promising candidate suitable for bread making.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhitong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Wang Y, Yue XJ, Yuan SF, Hong Y, Hu WF, Li YZ. Internal Promoters and Their Effects on the Transcription of Operon Genes for Epothilone Production in Myxococcus xanthus. Front Bioeng Biotechnol 2021; 9:758561. [PMID: 34778232 PMCID: PMC8579030 DOI: 10.3389/fbioe.2021.758561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
The biosynthetic genes for secondary metabolites are often clustered into giant operons with no transcription terminator before the end. The long transcripts are frangible and the transcription efficiency declines along with the process. Internal promoters might occur in operons to coordinate the transcription of individual genes, but their effects on the transcription of operon genes and the yield of metabolites have been less investigated. Epothilones are a kind of antitumor polyketides synthesized by seven multifunctional enzymes encoded by a 56-kb operon. In this study, we identified multiple internal promoters in the epothilone operon. We performed CRISPR-dCas9–mediated transcription activation of internal promoters, combined activation of different promoters, and activation in different epothilone-producing M. xanthus strains. We found that activation of internal promoters in the operon was able to promote the gene transcription, but the activation efficiency was distinct from the activation of separate promoters. The transcription of genes in the operon was influenced by not only the starting promoter but also internal promoters of the operon; internal promoters affected the transcription of the following and neighboring upstream/downstream genes. Multiple interferences between internal promoters thus changed the transcriptional profile of operon genes and the production of epothilones. Better activation efficiency for the gene transcription and the epothilone production was obtained in the low epothilone-producing strains. Our results highlight that interactions between promoters in the operon are critical for the gene transcription and the metabolite production efficiency.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yu Hong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Wang GH, Cheng CY, Tsai TH, Chiang PK, Chung YC. Highly Sensitive Luminescent Bioassay Using Recombinant Escherichia coli Biosensor for Rapid Detection of Low Cr(VI) Concentration in Environmental Water. BIOSENSORS-BASEL 2021; 11:bios11100357. [PMID: 34677313 PMCID: PMC8534196 DOI: 10.3390/bios11100357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/24/2023]
Abstract
In this study, we constructed a recombinant Escherichia coli strain with different promoters inserted between the chromate-sensing regulator chrB and the reporter gene luxAB to sense low hexavalent chromium (Cr(VI)) concentrations (<0.05 mg/L); subsequently, its biosensor characteristics (sensitivity, selectivity, and specificity) for measuring Cr(VI) in various water bodies were evaluated. The luminescence intensity of each biosensor depended on pH, temperature, detection time, coexisting carbon source, coexisting ion, Cr(VI) oxyanion form, Cr(VI) concentration, cell type, and type of medium. Recombinant lux-expressing E. coli with the T7 promoter (T7-lux-E. coli, limit of detection (LOD) = 0.0005 mg/L) had the highest luminescence intensity or was the most sensitive for Cr(VI) detection, followed by E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.001 mg/L) and that with the SP6 promoter (SP6-lux-E. coli, LOD = 0.005 mg/L). All biosensors could be used to determine whether the Cr(VI) standard was met in terms of water quality, even when using thawing frozen cells as biosensors after 90-day cryogenic storage. The SP6-lux-E. coli biosensor had the shortest detection time (0.5 h) and the highest adaptability to environmental interference. The T7-lux-E. coli biosensor—with the optimal LOD, a wide measurement range (0.0005–0.5 mg/L), and low deviation (−5.0–7.9%) in detecting Cr(VI) from industrial effluents, domestic effluents, and surface water—is an efficient Cr(VI) biosensor. This unprecedented study is to evaluate recombinant lux E. coli with dissimilar promoters for their possible practice in Cr(VI) measurement in water bodies, and the biosensor performance is clearly superior to that of past systems in terms of detection time, LOD, and detection deviation for real water samples.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen 361008, China;
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (C.-Y.C.); (P.-K.C.)
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Pin-Kuan Chiang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (C.-Y.C.); (P.-K.C.)
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei 115, Taiwan; (C.-Y.C.); (P.-K.C.)
- Correspondence: ; Tel.: +886-22782-1862; Fax: +886-22786-5456
| |
Collapse
|
7
|
Wang GH, Tsai TH, Kui CC, Cheng CY, Huang TL, Chung YC. Analysis of bioavailable toluene by using recombinant luminescent bacterial biosensors with different promoters. J Biol Eng 2021; 15:2. [PMID: 33407661 PMCID: PMC7789755 DOI: 10.1186/s13036-020-00254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/29/2020] [Indexed: 01/24/2023] Open
Abstract
In this study, we constructed recombinant luminescent Escherichia coli with T7, T3, and SP6 promoters inserted between tol and lux genes as toluene biosensors and evaluated their sensitivity, selectivity, and specificity for measuring bioavailable toluene in groundwater and river water. The luminescence intensity of each biosensor depended on temperature, incubation time, ionic strength, and concentrations of toluene and coexisting organic compounds. Toluene induced the highest luminescence intensity in recombinant lux-expressing E. coli with the T7 promoter [T7-lux-E. coli, limit of detection (LOD) = 0.05 μM], followed by that in E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.2 μM) and SP6 promoter (SP6-lux-E. coli, LOD = 0.5 μM). Luminescence may have been synergistically or antagonistically affected by coexisting organic compounds other than toluene; nevertheless, low concentrations of benzoate and toluene analogs had no such effect. In reproducibility experiments, the biosensors had low relative standard deviation (4.3-5.8%). SP6-lux-E. coli demonstrated high adaptability to environmental interference. T7-lux-E. coli biosensor-with low LOD, wide measurement range (0.05-500 μM), and acceptable deviation (- 14.3 to 9.1%)-is an efficient toluene biosensor. This is the first study evaluating recombinant lux E. coli with different promoters for their potential application in toluene measurement in actual water bodies.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361008, China
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Chi Kui
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Tzu-Ling Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan.
| |
Collapse
|
8
|
Ye W, Liu T, Zhu M, Zhang W, Huang Z, Li S, Li H, Kong Y, Chen Y. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in Sorangium cellulosum. Front Bioeng Biotechnol 2019; 7:334. [PMID: 32039165 PMCID: PMC6988809 DOI: 10.3389/fbioe.2019.00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022] Open
Abstract
Epothilones are a kind of macrolides with strong cytotoxicity toward cancer cells and relatively lower side effects compared with taxol. Epothilone B derivate ixabepilone has been used for the clinical treatment of advanced breast cancer. However, the low yield of epothilones and the difficulty in the genetic manipulation of Sorangium cellulosum limited their wider application. Transcription activator-like effectors-Trancriptional factor (TALE-TF)-VP64 and clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-VP64 have been demonstrated as effective systems for the transcriptional improvement. In this study, a promoter for the epothilone biosynthesis cluster was obtained and the function has been verified. The TALE-TF-VP64 and CRISPR/dcas9-VP64 target P3 promoter were electroporated into S. cellulosum strain So ce M4, and the transcriptional levels of epothilone biosynthesis-related genes were significantly upregulated. The yield of epothilone B was improved by 2.89- and 1.53-fold by the introduction of recombinant TALE-TF-VP64-P3 and dCas9-VP64-P3 elements into So ce M4, respectively. The epothilone D yield was also improved by 1.12- and 2.18-fold in recombinant dCas9-So ce M4 and TALE-VP64 strains, respectively. The transcriptional regulation mechanism of TALE-TF-VP64 and the competition mechanism with endogenous transcriptional factor were investigated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP), demonstrating the combination of the P3 promoter and TALE-TF element and the competition between TALE-TF and endogenous transcriptional protein. This is the first report on the transcriptional regulation of the epothilone biosynthetic gene cluster in S. cellulosum using the TALE-TF and dCas9-VP64 systems, and the regulatory mechanism of the TALE-TF system for epothilone biosynthesis in S. cellulosum was also firstly revealed, thus shedding light on the metabolic engineering of S. cellulosum to improve epothilone yields substantially and promoting the application of epothilones in the biomedical industry.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zilei Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yali Kong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Gregory K, Salvador LA, Akbar S, Adaikpoh BI, Stevens DC. Survey of Biosynthetic Gene Clusters from Sequenced Myxobacteria Reveals Unexplored Biosynthetic Potential. Microorganisms 2019; 7:E181. [PMID: 31238501 PMCID: PMC6616573 DOI: 10.3390/microorganisms7060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023] Open
Abstract
Coinciding with the increase in sequenced bacteria, mining of bacterial genomes for biosynthetic gene clusters (BGCs) has become a critical component of natural product discovery. The order Myxococcales, a reputable source of biologically active secondary metabolites, spans three suborders which all include natural product producing representatives. Utilizing the BiG-SCAPE-CORASON platform to generate a sequence similarity network that contains 994 BGCs from 36 sequenced myxobacteria deposited in the antiSMASH database, a total of 843 BGCs with lower than 75% similarity scores to characterized clusters within the MIBiG database are presented. This survey provides the biosynthetic diversity of these BGCs and an assessment of the predicted chemical space yet to be discovered. Considering the mere snapshot of myxobacteria included in this analysis, these untapped BGCs exemplify the potential for natural product discovery from myxobacteria.
Collapse
Affiliation(s)
- Katherine Gregory
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Laura A Salvador
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Shukria Akbar
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Barbara I Adaikpoh
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - D Cole Stevens
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
10
|
Yue XJ, Cui XW, Zhang Z, Hu WF, Li ZF, Zhang YM, Li YZ. Effects of transcriptional mode on promoter substitution and tandem engineering for the production of epothilones in Myxococcus xanthus. Appl Microbiol Biotechnol 2018; 102:5599-5610. [PMID: 29705958 PMCID: PMC5999154 DOI: 10.1007/s00253-018-9023-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 10/25/2022]
Abstract
Promoter optimization is an economical and effective approach to overexpress heterologous genes and improve the biosynthesis of valuable products. In this study, we swapped the original promoter of the epothilone biosynthetic gene cluster in Myxococcus xanthus with two endogenous strong promoters P pilA and P groEL1 , respectively, which, however, decreased the epothilone production ability. The transcriptional abilities by the two promoters were found to be bloomed in the growth stage but markedly decreased after the growth, whereas the original promoter P epo functioned majorly after the exponential growth stage. Tandem repeat engineering on the original promoter P epo remarkably increased epothilone production. The tandem promoter exerted similar expressional pattern as P epo did in M. xanthus. We demonstrated that differential transcriptional modes markedly affected the efficiency of promoters in controlling the gene expressions for the production of the secondary metabolite epothilones. Our study provides an insight into exploiting powerful promoters to produce valuable secondary metabolites, especially in host with limited known promoters.
Collapse
Affiliation(s)
- Xin-jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xiao-wen Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Wei-feng Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - You-ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
11
|
Peng R, Wang Y, Feng WW, Yue XJ, Chen JH, Hu XZ, Li ZF, Sheng DH, Zhang YM, Li YZ. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb Cell Fact 2018; 17:15. [PMID: 29378572 PMCID: PMC5787926 DOI: 10.1186/s12934-018-0867-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The CRISPR/dCas9 system is a powerful tool to activate the transcription of target genes in eukaryotic or prokaryotic cells, but lacks assays in complex conditions, such as the biosynthesis of secondary metabolites. RESULTS In this study, to improve the transcription of the heterologously expressed biosynthetic genes for the production of epothilones, we established the CRISPR/dCas9-mediated activation technique in Myxococcus xanthus and analyzed some key factors involving in the CRISPR/dCas9 activation. We firstly optimized the cas9 codon to fit the M. xanthus cells, mutated the gene to inactivate the nuclease activity, and constructed the dCas9-activator system in an epothilone producer. We compared the improvement efficiency of different sgRNAs on the production of epothilones and the expression of the biosynthetic genes. We also compared the improvement effects of different activator proteins, the ω and α subunits of RNA polymerase, and the sigma factors σ54 and CarQ. By using a copper-inducible promoter, we determined that higher expressions of dCas9-activator improved the activation effects. CONCLUSIONS Our results showed that the CRISPR/dCas-mediated transcription activation is a simple and broadly applicable technique to improve the transcriptional efficiency for the production of secondary metabolites in microorganisms. This is the first time to construct the CRISPR/dCas9 activation system in myxobacteria and the first time to assay the CRISPR/dCas9 activations for the biosynthesis of microbial secondary metabolites.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100050 China
| | - Ye Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Wan-wan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xin-jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Jiang-he Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xiao-zhuang Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Duo-hong Sheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - You-ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
12
|
Li ZF, Zhu LP, Gu JY, Singh RP, Li YZ. Isolation and characterisation of the epothilone gene cluster with flanks from high alkalotolerant strain Sorangium cellulosum (So0157-2). World J Microbiol Biotechnol 2017; 33:137. [PMID: 28585173 DOI: 10.1007/s11274-017-2301-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 01/12/2023]
Abstract
Epothilones are cytotoxic macrolactones having auspicious anti-tumorous activities, but merely produced by rare Sorangium strains. Here, we have focused on the epothilone gene cluster from special niche bacterial strain, S. cellulosum So0157-2. Therefore, we have isolated a high pH tolerant S. cellulosum strain So0157-2 and characterized the epothilones gene cluster and its flanks by cosmid/fosmid libraries preparation and sequencing. The assembly spanned 94,459 bp and consisted of 56,019 bp core region. Remarkably, the core as well as upstream 420 bp and downstream 315 bp were highly conserved, while further neighboring regions varied extremely. Transposase traces were identified near the core of clusters, supporting that the transposon-mediated transgenesis is a naturally evolved strategy for the cluster's dissemination. A predicted neighboring esterase gene was identified as a potential epothilone-resistance gene preventing self-toxicity. Novel modification or regulatory genes, a multi-position-cyclo releasing gene and their relationship with corresponding analogs were identified in strain So0157-2. These findings open the door to discover additional, naturally evolved epothilone-related genes for significant applications in industrial as well as clinical sector.
Collapse
Affiliation(s)
- Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jing-Yan Gu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
13
|
Yue XJ, Cui XW, Zhang Z, Peng R, Zhang P, Li ZF, Li YZ. A bacterial negative transcription regulator binding on an inverted repeat in the promoter for epothilone biosynthesis. Microb Cell Fact 2017; 16:92. [PMID: 28535774 PMCID: PMC5442856 DOI: 10.1186/s12934-017-0706-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 12/29/2022] Open
Abstract
Background Microbial secondary metabolism is regulated by a complex and mostly-unknown network of global and pathway-specific regulators. A dozen biosynthetic gene clusters for secondary metabolites have been reported in myxobacteria, but a few regulation factors have been identified. Results We identified a transcription regulator Esi for the biosynthesis of epothilones. Inactivation of esi promoted the epothilone production, while overexpression of the gene suppressed the production. The regulation was determined to be resulted from the transcriptional changes of epothilone genes. Esi was able to bind, probably via the N-terminus of the protein, to an inverted repeat sequence in the promoter of the epothilone biosynthetic gene cluster. The Esi-homologous sequences retrieved from the RefSeq database are all of the Proteobacteria. However, the Esi regulation is not universal in myxobacteria, because the esi gene exists only in a few myxobacterial genomes. Conclusions Esi binds to the epothilone promoter and down-regulates the transcriptional level of the whole gene cluster to affect the biosynthesis of epothilone. This is the first transcription regulator identified for epothilone biosynthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0706-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Wen Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
14
|
Zhu LP, Yue XJ, Han K, Li ZF, Zheng LS, Yi XN, Wang HL, Zhang YM, Li YZ. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus. Microb Cell Fact 2015; 14:105. [PMID: 26194479 PMCID: PMC4509775 DOI: 10.1186/s12934-015-0294-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 01/29/2023] Open
Abstract
Background Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. Results We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. Conclusions With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0294-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Kui Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Lian-Shuai Zheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xiu-Nan Yi
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|