1
|
Mo K, Shen Y, Su D, Lv L, Du J, Ding H, Huang X. Pharmacokinetic-Pharmacodynamic Modeling of the Immune-Enhancing Effect of Shikimic Acid in Growing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26224-26235. [PMID: 39542831 PMCID: PMC11613447 DOI: 10.1021/acs.jafc.4c09250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Shikimic acid (SA), extracted from the fruit of shikimi-no-ki, is used both as a preservative in the food industry and as an intermediate for a variety of active ingredients with a wide range of pharmacological functions. A deeper understanding of the pharmacokinetic process of SA in pigs and its impact on humoral immunity could prove invaluable in facilitating its clinical application in veterinary and human medicine. The pharmacokinetic study employed a two-period, two-sequence, crossover design to animal experiments and developed a novel method of pig plasma preparation using water as an extractant and ionization promoter, followed by purification and enrichment on a MAX solid phase extraction (SPE) column. The results showed that SA is rapidly absorbed after intragastric administration (50 mg/kg BW), reaching a plasma Cmax of 10,823.44 ng/mL at 1.78 h, followed by rapid elimination, with a t1/2 of 1.81 h, consistent with a one-compartment model. The results for intravenous administration (2 mg/kg BW) were consistent with a two-compartment open model with a t1/2 of 3.66 h, with concentrations below the limit of quantification (LOQ) observed beyond 12 h postdose. The absolute bioavailability of SA in pigs was calculated to be 21.68%. Furthermore, the Pearson's correlation analysis demonstrated a strong positive correlation between SA concentration in pig plasma and the changes of C3, C4 and IgG, IgA, and IgM (0.6 < R < 1, P < 0.0001). A more detailed pharmacokinetic-pharmacodynamic (PK-PD) modeling analysis of the intravenous group revealed the EC50/Cmax values of approximately 10%, with all γ values exceeding 3. This study was the inaugural investigation into the pharmacokinetics of SA in growing pigs, and it also revealed that SA has the potential to act as an immunopotentiator.
Collapse
Affiliation(s)
| | | | - Dehai Su
- Guangdong Key Laboratory
for Veterinary Drug Development and Safety Evaluation, College of
Veterinary Medicine, South China Agricultural
University, Guangzhou 510642, China
| | - Linyi Lv
- Guangdong Key Laboratory
for Veterinary Drug Development and Safety Evaluation, College of
Veterinary Medicine, South China Agricultural
University, Guangzhou 510642, China
| | - Juan Du
- Guangdong Key Laboratory
for Veterinary Drug Development and Safety Evaluation, College of
Veterinary Medicine, South China Agricultural
University, Guangzhou 510642, China
| | - Huanzhong Ding
- Guangdong Key Laboratory
for Veterinary Drug Development and Safety Evaluation, College of
Veterinary Medicine, South China Agricultural
University, Guangzhou 510642, China
| | - Xianhui Huang
- Guangdong Key Laboratory
for Veterinary Drug Development and Safety Evaluation, College of
Veterinary Medicine, South China Agricultural
University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhang X, Ge R, Wu J, Cai X, Deng G, Lv J, Ma M, Yu N, Yao L, Peng D. Structural characterization and improves cognitive disorder in ageing mice of a glucomannan from Dendrobium huoshanense. Int J Biol Macromol 2024; 269:131995. [PMID: 38692529 DOI: 10.1016/j.ijbiomac.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-β-D-Manp-(1 and 4)-β-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| |
Collapse
|
3
|
Zhou Q, Li S, Zhao M, Liu Y, He N, Zhou X, Zhou D, Qian Z. A 90-day feeding study of genetically modified maize LP007-1 in wistar han RCC rats. Food Chem Toxicol 2023; 180:114026. [PMID: 37709249 DOI: 10.1016/j.fct.2023.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
LP007-1 is a variety of insect-resistant and herbicide-tolerant maize containing the modified cry1Ab, cry2Ab, vip3Aa and cp4-epsps genes. The food safety assessment of the maize LP007-1 was conducted in Wistar Han RCC rats by a 90-days feeding study. Maize grains from both LP007-1 or its corresponding non-genetically modified control maize AX808 were incorporated into rodent diets at 25% and 50% concentrations by mass and administered to rats (n = 10/sex/group) for 90 days. A commercialized rodent diet was fed to an additional group as the basal-diet group. The diets of all groups were nutritionally balanced. No biologically relevant differences were observed in rats fed with maize LP007-1 compared to rats fed with AX808 and the basal-diet with respect to body weight/gain, food consumption/utilization, clinical signs, mortality, ophthalmology, clinical pathology (hematology, prothrombin time, activation of partial thrombin time, serum chemistry, urinalysis), organ weights, and gross and microscopic pathology. Considering the circumstances of this study, the results provided evidence that LP007-1 maize did not exhibit toxicity in the 90-day feeding study.
Collapse
Affiliation(s)
- Qinghong Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shufei Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Miao Zhao
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yinghua Liu
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Ning He
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaoli Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
4
|
Bo T, Wu C, Wang Z, Jiang H, Wang F, Chen N, Li Y. Multiple Metabolic Engineering Strategies to Improve Shikimate Titer in Escherichia coli. Metabolites 2023; 13:747. [PMID: 37367905 DOI: 10.3390/metabo13060747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Shikimate is a valuable chiral precursor for synthesizing oseltamivir (Tamiflu®) and other chemicals. High production of shikimate via microbial fermentation has attracted increasing attention to overcome the unstable and expensive supply of shikimate extracted from plant resources. The current cost of microbial production of shikimate via engineered strains is still unsatisfactory, and thus more metabolic strategies need to be investigated to further increase the production efficiency. In this study, we first constructed a shikimate E. coli producer through the application of the non-phosphoenolpyruvate: carbohydrate phosphotransferase system (non-PTS) glucose uptake pathway, the attenuation of the shikimate degradation metabolism, and the introduction of a mutant of feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase. Inspired by the natural presence of bifunctional 3-dehydroquinate dehydratase (DHD)-shikimate dehydrogenase (SDH) enzyme in plants, we then designed an artificial fusion protein of DHD-SDH to decrease the accumulation of the byproduct 3-dehydroshikimate (DHS). Subsequently, a repressed shikimate kinase (SK) mutant was selected to promote shikimate accumulation without the supplementation of expensive aromatic substances. Furthermore, EsaR-based quorum sensing (QS) circuits were employed to regulate the metabolic flux distribution between cell growth and product synthesis. The final engineered strain dSA10 produced 60.31 g/L shikimate with a yield of 0.30 g/g glucose in a 5 L bioreactor.
Collapse
Affiliation(s)
- Taidong Bo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
6
|
Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects. Molecules 2022; 27:molecules27154779. [PMID: 35897952 PMCID: PMC9332510 DOI: 10.3390/molecules27154779] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction.
Collapse
|
7
|
Ganorkar PV, Jadeja GC, Desai MA. Extraction of shikimic acid and recovery of lignocelluloses from water hyacinth. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Ganorkar PV, Jadeja GC, Desai MA. Extraction of shikimic acid from water hyacinth (Eichhornia crassipes) using sonication: An approach towards waste valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114419. [PMID: 34991027 DOI: 10.1016/j.jenvman.2021.114419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Shikimic acid (SA) is a valuable compound found in water hyacinth and is a precursor for synthesis of antiviral drug oseltamivir phosphate (Tamiflu®) which is used to treat H5N1 avian influenza. In the present work, the acid was extracted from different morphological parts (stem, leaves, and roots) of water hyacinth (a notorious aquatic weed) using sonication. The parametric study has been conducted by varying sonication time (10-50 min), solvent composition (methanol + water), solvent volume (20-50 mL), amplitude of sonication (30-60%), and pulse ratio (20-50%) for improving the recovery of shikimic acid (SA), antioxidant activity (AA) and total phenolic content (TPC) of water hyacinth extract. Also, the acid was extracted conventionally as a benchmark study. The highest yield of 2.4% at 40 min and 3.1% at 30 min was observed in case of conventional and ultrasound assisted extraction (UAE), respectively for stem. Leaves showed a higher TPC value of 7.4 mg GAE/g biomass and a higher AA was observed 83.21% at 20 min for stem in case of conventional method. The highest TPC value of 11.11 mg GAE/g biomass has been observed for leaves while stem has shown the highest AA of 87.72% at 10 min of sonication time for UAE. It was possible to recover the valuable chemicals with better processing conditions in the case of UAE.
Collapse
Affiliation(s)
- Priti V Ganorkar
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| | - G C Jadeja
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
| | - Meghal A Desai
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India.
| |
Collapse
|
9
|
Kumar V, Bansal V, Madhavan A, Kumar M, Sindhu R, Awasthi MK, Binod P, Saran S. Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. Bioengineered 2022; 13:4309-4327. [PMID: 35135435 PMCID: PMC8973766 DOI: 10.1080/21655979.2022.2031412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this article was to generate a framework of bio-based economy by an effective utilization of biomass from the perspectives of agriculture for developing potential end bio-based products (e.g. pharmaceuticals, active pharmaceutical ingredients). Our discussion is also extended to the conservatory ways of bioenergy along with development of bio-based products and biofuels. This review article further showcased the fundamental principles for producing these by-products. Thereby, the necessity of creating these products is to be efficaciously utilization by small-scale farmers that can aid the local needs for bio-based materials and energy. Concurrently, the building up of small markets will open up the avenues and linkages for bigger markets. In nutshell, the aim of the review is to explore the pathway of the biotechnological approaches so that less chosen producers and underdeveloped areas can be allied so that pressure on the systems of biomass production can be relaxed.
Collapse
Affiliation(s)
- Vinod Kumar
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad-India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Affiliated to Panjab University, Chandigarh, India
| | - Aravind Madhavan
- Division of Infectious Disease Biology, Rajiv Gandhi Centre for Biotechnology, - Trivandrum- India
| | - Manoj Kumar
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad-India
| | - Raveendran Sindhu
- Deapartment of Food Technology, Tkm Institute of Technology, Kollam-India
| | - Mukesh Kumar Awasthi
- Department of Resource and Environmental Science, College of Natural Resources and Environment, Northwest A&f University, Shaanxi Province, Yangling, PR China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary, Science and Technology (Csir-niist), Trivandrum- India
| | - Saurabh Saran
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India
| |
Collapse
|
10
|
Tan Y, Agustin RVC, Stein LY, Sauvageau D. Transcriptomic analysis of synchrony and productivity in self-cycling fermentation of engineered yeast producing shikimic acid. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00691. [PMID: 34934640 PMCID: PMC8660916 DOI: 10.1016/j.btre.2021.e00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/25/2023]
Abstract
Industrial fermentation provides a wide variety of bioproducts, such as food, biofuels and pharmaceuticals. Self-cycling fermentation (SCF), an advanced automated semi-continuous fermentation approach, has shown significant advantages over batch reactors (BR); including cell synchrony and improved production. Here, Saccharomyces cerevisiae engineered to overproduce shikimic acid was grown under SCF operation. This led to four-fold increases in product yield and volumetric productivity compared to BR. Transcriptomic analyses were performed to understand the cellular mechanisms leading to these increases. Results indicate an up-regulation of a large number of genes related to the cell cycle and DNA replication in the early stages of SCF cycles, inferring substantial synchronization. Moreover, numerous genes related to gluconeogenesis, the citrate cycle and oxidative phosphorylation were significantly up-regulated in the late stages of SCF cycles, consistent with significant increases in shikimic acid yield and productivity.
Collapse
Key Words
- BR, Batch reactor
- CER, Carbon dioxide evolution rate
- DDT, Dithiothreitol
- DNA, Deoxyribonucleic acid
- EDTA, Ethylenediaminetetraacetic acid
- FC, Fold change
- OD600, Optical density at 600 nm
- RNA, Ribonucleic acid
- SCF, Self-cycling fermentation
- STP, Standard temperature and pressure
- Saccharomyces cerevisiae
- Self-cycling fermentation (SCF)
- Shikimic acid
- Synchrony
- Transcriptomics
- cDNA, Complementary deoxyribonucleic acid
- mRNA, Messenger ribonucleic acid
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Roman Vincent C. Agustin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Park E, Kim HJ, Seo SY, Lee HN, Choi SS, Lee SJ, Kim ES. Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum. J Microbiol Biotechnol 2021; 31:1305-1310. [PMID: 34373439 PMCID: PMC9705862 DOI: 10.4014/jmb.2106.06009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.
Collapse
Affiliation(s)
- Eunhwi Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Hye-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Han-Na Lee
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Sang Joung Lee
- STR Biotech Co., Ltd., Chuncheon 24232, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Corresponding author Phone: 82-32-860-8318 Fax: 82-32-872-4046 E-mail:
| |
Collapse
|
12
|
He Y, Huang Y, Xu Z, Xie W, Luo Y, Li F, Zhu X, Shi X. Stereodivergent Syntheses of All Stereoisomers of (−)‐Shikimic Acid: Development of a Chiral Pool for the Diverse Polyhydroxy‐cyclohexenoid (or ‐cyclohexanoid) Bioactive Molecules. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yun‐Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Yong‐Kang Huang
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Zhang‐Li Xu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Wen‐Jing Xie
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Yong‐Qiang Luo
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Feng‐Lei Li
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xing‐Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xiao‐Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education School of Pharmacy East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| |
Collapse
|
13
|
Khaljl Mahmood S, Gh Sabbar A, Dohi FA, Abdul Hussein A. A New Drug Formula for Pneumonia and Severe Seasonal Flu; a Promising Drug for Eradicate COVID19. ACTA ACUST UNITED AC 2021; 80:2697-2700. [PMID: 34249616 PMCID: PMC8257420 DOI: 10.1016/j.matpr.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
World Health Organization (WHO) well-known pleiotropic antiviral compounds.This study was designed to evaluate the effects of herbal drug combination in treatment of pneumonia, severe respiratory distress, and severe flu and recently for COVID19.The treatment phase includes 12 days period of herbal drug mixture (X) . Results showed the activity of herbal drug in eradication of COVID19, pneumonia and severe seasonalful.
Collapse
|
14
|
Lee HN, Seo SY, Kim HJ, Park JH, Park E, Choi SS, Lee SJ, Kim ES. Artificial cell factory design for shikimate production in Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6316114. [PMID: 34227672 PMCID: PMC8788726 DOI: 10.1093/jimb/kuab043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022]
Abstract
Shikimate is a key intermediate in high-demand for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu®). Microbial-based shikimate production strategies have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. Although shikimate biosynthesis has been reported in several engineered bacterial species, the shikimate production yield is still unsatisfactory. This study designed an Escherichia coli cell factory and optimized the fed-batch culture process to achieve a high titer of shikimate production. Using the previously constructed dehydroshikimate (DHS)-overproducing E. coli strain, two genes (aroK and aroL) responsible for converting shikimate to the next step were disrupted to facilitate shikimate accumulation. The genes with negative effects on shikimate biosynthesis, including tyrR, ptsG, and pykA, were disrupted. In contrast, several shikimate biosynthetic pathway genes, including aroB, aroD, aroF, aroG, and aroE, were overexpressed to maximize the glucose uptake and intermediate flux. The shiA involved in shikimate transport was disrupted, and the tktA involved in the accumulation of both PEP and E4P was overexpressed. The rationally designed shikimate-overproducing E. coli strain grown in an optimized medium produced approximately 101 g/L of shikimate in 7-L fed-batch fermentation, which is the highest level of shikimate production reported thus far. Overall, rational cell factory design and culture process optimization for microbial-based shikimate production will play a key role in complementing traditional plant-derived shikimate production processes.
Collapse
Affiliation(s)
- Han-Na Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.,STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Hey-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ji-Hoon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Eunhwi Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Sang Joung Lee
- STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
15
|
Zhu XL, Luo YQ, Wang L, Huang YK, He YG, Xie WJ, Liu SL, Shi XX. Novel Stereoselective Syntheses of (+)-Streptol and (-)-1 -epi-Streptol Starting from Naturally Abundant (-)-Shikimic Acid. ACS OMEGA 2021; 6:17103-17112. [PMID: 34250367 PMCID: PMC8264934 DOI: 10.1021/acsomega.1c02502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Novel highly stereoselective syntheses of (+)-streptol and (-)-1-epi-streptol starting from naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the common key intermediate by 11 steps in 40% yield. It was then converted to (+)-streptol by three steps in 72% yield, and it was also converted to (-)-1-epi-streptol by one step in 90% yield. In summary, (+)-streptol and (-)-1-epi-streptol were synthesized from (-)-shikimic acid by 14 and 12 steps in 29 and 36% overall yields, respectively.
Collapse
Affiliation(s)
- Xing-Liang Zhu
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yong-Qiang Luo
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Lei Wang
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yong-Kang Huang
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Wen-Jing Xie
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Shi-Ling Liu
- Zhejiang
Arthur Pharmaceutical Co. Ltd., 3556 Linggongtang Road, Jiake Life Science Park Building 3, Daqiao Town, Nanhu District, Jiaxing, Zhejiang 314000, P. R. China
| | - Xiao-Xin Shi
- Engineering
Research Center of Pharmaceutical Process Chemistry of the Ministry
of Education, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Leow SS, Fairus S, Sambanthamurthi R. Water-soluble palm fruit extract: composition, biological properties, and molecular mechanisms for health and non-health applications. Crit Rev Food Sci Nutr 2021; 62:9076-9092. [PMID: 34156318 DOI: 10.1080/10408398.2021.1939648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | |
Collapse
|
17
|
Batory M, Rotsztejn H. Shikimic acid in the light of current knowledge. J Cosmet Dermatol 2021; 21:501-505. [PMID: 33825313 DOI: 10.1111/jocd.14136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023]
Abstract
Shikimic acid (SA) has been mainly used in the pharmaceutical industry for production of drugs, however, recently it has also appeared in the world of cosmetics. So far, there have not been many publications on cosmetics containing SA or research studies on the compound, especially those that would involve testing cosmetic products on subjects. The main source of SA is star anise. The recommended concentration of SA in cosmetic preparations ranges between 1 and 5%. The pH of a 5% solution of SA in water is 3. SA at a concentration of 5% has a similar exfoliative effect to that of 50% glycolic acid. It shows antiviral, exfoliating, deodorizing, anti-acne, anti-dandruff, whitening and moisturizing activity. It also regulates the amount of secreted sebum, moreover, it has antibacterial, anti-inflammatory, hair-growth stimulating, anti-aging effect and antifungal properties.
Collapse
Affiliation(s)
- Mirella Batory
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Helena Rotsztejn
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
A 90-day subchronic toxicity study of transgenic cotton expressing Cry1Ac, Cry2A and CP4-EPSPS proteins in Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111783. [PMID: 32987108 DOI: 10.1016/j.fct.2020.111783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Genetically engineered crops expressing insecticidal and herbicide-tolerant traits offer a new strategy for crop protection and enhanced production; however, at the same time present a challenge in terms of toxicology and safety. The current experiment presents the findings of a 90-day feeding study in Sprague-Dawley rats with transgenic cottonseed which is expressing insecticidal Cry proteins (Cry1Ac and Cry2A), and tolerant to the herbicide glyphosate. There were 100 rats in this experiment divided into 5 groups of 10 rats/sex/group. Cottonseed from transgenic and control (near-isogenic) lines was formulated into standard diets at levels of 10% and 30% (w/w). All formulated diets were nutritionally balanced. Overall appearance, feed consumption, body weight, organ weight, haematology, serum chemistry and urinalysis were comparable between control and treatment groups. In addition, there was no treatment-related difference in findings of microscopic histopathology and gross appearance of tissues. In conclusion, following the 13-week of feeding transgenic cottonseed, no treatment-related adverse effects were observed in any of the parameters measured in this experiment. Thus, this study demonstrated that transgenic cottonseeds do not cause toxicity and are nutritionally equivalent to its conventional counterpart.
Collapse
|
19
|
Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T. Metabolic Engineering of Shikimic Acid-Producing Corynebacterium glutamicum From Glucose and Cellobiose Retaining Its Phosphotransferase System Function and Pyruvate Kinase Activities. Front Bioeng Biotechnol 2020; 8:569406. [PMID: 33015020 PMCID: PMC7511668 DOI: 10.3389/fbioe.2020.569406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023] Open
Abstract
The production of aromatic compounds by microbial production is a promising and sustainable approach for producing biomolecules for various applications. We describe the metabolic engineering of Corynebacterium glutamicum to increase its production of shikimic acid. Shikimic acid and its precursor-consuming pathways were blocked by the deletion of the shikimate kinase, 3-dehydroshikimate dehydratase, shikimate dehydratase, and dihydroxyacetone phosphate phosphatase genes. Plasmid-based expression of shikimate pathway genes revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase, encoded by aroG, and DHQ synthase, encoded by aroB, are key enzymes for shikimic acid production in C. glutamicum. We constructed a C. glutamicum strain with aroG, aroB and aroE3 integrated. This strain produced 13.1 g/L of shikimic acid from 50 g/L of glucose, a yield of 0.26 g-shikimic acid/g-glucose, and retained both its phosphotransferase system and its pyruvate kinase activity. We also endowed β-glucosidase secreting ability to this strain. When cellobiose was used as a carbon source, the strain produced shikimic acid at 13.8 g/L with the yield of 0.25 g-shikimic acid/g-glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing shikimic acid and its derivatives using an engineered C. glutamicum strain from cellobiose as well as glucose.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
20
|
Noh K, Back HM, Shin BS, Kang W. Pharmacokinetics of Shikimic Acid Following Intragastric and Intravenous Administrations in Rats. Pharmaceutics 2020; 12:pharmaceutics12090824. [PMID: 32872397 PMCID: PMC7558350 DOI: 10.3390/pharmaceutics12090824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Shikimic acid, a critical starting material for the semi-total synthesis of oseltamivir to treat and prevent influenza, exerts many pharmacological effects. However, the optimal bioanalytical method has not been adequately defined. We used liquid chromatography-tandem mass spectrometry to quantitate shikimic acid in rat plasma and studied its pharmacokinetics after intragastric and intravenous administration. Plasma was spiked with an internal standard, and the proteins were precipitated with acetonitrile, followed by solvent evaporation and reconstitution of the mobile phase. Shikimic acid was separated on a hydrophilic reverse-phase column and showed a mass transition ([M-H]−) at m/z 173.4→136.6. Shikimic acid exhibited bi-exponential decay after intravenous dosing, with a rapid distribution (5.57 h−1) up to 1 h followed by slow elimination (0.78 h−1). The steady state distribution and clearance volumes were 5.17 and 1.79 L/h/kg, respectively. After intragastric administration, the shikimic acid level peaked at about 3 h, and the material then disappeared mono-exponentially with a half-life of 1.3 h. A double peak phenomenon was observed. The absolute oral bioavailability was about 10% in rats. We explored the relationship between the pharmacokinetics and pharmacodynamics of shikimic acid.
Collapse
Affiliation(s)
- Keumhan Noh
- Deapartment of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M55 3M2, Canada;
| | - Hyun-Moon Back
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (B.S.S.); (W.K.); Tel.: +82-10-8230-2474 (B.S.S.); +82-2-820-5601 (W.K.)
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (B.S.S.); (W.K.); Tel.: +82-10-8230-2474 (B.S.S.); +82-2-820-5601 (W.K.)
| |
Collapse
|
21
|
Hardy M, Wright BA, Bachman JL, Boit TB, Haley HMS, Knapp RR, Lusi RF, Okada T, Tona V, Garg NK, Sarpong R. Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS CENTRAL SCIENCE 2020; 6:1017-1030. [PMID: 32719821 PMCID: PMC7336722 DOI: 10.1021/acscentsci.0c00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The SARS-CoV-2 pandemic has prompted scientists from many disciplines to work collaboratively toward an effective response. As academic synthetic chemists, we examine how best to contribute to this ongoing effort.
Collapse
Affiliation(s)
- Melissa
A. Hardy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brandon A. Wright
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - J. Logan Bachman
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Timothy B. Boit
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Hannah M. S. Haley
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rachel R. Knapp
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Robert F. Lusi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Taku Okada
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Veronica Tona
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
23
|
Zhu XL, Wang L, Luo YQ, He YG, Li FL, Sun MM, Liu SL, Shi XX. Efficient and Highly Stereoselective Syntheses of (+)- proto-Quercitol and (-)- gala-Quercitol Starting from the Naturally Abundant (-)-Shikimic Acid. ACS OMEGA 2020; 5:1813-1821. [PMID: 32039317 PMCID: PMC7003206 DOI: 10.1021/acsomega.9b02986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/05/2019] [Indexed: 05/03/2023]
Abstract
Efficient and highly stereoselective syntheses of (+)-proto-quercitol and (-)-gala-quercitol starting from the naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the key intermediate by eight steps in 53% yield. It was then converted to (+)-proto-quercitol by three steps in 78% yield and was also converted to (-)-gala-quercitol by five steps in 63% yield. In summary, (+)-proto-quercitol and (-)-gala-quercitol were synthesized from (-)-shikimic acid by 11 and 13 steps in 41 and 33% overall yields, respectively.
Collapse
Affiliation(s)
- Xing-Liang Zhu
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Lei Wang
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yong-Qiang Luo
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Feng-Lei Li
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Mian-Mian Sun
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Shi-Ling Liu
- Shanghai
Qingping Pharmaceutical Co. Ltd., 397 Zhaojiang Road, Baihe Town, Qingpu District, Shanghai 201710, P. R.
China
- E-mail: (S.-L.L.)
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology and Department of Pharmaceutical
Engineering, School of Pharmacy, East China
University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
- E-mail: (X.-X.S.)
| |
Collapse
|
24
|
Li FL, Yu JP, Ding W, Sun MM, He YG, Zhu XL, Liu SL, Shi XX. Novel stereoselective syntheses of N-octyl-β-valienamine (NOV) and N-octyl-4- epi-β-valienamine (NOEV) from (-)-shikimic acid. RSC Adv 2019; 9:42077-42084. [PMID: 35542836 PMCID: PMC9076550 DOI: 10.1039/c9ra09235h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
N-Octyl-β-valienamine (NOV) 1 and N-octyl-4-epi-β-valienamine (NOEV) 2 are potent chemical chaperone drug candidates for the therapy of lysosomal storage disorders. Novel stereoselective syntheses of NOV 1 and NOEV 2 starting from naturally abundant (−)-shikimic acid are described in this article. The common key intermediate compound 5 was first synthesized from readily available (−)-shikimic acid via 9 steps in 50% yield. Compound 5 was then converted to NOV 1via 5 steps in 61% yield, and it was also converted to NOEV 2via 8 steps in 38% yield. In summary, NOV 1 was synthesized via 14 steps in 31% overall yield; and NOEV 2 was synthesized via 17 steps in 19% overall yield. Novel stereoselective syntheses of N-octyl-β-valienamine (NOV) 1 and N-octyl-4-epi-β-valienamine (NOEV) 2 starting from naturally abundant (−)-shikimic acid are described in this article.![]()
Collapse
Affiliation(s)
- Feng-Lei Li
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Jiang-Ping Yu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Wei Ding
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Mian-Mian Sun
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Yun-Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Xing-Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| | - Shi-Ling Liu
- Shanghai Qingping Pharmaceutical Co. Ltd. 397 Zhao-Jiang Road, Baihe Town, Qingpu District Shanghai 201710 P. R. China
| | - Xiao-Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, East China University of Science and Technology 130 Mei-Long Road Shanghai 200237 P. R. China
| |
Collapse
|
25
|
Debruille K, Smith JA, Quirino JP. Pressurized Hot Water Extraction and Capillary Electrophoresis for Green and Fast Analysis of Useful Metabolites in Plants. Molecules 2019; 24:molecules24132349. [PMID: 31247895 PMCID: PMC6651437 DOI: 10.3390/molecules24132349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/02/2022] Open
Abstract
The search for useful compounds from plants is an important research area. Traditional screening that involves isolation and identification/quantitation is tedious, time consuming, and generates a significant amount of chemical waste. Here, we present a simple, fast, and green strategy to assess ≥0.1% wt/wt quantities of useful compounds in plants/spices using pressurized hot water extraction using a household espresso machine followed by chemical analysis using capillary electrophoresis. Three demonstrations with polygodial, cinnamaldehyde, coumarin, and shikimic acid as target metabolites are shown. Direct analysis of extracts was by the developed micellar electrokinetic chromatography and capillary zone electrophoresis methods. The approach, which can be implemented in less developed countries, can process many samples within a day, much faster than traditional techniques that would normally take at least a day. Finally, 0.8–1.1% wt/wt levels of shikimic acid were found in Tasmanian-pepperberry and Tasmanian-fuschia leaves via the approach.
Collapse
Affiliation(s)
- Kurt Debruille
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia
- Department of Chemistry, Faculty of Science, University of Mons, 20 Place du Parc, 7000 Mons, Belgium
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia.
| |
Collapse
|
26
|
Candeias NR, Assoah B, Simeonov SP. Production and Synthetic Modifications of Shikimic Acid. Chem Rev 2018; 118:10458-10550. [PMID: 30350584 DOI: 10.1021/acs.chemrev.8b00350] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shikimic acid is a natural product of industrial importance utilized as a precursor of the antiviral Tamiflu. It is nowadays produced in multihundred ton amounts from the extraction of star anise ( Illicium verum) or by fermentation processes. Apart from the production of Tamiflu, shikimic acid has gathered particular notoriety as its useful carbon backbone and inherent chirality provide extensive use as a versatile chiral precursor in organic synthesis. This review provides an overview of the main synthetic and microbial methods for production of shikimic acid and highlights selected methods for isolation from available plant sources. Furthermore, we have attempted to demonstrate the synthetic utility of shikimic acid by covering the most important synthetic modifications and related applications, namely, synthesis of Tamiflu and derivatives, synthetic manipulations of the main functional groups, and its use as biorenewable material and in total synthesis. Given its rich chemistry and availability, shikimic acid is undoubtedly a promising platform molecule for further exploration. Therefore, in the end, we outline some challenges and promising future directions.
Collapse
Affiliation(s)
- Nuno R Candeias
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33101 Tampere , Finland
| | - Benedicta Assoah
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33101 Tampere , Finland
| | - Svilen P Simeonov
- Laboratory Organic Synthesis and Stereochemistry, Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bontchev str. Bl. 9 , 1113 Sofia , Bulgaria
| |
Collapse
|
27
|
Bilal M, Wang S, Iqbal HMN, Zhao Y, Hu H, Wang W, Zhang X. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments. Appl Microbiol Biotechnol 2018; 102:7759-7773. [PMID: 30014168 DOI: 10.1007/s00253-018-9222-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023]
Abstract
Shikimic acid is an important intermediate for the manufacture of the antiviral drug oseltamivir (Tamiflu®) and many other pharmaceutical compounds. Much of its existing supply is obtained from the seeds of Chinese star anise (Illicium verum). Nevertheless, plants cannot supply a stable source of affordable shikimate along with laborious and cost-expensive extraction and purification process. Microbial biosynthesis of shikimate through metabolic engineering and synthetic biology approaches represents a sustainable, cost-efficient, and environmentally friendly route than plant-based methods. Metabolic engineering allows elevated shikimate production titer by inactivating the competing pathways, increasing intracellular level of key precursors, and overexpressing rate-limiting enzymes. The development of synthetic and systems biology-based novel technologies have revealed a new roadmap for the construction of high shikimate-producing strains. This review elaborates the enhanced biosynthesis of shikimate by utilizing an array of traditional metabolic engineering along with novel advanced technologies. The first part of the review is focused on the mechanistic pathway for shikimate production, use of recombinant and engineered strains, improving metabolic flux through the shikimate pathway, chemically inducible chromosomal evolution, and bioprocess engineering strategies. The second part discusses a variety of industrially pertinent compounds derived from shikimate with special reference to aromatic amino acids and phenazine compound, and main engineering strategies for their production in diverse bacterial strains. Towards the end, the work is wrapped up with concluding remarks and future considerations.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL, Mexico
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl Microbiol Biotechnol 2018; 102:8685-8705. [DOI: 10.1007/s00253-018-9289-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
|
29
|
Zhang X, Meng X, Wu J, Huang L, Chen S. Global ecological regionalization of 15 Illicium species: nature sources of shikimic acid. Chin Med 2018; 13:31. [PMID: 29983731 PMCID: PMC6003141 DOI: 10.1186/s13020-018-0186-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Illicium plants are relevant officinal and ornamental species that are native in Eastern Asia, and they are the main sources of shikimic acid. Shikimic acid is an important component of Tamiflu, which is recognized for its ability to resist avian influenza by the World Health Organization. To determine areas where 15 Illicium species can be grown and to understand the importance of species diversity, we should enhance the prediction of suitable areas. METHODS In this study, the global potential distribution of 15 Illicium species was predicted using a geographic information system for global medicinal plants. RESULTS Results showed that the possible suitable areas for these plants in China covered 1357.68 × 104 km2 (56%), and the second-largest area spanning 527.42 × 104 km2 was found in the United States. Illicium verum Hook, an edible species with the highest shikimic acid content among them, grew in areas of 59.92 × 104 (48%), 64.04 × 104 (19%), and 60.53 × 104 km2(18%) in China, the United States, and Brazil, respectively. Illicium.difengpi B. N. Chamg, an endangered species, was distributed in an area of 19.03 × 104 km2 or 95% of the total area in China. CONCLUSIONS This research provided a guarantee for the demand of Tamiflu, presented strategies that helped protect endangered species, and provided a reference for species cultivation and introduction.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Xiangxiao Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Jie Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
30
|
Abstract
For many years, industrial enzymes have played an important role in the benefit of our society due to their many useful properties and a wide range of applications. They are key elements in the progress of many industries including foods, beverages, pharmaceuticals, diagnostics, therapy, personal care, animal feed, detergents, pulp and paper, textiles, leather, chemicals and biofuels. During recent decades, microbial enzymes have replaced many plant and animal enzymes. This is because microbial enzymes are widely available and produced economically in short fermentations and inexpensive media. Screening is
simple, and strain improvement for increased production has been very successful. The advances in recombinant DNA technology have had a major effect on production levels of enzymes and represent a way to overproduce industrially important microbial, plant and animal enzymes. It has been calculated that 50-60% of the world enzyme market is supplied with recombinant enzymes. Molecular methods, including genomics and
metagenomics, are being used for the discovery of new enzymes from microbes. Also, directed evolution has allowed the design of enzyme specificities and better performance.
Collapse
Affiliation(s)
- Arnold L. Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, New Jersey 07940, USA
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México
| |
Collapse
|
31
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
32
|
Rodriguez A, Martínez JA, Millard P, Gosset G, Portais JC, Létisse F, Bolivar F. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineeredEscherichia colistrain. Biotechnol Bioeng 2017; 114:1319-1330. [DOI: 10.1002/bit.26264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Alberto Rodriguez
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | - Juan A. Martínez
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | - Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA; INSA; Toulouse France
| | - Guillermo Gosset
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | | | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA; INSA; Toulouse France
| | - Francisco Bolivar
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| |
Collapse
|
33
|
Psotka M, Martinková M, Gonda J. A Lemieux–Johnson oxidation of shikimic acid derivatives: facile entry to small library of protected (2S,3S,4R)-2,3,4,7-tetrahydroxy-6-oxoheptanals. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0004-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng 2016; 38:204-216. [DOI: 10.1016/j.ymben.2016.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022]
|
35
|
Wang M, Wang Y, Omari-Siaw E, Wang S, Zhu Y, Xu X. Reduced Burst Release and Enhanced Oral Bioavailability in Shikimic Acid–Loaded Polylactic Acid Submicron Particles by Coaxial Electrospray. J Pharm Sci 2016; 105:2427-36. [DOI: 10.1016/j.xphs.2016.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/11/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023]
|
36
|
Ghosh S, Mohan U, Banerjee UC. Studies on the production of shikimic acid using the aroK knockout strain of Bacillus megaterium. World J Microbiol Biotechnol 2016; 32:127. [DOI: 10.1007/s11274-016-2092-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
37
|
LIU XL, LIN J, HU HF, ZHOU B, ZHU BQ. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli. Chin J Nat Med 2016; 14:286-293. [DOI: 10.1016/s1875-5364(16)30029-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/26/2022]
|
38
|
Liu X, Lin J, Hu H, Zhou B, Zhu B. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Enzyme Microb Technol 2016; 82:96-104. [DOI: 10.1016/j.enzmictec.2015.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023]
|
39
|
Hao X, Huang Q, Shen G, Wu X, Hu G, Ban C. Separation and Purification of (−)-Shikimic Acid and (−)-Quinic Acid by the Phase Diagrams of the Ternary System of (−)-Shikimic Acid + (−)-Quinic Acid + H2O and the Quaternary System of (−)-Shikimic Acid + (−)-Quinic Acid + Ethanol (φ ∼ 50%,φ ∼ 75%) + H2O. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinying Hao
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Qiang Huang
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Guopeng Shen
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xiaoru Wu
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Guoqin Hu
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Chunlan Ban
- School of Chemical Engineering
and Energy, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
40
|
Ghosh S, Banerjee UC. Generation of aroE overexpression mutant of Bacillus megaterium for the production of shikimic acid. Microb Cell Fact 2015; 14:69. [PMID: 25981549 PMCID: PMC4490670 DOI: 10.1186/s12934-015-0251-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Shikimic acid, the sole chemical building block for the antiviral drug oseltamivir (Tamiflu®), is one of the potent pharmaceutical intermediates with three chiral centers. Here we report a metabolically engineered recombinant Bacillus megaterium strain with aroE (shikimate dehydrogenase) overexpression for the production of shikimic acid. Results In a 7 L bioreactor, 4.2 g/L shikimic acid was obtained using the recombinant strain over 0.53 g/L with the wild type. The enhancement of total shikimate dehydrogenase activity was 2.13-fold higher than the wild type. Maximum yield of shikimic acid (12.54 g/L) was obtained with fructose as carbon source. It was isolated from the fermentation broth using amberlite IRA-400 resin and 89 % purity of the product was achieved. Conclusion This will add up a new organism in the armory for the fermentation based production which is better over plant based extraction and chemical synthesis of shikimic acid. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, 160062, Punjab, India.
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S., Nagar, 160062, Punjab, India.
| |
Collapse
|
41
|
Zhang B, Jiang CY, Liu YM, Liu C, Liu SJ. Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum. Biotechnol Lett 2015; 37:1861-8. [DOI: 10.1007/s10529-015-1852-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
|
42
|
Just J, Deans BJ, Olivier WJ, Paull B, Bissember AC, Smith JA. New Method for the Rapid Extraction of Natural Products: Efficient Isolation of Shikimic Acid from Star Anise. Org Lett 2015; 17:2428-30. [DOI: 10.1021/acs.orglett.5b00936] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jeremy Just
- School of Physical Sciences
− Chemistry and ‡Australian Centre for Research on
Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Bianca J. Deans
- School of Physical Sciences
− Chemistry and ‡Australian Centre for Research on
Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Wesley J. Olivier
- School of Physical Sciences
− Chemistry and ‡Australian Centre for Research on
Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brett Paull
- School of Physical Sciences
− Chemistry and ‡Australian Centre for Research on
Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C. Bissember
- School of Physical Sciences
− Chemistry and ‡Australian Centre for Research on
Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jason A. Smith
- School of Physical Sciences
− Chemistry and ‡Australian Centre for Research on
Separation Science (ACROSS), University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
43
|
Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 2014; 13:126. [PMID: 25200799 PMCID: PMC4174253 DOI: 10.1186/s12934-014-0126-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/17/2014] [Indexed: 11/10/2022] Open
Abstract
The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.
Collapse
|
44
|
Cardoso SF, Lopes LM, Nascimento IR. Eichhornia crassipes: An advantageous source of shikimic acid. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Liu X, Lin J, Hu H, Zhou B, Zhu B. Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol. World J Microbiol Biotechnol 2014; 30:2543-50. [DOI: 10.1007/s11274-014-1679-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 12/28/2022]
|
46
|
Rawat G, Tripathi P, Yadav S, Saxena RK. An interactive study of influential parameters for shikimic acid production using statistical approach, scale up and its inhibitory action on different lipases. BIORESOURCE TECHNOLOGY 2013; 144:675-679. [PMID: 23871288 DOI: 10.1016/j.biortech.2013.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Shikimic acid is the promising candidate as a building block for the industrial synthesis of drug Tamiflu used for the treatment of Swine flu. The fermentative production process using microbes present an excellent and even more sustainable alternative to the traditional plants based extraction methods. In the present study, the fermentative production of shikimic acid by Citrobacter freundii GR-21 (KC466031) was optimized by process engineering using a statistical modeling approach and a maximum amount of 16.78 g L(-1) was achieved. The process was also scaled up to 14L bioreactor to validate the production of shikimic acid. Further, the potential of anti-enzymatic nature of purified shikimic acid was evaluated for different lipases wherein, shikimic acid inhibited the hydrolysis of triglycerides by 55-60%. Shikimic acid also profoundly inhibited pancreatic lipase activity by 66%, thus providing another valuable therapeutic aspect for treating diet induced obesity in humans.
Collapse
Affiliation(s)
- Garima Rawat
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| | | | | | | |
Collapse
|