1
|
Dai P, Qin Y, Li L, Li H, Lv L, Xu D, Song Y, Huang T, Lin S, Deng Z, Tao M. Enhancing tylosin production by combinatorial overexpression of efflux, SAM biosynthesis, and regulatory genes in hyperproducing Streptomyces xinghaiensis strain. Synth Syst Biotechnol 2023; 8:486-497. [PMID: 37519989 PMCID: PMC10372049 DOI: 10.1016/j.synbio.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Tylosin is a 16-membered macrolide antibiotic widely used in veterinary medicine to control infections caused by Gram-positive pathogens and mycoplasmas. To improve the fermentation titer of tylosin in the hyperproducing Streptomyces xinghaiensis strain TL01, we sequenced its whole genome and identified the biosynthetic gene cluster therein. Overexpression of the tylosin efflux gene tlrC, the cluster-situated S-adenosyl methionine (SAM) synthetase gene metKcs, the SAM biosynthetic genes adoKcs-metFcs, or the pathway-specific activator gene tylR enhanced tylosin production by 18%, 12%, 11%, and 11% in the respective engineered strains TLPH08-2, TLPH09, TLPH10, and TLPH12. Co-overexpression of metKcs and adoKcs-metFcs as two transcripts increased tylosin production by 22% in the resultant strain TLPH11 compared to that in TL01. Furthermore, combinational overexpression of tlrC, metKcs, adoKcs-metFcs, and tylR as four transcripts increased tylosin production by 23% (10.93g/L) in the resultant strain TLPH17 compared to that in TL01. However, a negligible additive effect was displayed upon combinational overexpression in TLPH17 as suggested by the limited increment of fermentation titer compared to that in TLPH08-2. Transcription analyses indicated that the expression of tlrC and three SAM biosynthetic genes in TLPH17 was considerably lower than that of TLPH08-2 and TLPH11. Based on this observation, the five genes were rearranged into one or two operons to coordinate their overexpression, yielding two engineered strains TLPH23 and TLPH24, and leading to further enhancement of tylosin production over TLPH17. In particular, the production of TLPH23 reached 11.35 g/L. These findings indicated that the combinatorial strategy is a promising approach for enhancing tylosin production in high-yielding industrial strains.
Collapse
Affiliation(s)
- Penghui Dai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuyao Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyuan Li
- Zhejiang Apeloa Biotechnology Co., Ltd., Jinhua, 322109, China
| | - Haidi Li
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Lihuo Lv
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Danying Xu
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Yuqing Song
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
2
|
Wan M, Gan L, Li Z, Wang M, Chen J, Chen S, Hu J, Li J. Enhancement of fungichromin production of Streptomyces sp. WP-1 by genetic engineering. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12672-4. [PMID: 37417973 DOI: 10.1007/s00253-023-12672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Fungichromin is a polyene macrolide antibiotic with potent killing activity against a broad range of agricultural pathogens and filamentous fungi and a wide range of potential applications. The production of fungichromin is still hampered by poor fermentation yield and high cost. In this study, the whole genome sequencing of fungichromin-producing Streptomyces sp. WP-1 was conducted, and the fungichromin biosynthetic gene cluster was identified. Comparative analysis revealed that the fungichromin biosynthetic gene cluster contains two regulatory genes, ptnF, and ptnR. The roles of ptnF and ptnR were determined through knockout and complementation. The yield of fungichromin was increased by overexpressing these two regulatory genes, as well as the crotonyl CoA reductase/carboxylase gene ptnB in Streptomyces sp. WP-1. The yield of fungichromin was increased to 8.5 g/L using a combination of genetic engineering and a medium optimization strategy, which is the highest fermentation titer recorded. KEY POINTS: • Confirmation of the positive regulation of ptnF and ptnR on fungichromin. • Improvement of fungichromin production by the construction of ptnF, ptnR, and ptnB overexpression strains. • Improvement of fungichromin production by the addition of soybean oil and copper ions at optimal concentration.
Collapse
Affiliation(s)
- Miyang Wan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lu Gan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenxin Li
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mengran Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jingtao Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shaoxin Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jinfeng Hu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiyang Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Peng ZY, Fu Y, Zhao LC, Dong YQ, Chen ZQ, You D, Ye BC. Protein acylation links metabolism and the control of signal transduction, transcription regulation, growth, and pathogenicity in Actinobacteria. Mol Microbiol 2023; 119:151-160. [PMID: 36349384 DOI: 10.1111/mmi.14998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
Actinobacteria have a complex life cycle, including morphological and physiological differentiation which are often associated with the biosynthesis of secondary metabolites. Recently, increased interest in post-translational modifications (PTMs) in these Gram-positive bacteria has highlighted the importance of PTMs as signals that provide functional diversity and regulation by modifying proteins to respond to diverse stimuli. Here, we review the developments in research on acylation, a typical PTM that uses acyl-CoA or related metabolites as donors, as well as the understanding of the direct link provided by acylation between cell metabolism and signal transduction, transcriptional regulation, cell growth, and pathogenicity in Actinobacteria.
Collapse
Affiliation(s)
- Zhi-Yao Peng
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Chang Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Qi Dong
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zong-Qin Chen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Xu Z, Park TJ, Cao H. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol 2023; 49:18-37. [PMID: 35166616 DOI: 10.1080/1040841x.2022.2036099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Tae-Jin Park
- HME Healthcare Co., Ltd, Suwon-si, Republic of Korea
| | - Huiluo Cao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
6
|
Improvement of Rimocidin Biosynthesis by Increasing Supply of Precursor Malonyl-CoA via Over-expression of Acetyl-CoA Carboxylase in Streptomyces rimosus M527. Curr Microbiol 2022; 79:174. [PMID: 35488939 DOI: 10.1007/s00284-022-02867-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
Precursor engineering is an effective strategy for the overproduction of secondary metabolites. The polyene macrolide rimocidin, which is produced by Streptomyces rimosus M527, exhibits a potent activity against a broad range of phytopathogenic fungi. It has been predicted that malonyl-CoA is used as extender units for rimocidin biosynthesis. Based on a systematic analysis of three sets of time-series transcriptome microarray data of S. rimosus M527 fermented in different conditions, the differentially expressed accsr gene that encodes acetyl-CoA carboxylase (ACC) was found. To understand how the formation of rimocidin is being influenced by the expression of the accsr gene and by the concentration of malonyl-CoA, the accsr gene was cloned and over-expressed in the wild-type strain S. rimosus M527 in this study. The recombinant strain S. rimosus M527-ACC harboring the over-expressed accsr gene exhibited better performances based on the enzymatic activity of ACC, intracellular malonyl-CoA concentrations, and rimocidin production compared to S. rimosus M527 throughout the fermentation process. The enzymatic activity of ACC and intracellular concentration of malonyl-CoA of S. rimosus M527-ACC were 1.0- and 1.5-fold higher than those of S. rimosus M527, respectively. Finally, the yield of rimocidin produced by S. rimosus M527-ACC reached 320.7 mg/L, which was 34.0% higher than that of S. rimosus M527. These results confirmed that malonyl-CoA is an important precursor for rimocidin biosynthesis and suggested that an adequate supply of malonyl-CoA caused by accsr gene over-expression led to the improvement in rimocidin production.
Collapse
|
7
|
Cibichakravarthy B, Jose PA. Biosynthetic Potential of Streptomyces Rationalizes Genome-Based Bioprospecting. Antibiotics (Basel) 2021; 10:antibiotics10070873. [PMID: 34356794 PMCID: PMC8300671 DOI: 10.3390/antibiotics10070873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/04/2022] Open
Abstract
Streptomyces are the most prolific source of structurally diverse microbial natural products. Advancing genome-based analysis reveals the previously unseen potential of Streptomyces to produce numerous novel secondary metabolites, which allows us to take natural product discovery to the next phase. However, at present there is a huge disproportion between the rate of genome reports and discovery of new compounds. From this perspective of harnessing the enduring importance of Streptomyces, we discuss the recent genome-directed advancements inspired by hidden biosynthetic wealth that provide hope for future antibiotics.
Collapse
Affiliation(s)
- Balasubramanian Cibichakravarthy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761000, Israel;
| | - Polapass Arul Jose
- Department of Entomology and Plant Pathology & Microbiology, The Hebrew University of Jerusalem, POB 12, Rehovot 761000, Israel
- Correspondence:
| |
Collapse
|
8
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|
9
|
Gläser L, Kuhl M, Stegmüller J, Rückert C, Myronovskyi M, Kalinowski J, Luzhetskyy A, Wittmann C. Superior production of heavy pamamycin derivatives using a bkdR deletion mutant of Streptomyces albus J1074/R2. Microb Cell Fact 2021; 20:111. [PMID: 34082758 PMCID: PMC8176718 DOI: 10.1186/s12934-021-01602-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Pamamycins are macrodiolides of polyketide origin which form a family of differently large homologues with molecular weights between 579 and 663. They offer promising biological activity against pathogenic fungi and gram-positive bacteria. Admittedly, production titers are very low, and pamamycins are typically formed as crude mixture of mainly smaller derivatives, leaving larger derivatives rather unexplored so far. Therefore, strategies that enable a more efficient production of pamamycins and provide increased fractions of the rare large derivatives are highly desired. Here we took a systems biology approach, integrating transcription profiling by RNA sequencing and intracellular metabolite analysis, to enhance pamamycin production in the heterologous host S. albus J1074/R2. Results Supplemented with l-valine, the recombinant producer S. albus J1074/R2 achieved a threefold increased pamamycin titer of 3.5 mg L−1 and elevated fractions of larger derivatives: Pam 649 was strongly increased, and Pam 663 was newly formed. These beneficial effects were driven by increased availability of intracellular CoA thioesters, the building blocks for the polyketide, resulting from l-valine catabolism. Unfavorably, l-valine impaired growth of the strain, repressed genes of mannitol uptake and glycolysis, and suppressed pamamycin formation, despite the biosynthetic gene cluster was transcriptionally activated, restricting production to the post l-valine phase. A deletion mutant of the transcriptional regulator bkdR, controlling a branched-chain amino acid dehydrogenase complex, revealed decoupled pamamycin biosynthesis. The regulator mutant accumulated the polyketide independent of the nutrient status. Supplemented with l-valine, the novel strain enabled the biosynthesis of pamamycin mixtures with up to 55% of the heavy derivatives Pam 635, Pam 649, and Pam 663: almost 20-fold more than the wild type. Conclusions Our findings open the door to provide rare heavy pamamycins at markedly increased efficiency and facilitate studies to assess their specific biological activities and explore this important polyketide further. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01602-6.
Collapse
Affiliation(s)
- Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Maksym Myronovskyi
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Zhou W, Posri P, Abugrain ME, Weisberg AJ, Chang JH, Mahmud T. Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in Streptomyces pactum. ACS Chem Biol 2020; 15:3217-3226. [PMID: 33284588 DOI: 10.1021/acschembio.0c00775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NFAT-133 is a Streptomyces-derived aromatic polyketide compound with immunosuppressive, antidiabetic, and antitrypanosomal activities. It inhibits transcription mediated by nuclear factor of activated T cells (NFAT), leading to the suppression of interleukin-2 expression and T cell proliferation. It also activates the AMPK pathway in L6 myotubes and increases glucose uptake. In addition to NFAT-133, a number of its congeners, e.g., panowamycins and benwamycins, have been identified. However, little is known about their modes of formation in the producing organisms. Through genome sequencing of Streptomyces pactum ATCC 27456, gene inactivation, and genetic complementation experiments, the biosynthetic gene cluster of NFAT-133 and its congeners has been identified. The cluster contains a highly disordered genetic organization of type I modular polyketide synthase genes with several genes that are necessary for the formation of the aromatic core unit and tailoring processes. In addition, a number of new analogs of NFAT-133 were isolated and their chemical structures elucidated. It is suggested that the heptaketide NFAT-133 is derived from an octaketide intermediate, TM-123. The current study shows yet another unusual biosynthetic pathway involving a noncanonical polyketide synthase assembly line to produce a group of small molecules with valuable bioactivities.
Collapse
|
11
|
Li S, Li Z, Pang S, Xiang W, Wang W. Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces. Curr Opin Biotechnol 2020; 69:26-34. [PMID: 33316577 DOI: 10.1016/j.copbio.2020.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023]
Abstract
The widely used polyketide pharmaceuticals in medicine and agriculture are mainly produced by Streptomyces species. These compounds, as secondary metabolites, are not involved in essential cellular processes and are usually produced during the stationary phase of fermentation. Consequently, their yields and productivities are often low and frequently limited by the availability of the precursors. The precursor pathways, therefore, are key entities for synthetic biology-driven design and optimization. We discuss recent advances in precursor engineering, in both Streptomyces and other bacteria, focusing on the diverse native and heterologous precursor pathways that could be rewired for polyketide titer improvement. We also highlight the coordination of other required factors to direct the precursors towards polyketide biosynthesis. The precursor-supply enhancement tools and strategies covered in this review will facilitate the design and construction of synthetic Streptomyces 'cell-factories' for efficient polyketide production.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Huang K, Zhang B, Shen ZY, Cai X, Liu ZQ, Zheng YG. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus. Microbiol Res 2020; 242:126623. [PMID: 33189073 DOI: 10.1016/j.micres.2020.126623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
The antifungal agent amphotericin B (AmB) is a polyketide produced by Streptomyces nodosus. The synthetic precursors of the amphotericin macrolactone skeleton are acetyl-CoA, malonyl-CoA and methylmalonyl-CoA. The genome sequence of the wild type S. nodosus ATCC14899 revealed a type II polyketide synthase (PKS) competing for malonyl-CoA. The same competitive branch was sequenced and verified in a mutant named S. nodosus ZJB2016050 (S. nodosus N3) screened in our lab. The transcriptome of the secondary metabolic synthetic gene cluster comparisons suggested that type II PKS (PKS5) competition is a factor in low production. The deletion of the PKS5 gene led to the titer of AmB improved from 5.01 g/L to 6.32 g/L while the by-product amphotericin A (AmA) reduced from 0.51 g/L to 0.12 g/L. A sequence of genes including PKS amphA, acc1, mme and mcm were overexpressed in a ΔPKS5 mutant, resulting in improved production AmB from 5.01 g/L to 7.06 g/L in shake flasks at 96 h. The yield of AmB and AmA in a 5 L bioreactor at 144 h was 15.6 g/L and 0.36 g/L, respectively. The intracellular reducibility of the wild type, mutagenesis type and genetically engineered type were detected, which was first found to be related to the by-product AmA. The increment of skeleton biosynthesis may consume more NADPH and reduces AmphC ER5 domain reduction. This study can be implemented for other polyketides in industrial production.
Collapse
Affiliation(s)
- Kai Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zhen-Yang Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
13
|
Kalkreuter E, Pan G, Cepeda AJ, Shen B. Targeting Bacterial Genomes for Natural Product Discovery. Trends Pharmacol Sci 2019; 41:13-26. [PMID: 31822352 DOI: 10.1016/j.tips.2019.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
Bacterial natural products (NPs) and their analogs constitute more than half of the new small molecule drugs developed over the past few decades. Despite this success, interest in natural products from major pharmaceutical companies has decreased even as genomics has uncovered the large number of biosynthetic gene clusters (BGCs) that encode for novel natural products. To date, there is still a lack of universal strategies and enabling technologies to discover natural products at scale and speed. This review highlights several of the opportunities provided by genome sequencing and bioinformatics, challenges associated with translating genomes into natural products, and examples of successful strain prioritization and BGC activation strategies that have been used in the genomic era for natural product discovery from cultivatable bacteria.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Guohui Pan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alexis J Cepeda
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
14
|
Yu Z, Lv H, Wu Y, Wei T, Yang S, Ju D, Chen S. Enhancement of FK520 production in Streptomyces hygroscopicus by combining traditional mutagenesis with metabolic engineering. Appl Microbiol Biotechnol 2019; 103:9593-9606. [PMID: 31713669 DOI: 10.1007/s00253-019-10192-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
Abstract
FK520 (ascomycin), a 23-membered macrolide with immunosuppressive activity, is produced by Streptomyces hygroscopicus. The problem of low yield and high impurities (mainly FK523) limits the industrialized production of FK520. In this study, the FK520 yield was significantly improved by strain mutagenesis and genetic engineering. First, a FK520 high-producing strain SFK-6-33 (2432.2 mg/L) was obtained from SFK-36 (1588.4 mg/L) through ultraviolet radiation mutation coupled with streptomycin resistance screening. The endogenous crotonyl-CoA carboxylase/reductase (FkbS) was found to play an important role in FK520 biosynthesis, identified with CRISPR/dCas9 inhibition system. FkbS was overexpressed in SFK-6-33 to obtain the engineered strain SFK-OfkbS, which produced 2817.0 mg/L of FK520 resulting from an increase in intracellular ethylmalonyl-CoA levels. In addition, the FK520 levels could be further increased with supplementation of crotonic acid in SFK-OfkbS. Overexpression of acetyl-CoA carboxylase (ACCase), used for the synthesis of malonyl-CoA, was also investigated in SFK-6-33, which improved the FK520 yield to 3320.1 mg/L but showed no significant inhibition in FK523 production. To further enhance FK520 production, FkbS and ACCase combinatorial overexpression strain SFK-OASN was constructed; the FK520 production increased by 44.4% to 3511.4 mg/L, and the FK523/FK520 ratio was reduced from 9.6 to 5.6% compared with that in SFK-6-33. Finally, a fed-batch culture was carried out in a 5-L fermenter, and the FK520 yield reached 3913.9 mg/L at 168 h by feeding glycerol, representing the highest FK520 yield reported thus far. These results demonstrated that traditional mutagenesis combined with metabolic engineering was an effective strategy to improve FK520 production.
Collapse
Affiliation(s)
- Zhituo Yu
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Huihui Lv
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yuanjie Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Tengyun Wei
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Songbai Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China.
| | - Shaoxin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
15
|
Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 2019; 10:e01303-19. [PMID: 31551329 PMCID: PMC6759758 DOI: 10.1128/mbio.01303-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Cobamides, a uniquely diverse family of enzyme cofactors related to vitamin B12, are produced exclusively by bacteria and archaea but used in all domains of life. While it is widely accepted that cobamide-dependent organisms require specific cobamides for their metabolism, the biochemical mechanisms that make cobamides functionally distinct are largely unknown. Here, we examine the effects of cobamide structural variation on a model cobamide-dependent enzyme, methylmalonyl coenzyme A (CoA) mutase (MCM). The in vitro binding affinity of MCM for cobamides can be dramatically influenced by small changes in the structure of the lower ligand of the cobamide, and binding selectivity differs between bacterial orthologs of MCM. In contrast, variations in the lower ligand have minor effects on MCM catalysis. Bacterial growth assays demonstrate that cobamide requirements of MCM in vitro largely correlate with in vivo cobamide dependence. This result underscores the importance of enzyme selectivity in the cobamide-dependent physiology of bacteria.IMPORTANCE Cobamides, including vitamin B12, are enzyme cofactors used by organisms in all domains of life. Cobamides are structurally diverse, and microbial growth and metabolism vary based on cobamide structure. Understanding cobamide preference in microorganisms is important given that cobamides are widely used and appear to mediate microbial interactions in host-associated and aquatic environments. Until now, the biochemical basis for cobamide preferences was largely unknown. In this study, we analyzed the effects of the structural diversity of cobamides on a model cobamide-dependent enzyme, methylmalonyl-CoA mutase (MCM). We found that very small changes in cobamide structure could dramatically affect the binding affinity of cobamides to MCM. Strikingly, cobamide-dependent growth of a model bacterium, Sinorhizobium meliloti, largely correlated with the cofactor binding selectivity of S. meliloti MCM, emphasizing the importance of cobamide-dependent enzyme selectivity in bacterial growth and cobamide-mediated microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California, USA
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jong Duk Park
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jennifer L A Tran
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kathryn A Quanstrom
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Dhakal D, Sohng JK, Pandey RP. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact 2019; 18:137. [PMID: 31409353 PMCID: PMC6693128 DOI: 10.1186/s12934-019-1184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| |
Collapse
|
17
|
Cook TB, Pfleger BF. Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MEDCHEMCOMM 2019; 10:668-681. [PMID: 31191858 PMCID: PMC6540960 DOI: 10.1039/c9md00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteria have historically been a rich source of natural products (e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| |
Collapse
|
18
|
You D, Wang MM, Yin BC, Ye BC. Precursor Supply for Erythromycin Biosynthesis: Engineering of Propionate Assimilation Pathway Based on Propionylation Modification. ACS Synth Biol 2019; 8:371-380. [PMID: 30657660 DOI: 10.1021/acssynbio.8b00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Erythromycin is necessary in medical treatment and known to be biosynthesized with propionyl-CoA as direct precursor. Oversupply of propionyl-CoA induced hyperpropionylation, which was demonstrated as harmful for erythromycin synthesis in Saccharopolyspora erythraea. Herein, we identified three propionyl-CoA synthetases regulated by propionylation, and one propionyl-CoA synthetase SACE_1780 revealed resistance to propionylation. A practical strategy for raising the precursor (propionyl-CoA) supply bypassing the feedback inhibition caused by propionylation was developed through two approaches: deletion of the propionyltransferase AcuA, and SACE_1780 overexpression. The constructed Δ acuA strain presented a 10% increase in erythromycin yield; SACE_1780 overexpression strain produced 33% higher erythromycin yield than the wildtype strain NRRL2338 and 22% higher erythromycin yield than the industrial high yield Ab strain. These findings uncover the role of protein acylation in precursor supply for antibiotics biosynthesis and provide efficient post-translational modification-metabolic engineering strategy (named as PTM-ME) in synthetic biology for improvement of secondary metabolites.
Collapse
Affiliation(s)
- Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miao-Miao Wang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
| |
Collapse
|
19
|
Kalkreuter E, CroweTipton JM, Lowell AN, Sherman DH, Williams GJ. Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units. J Am Chem Soc 2019; 141:1961-1969. [PMID: 30676722 DOI: 10.1021/jacs.8b10521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is significant interest in diversifying the structures of polyketides to create new analogues of these bioactive molecules. This has traditionally been done by focusing on engineering the acyltransferase (AT) domains of polyketide synthases (PKSs) responsible for the incorporation of malonyl-CoA extender units. Non-natural extender units have been utilized by engineered PKSs previously; however, most of the work to date has been accomplished with ATs that are either naturally promiscuous and/or located in terminal modules lacking downstream bottlenecks. These limitations have prevented the engineering of ATs with low native promiscuity and the study of any potential gatekeeping effects by domains downstream of an engineered AT. In an effort to address this gap in PKS engineering knowledge, the substrate preferences of the final two modules of the pikromycin PKS were compared for several non-natural extender units and through active site mutagenesis. This led to engineering of the methylmalonyl-CoA specificity of both modules and inversion of their selectivity to prefer consecutive non-natural derivatives. Analysis of the product distributions of these bimodular reactions revealed unexpected metabolites resulting from gatekeeping by the downstream ketoreductase and ketosynthase domains. Despite these new bottlenecks, AT engineering provided the first full-length polyketide products incorporating two non-natural extender units. Together, this combination of tandem AT engineering and the identification of previously poorly characterized bottlenecks provides a platform for future advancements in the field.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| | - Jared M CroweTipton
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Chemistry and Department of Microbiology & Immunology , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Gavin J Williams
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
20
|
Kumelj T, Sulheim S, Wentzel A, Almaas E. Predicting Strain Engineering Strategies Using iKS1317: A Genome‐Scale Metabolic Model of
Streptomyces coelicolor. Biotechnol J 2019; 14:e1800180. [DOI: 10.1002/biot.201800180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 11/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tjaša Kumelj
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Snorre Sulheim
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- SINTEF IndustryDepartment of Biotechnology and NanomedicineTrondheimNorway
| | - Alexander Wentzel
- SINTEF IndustryDepartment of Biotechnology and NanomedicineTrondheimNorway
| | - Eivind Almaas
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- K.G. Jebsen Center for Genetic EpidemiologyNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
21
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Talà A, Damiano F, Gallo G, Pinatel E, Calcagnile M, Testini M, Fico D, Rizzo D, Sutera A, Renzone G, Scaloni A, De Bellis G, Siculella L, De Benedetto GE, Puglia AM, Peano C, Alifano P. Pirin: A novel redox-sensitive modulator of primary and secondary metabolism in Streptomyces. Metab Eng 2018; 48:254-268. [PMID: 29944936 DOI: 10.1016/j.ymben.2018.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Pirins are evolutionarily conserved iron-containing proteins that are found in all kingdoms of life, and have been implicated in diverse molecular processes, mostly associated with cellular stress. In the present study, we started from the evidence that the insertional inactivation of pirin-like gene SAM23877_RS18305 (pirA) by ΦC31 Att/Int system-based vectors in spiramycin-producing strain Streptomyces ambofaciens ATCC 23877 resulted in marked effects on central carbon and energy metabolism gene expression, high sensitivity to oxidative injury and repression of polyketide antibiotic production. By using integrated transcriptomic, proteomic and metabolite profiling, together with genetic complementation, we here show that most of these effects could be traced to the inability of the pirA-defective strain to modulate beta-oxidation pathway, leading to an unbalanced supply of precursor monomers for polyketide biosynthesis. Indeed, in silico protein-protein interaction modeling and in vitro experimental validation allowed us to demonstrate that PirA is a novel redox-sensitive negative modulator of very long-chain acyl-CoA dehydrogenase, which catalyzes the first committed step of the beta-oxidation pathway.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Mariangela Testini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniela Fico
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Daniela Rizzo
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Alberto Sutera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy; Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
23
|
Wang J, Wang C, Song K, Wen J. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. Microb Cell Fact 2017; 16:169. [PMID: 28974216 PMCID: PMC5627430 DOI: 10.1186/s12934-017-0787-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. Results The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA-Hcd-Ccr with hcd and ccr overexpression exhibited the highest ascomycin production (up to 438.95 mg/L), 1.43-folds improvement than that of the parent strain FS35 (305.56 mg/L). Conclusions The successful constructing and experimental validation of the metabolic model of S. hygroscopicus var. ascomyceticus showed that the general metabolic network model of Streptomyces species could be used to analyze the intracellular metabolism and predict the potential key limiting steps for target metabolites overproduction. The corresponding overexpression strains of the two identified genes (hcd and ccr) using the constructed model all displayed higher ascomycin titer. The strategy for yield improvement developed here could also be extended to the improvement of other secondary metabolites in Streptomyces species. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0787-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junhua Wang
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Cheng Wang
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Kejing Song
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
24
|
Zhang X, Lu C, Bai L. Conversion of the high-yield salinomycin producer Streptomyces albus BK3-25 into a surrogate host for polyketide production. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1000-1009. [PMID: 28812299 DOI: 10.1007/s11427-017-9122-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022]
Abstract
An ideal surrogate host for heterologous production of various natural products is expected to have efficient nutrient utilization, fast growth, abundant precursors and energy supply, and a pronounced gene expression. Streptomyces albus BK3-25 is a high-yield industrial strain producing type-I polyketide salinomycin, with a unique ability of bean oil utilization. Its potential of being a surrogate host for heterologous production of PKS was engineered and evaluated herein. Firstly, introduction of a three-gene cassette for the biosynthesis of ethylmalonyl-CoA resulted in accumulation of ethylmalonyl-CoA precursor and salinomycin, and subsequent deletion of the salinomycin biosynthetic gene cluster resulted in a host with rich supplies of common polyketide precursors, including malonyl-CoA, methylmalonyl-CoA, and ethylmalonyl-CoA. Secondly, the energy and reducing force were measured, and the improved accumulation of ATP and NADPH was observed in the mutant. Furthermore, the strength of a series of selected endogenous promoters based on microarray data was assessed at different growth phases, and a strong constitutive promoter was identified, providing a useful tool for further engineered gene expression. Finally, the potential of the BK3-25 derived host ZXJ-6 was evaluated with the introduction of the actinorhodin biosynthetic gene cluster from Streptomyces coelicolor, and the heterologous production of actinorhodin was obtained. This work clearly indicated the potential of the high-yield salinomycin producer as a surrogate host for heterologous production of polyketides, although more genetic manipulation should be conducted to streamline its performance.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenyang Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Mechanism of salinomycin overproduction in Streptomyces albus as revealed by comparative functional genomics. Appl Microbiol Biotechnol 2017; 101:4635-4644. [DOI: 10.1007/s00253-017-8278-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
|
26
|
Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 2016; 42:98-107. [DOI: 10.1016/j.copbio.2016.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
|
27
|
Kim E, Song MC, Kim MS, Beom JY, Lee EY, Kim DM, Nam SJ, Yoon YJ. Characterization of the Two Methylation Steps Involved in the Biosynthesis of Mycinose in Tylosin. JOURNAL OF NATURAL PRODUCTS 2016; 79:2014-2021. [PMID: 27453999 DOI: 10.1021/acs.jnatprod.6b00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The S-adenosyl-l-methionine-dependent O-methyltransferases TylE and TylF catalyze the last two methylation reactions in the tylosin biosynthetic pathway of Streptomyces fradiae. It has long been known that the TylE-catalyzed C2‴-O-methylation of the 6-deoxy-d-allose bound to demethylmacrocin or demethyllactenocin precedes the TylF-catalyzed C3‴-O-methylation of the d-javose (C2‴-O-methylated 6-deoxy-d-allose) attached to macrocin or lactenocin. This study reveals the unexpected substrate promiscuity of TylE and TylF responsible for the biosynthesis of d-mycinose (C3‴-O-methylated d-javose) in tylosin through the identification of a new minor intermediate 2‴-O-demethyldesmycosin (2; 3‴-methyl-demethyllactenocin), which lacks a 2‴-O-methyl group on the mycinose moiety of desmycosin, along with 2‴-O-demethyltylosin (1; 3‴-methyl-demethylmacrocin) that was previously detected from the S. fradiae mutant containing a mutation in the tylE gene. These results unveil the unique substrate flexibility of TylE and TylF and demonstrate their potential for the engineered biosynthesis of novel glycosylated macrolide derivatives.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Myoun Su Kim
- Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Ji Yoon Beom
- Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University , Gyeonggi-do 17104, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, Republic of Korea
| |
Collapse
|
28
|
Kim HU, Charusanti P, Lee SY, Weber T. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Nat Prod Rep 2016; 33:933-41. [DOI: 10.1039/c6np00019c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This Highlight examines current status of metabolic engineering and systems biology tools deployed for the optimal production of prokaryotic secondary metabolites.
Collapse
Affiliation(s)
- Hyun Uk Kim
- BioInformatics Research Center
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Hørsholm
- Denmark
| | - Sang Yup Lee
- BioInformatics Research Center
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Hørsholm
- Denmark
| |
Collapse
|
29
|
Blažič M, Kosec G, Baebler Š, Gruden K, Petković H. Roles of the crotonyl-CoA carboxylase/reductase homologues in acetate assimilation and biosynthesis of immunosuppressant FK506 in Streptomyces tsukubaensis. Microb Cell Fact 2015; 14:164. [PMID: 26466669 PMCID: PMC4606968 DOI: 10.1186/s12934-015-0352-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In microorganisms lacking a functional glyoxylate cycle, acetate can be assimilated by alternative pathways of carbon metabolism such as the ethylmalonyl-CoA (EMC) pathway. Among the enzymes converting CoA-esters of the EMC pathway, there is a unique carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase (Ccr). In addition to the EMC pathway, gene homologues of ccr can be found in secondary metabolite gene clusters that are involved in the provision of structurally diverse extender units used in the biosynthesis of polyketide natural products. The roles of multiple ccr homologues in the same genome and their potential interactions in primary and secondary metabolic pathways are poorly understood. RESULTS In the genome of S. tsukubaensis we have identified two ccr homologues; ccr1 is located in the putative ethylmalonyl-CoA (emc) operon and allR is located on the left fringe of the FK506 cluster. AllR provides an unusual extender unit allylmalonyl-CoA (ALL) for the biosynthesis of FK506 and potentially also ethylmalonyl-CoA for the related compound FK520. We have demonstrated that in S. tsukubaensis the ccr1 gene does not have a significant role in the biosynthesis of FK506 or FK520 when cultivated on carbohydrate-based media. However, when overexpressed under the control of a strong constitutive promoter, ccr1 can take part in the biosynthesis of ethylmalonyl-CoA and thereby FK520, but not FK506. In contrast, if ccr1 is inactivated, allR is not able to sustain a functional ethylmalonyl-CoA pathway (EMC) and cannot support growth on acetate as the sole carbon source, even when constitutively expressed in the chimeric emc operon. This is somewhat surprising considering that the same chimeric emc operon results in production of FK506 as well as FK520, consistent with the previously proposed relaxed specificity of AllR for C4 and C5 substrates. CONCLUSIONS Different regulation of the expression of both ccr genes, ccr1 and allR, and their corresponding pathways EMC and ALL, respectively, in combination with the different enzymatic properties of the Ccr1 and AllR enzymes, determine an almost exclusive role of ccr1 in the EMC pathway in S. tsukubaensis, and an exclusive role of allR in the biosynthesis of FK506/FK520, thus separating the functional roles of these two genes between the primary and secondary metabolic pathways.
Collapse
Affiliation(s)
- Marko Blažič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| | - Gregor Kosec
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Arch Pharm Res 2015. [DOI: 10.1007/s12272-015-0638-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Dunn BJ, Watts KR, Robbins T, Cane DE, Khosla C. Comparative analysis of the substrate specificity of trans- versus cis-acyltransferases of assembly line polyketide synthases. Biochemistry 2014; 53:3796-806. [PMID: 24871074 PMCID: PMC4067149 DOI: 10.1021/bi5004316] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Due
to their pivotal role in extender unit selection during polyketide
biosynthesis, acyltransferase (AT) domains are important engineering
targets. A subset of assembly line polyketide synthases (PKSs) are
serviced by discrete, trans-acting ATs. Theoretically,
these trans-ATs can complement an inactivated cis-AT, promoting introduction of a noncognate extender
unit. This approach requires a better understanding of the substrate
specificity and catalytic mechanism of naturally occurring trans-ATs. We kinetically analyzed trans-ATs from the disorazole and kirromycin synthases and compared them
to a representative cis-AT from the 6-deoxyerythronolide
B synthase (DEBS). During transacylation, the disorazole AT favored
malonyl-CoA over methylmalonyl-CoA by >40000-fold, whereas the
kirromycin
AT favored ethylmalonyl-CoA over methylmalonyl-CoA by 20-fold. Conversely,
the disorazole AT had broader specificity than its kirromycin counterpart
for acyl carrier protein (ACP) substrates. The presence of the ACP
had little effect on the specificity (kcat/KM) of the cis-AT domain
for carboxyacyl-CoA substrates but had a marked influence on the corresponding
specificity parameters for the trans-ATs, suggesting
that these enzymes do not act strictly by a canonical ping-pong mechanism.
To investigate the relevance of the kinetic analysis of isolated ATs
in the context of intact PKSs, we complemented an in vitro AT-null DEBS assembly line with either trans-AT.
Whereas the disorazole AT efficiently complemented the mutant PKS
at substoichiometric protein ratios, the kirromycin AT was considerably
less effective. Our findings suggest that knowledge of both carboxyacyl-CoA
and ACP specificity is critical to the choice of a trans-AT in combination with a mutant PKS to generate novel polyketides.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, ‡Department of Chemistry, and ∥Department of Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|