1
|
Zhi J, Bai X, Wang Q, Wang T, Verma Y, Sharma G, Kumar A, Dhiman P. Natural gums-derived hydrogels for adsorptive removal of heavy metals: A review. Int J Biol Macromol 2025; 310:143350. [PMID: 40258557 DOI: 10.1016/j.ijbiomac.2025.143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
This review explores advancing and refining hydrogels derived from natural gums for heavy metal ion adsorption, focusing on their efficiency, capacity, and influencing parameters. The high adsorption capacity of these hydrogels, with values reaching up to 384.6 mg/g (Pb2+) and 203.7 mg/g (Cu2+), is linked to functional moieties like -COOH and -OH, which bind to metal ions through electrostatic interactions, exchange of ions, and coordination mechanisms. Adsorption efficiency is governed by conditions such as duration of contact, temperature, and pH. Temperature studies imply that adsorption occurs through an endothermic mechanism, with positive ΔH values and negative ΔG values, validating the spontaneity and efficiency of the process. Adsorption isotherms, including Langmuir and Freundlich models, have shown promising fits, with a high correlation coefficient (r2 > 0.9). The kinetic study reveals that the adsorption follows pseudo-second-order kinetics, implying a chemisorption mechanism. The occurrence of interfering ions (e.g., Na+, Ca2+) can reduce adsorption efficiency, but their impact is minimal at lower concentrations. Overall, gum-based hydrogels provide an eco-conscious and reliable approach for metal ion removal in aqueous solutions, showing potential for large-scale environmental applications. Further studies focusing on improving adsorption capacity and scalability are recommended to enhance their practical utility in wastewater treatment.
Collapse
Affiliation(s)
- Jinhu Zhi
- College of Agriculture, Tarim University, Alar 843300, PR China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Alar 843300, PR China; Research Center of Oasis Agricultural Resources and Environment in Southern Xinjiang, Tarim University, Alar 843300, PR China
| | - Xinlu Bai
- College of Agriculture, Tarim University, Alar 843300, PR China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Alar 843300, PR China; Research Center of Oasis Agricultural Resources and Environment in Southern Xinjiang, Tarim University, Alar 843300, PR China
| | - Qunyan Wang
- College of Agriculture, Tarim University, Alar 843300, PR China; Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Alar 843300, PR China; Research Center of Oasis Agricultural Resources and Environment in Southern Xinjiang, Tarim University, Alar 843300, PR China
| | - Tongtong Wang
- Institute for Interdisciplinary and Innovation Research, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| |
Collapse
|
2
|
Brus-Szkalej M, Dotson B, Andersen CB, Vetukuri RR, Grenville-Briggs LJ. A Family of Transglutaminases Is Essential for the Development of Appressorium-Like Structures and Phytophthora infestans Virulence in Potato. PHYTOPATHOLOGY 2025; 115:374-386. [PMID: 39745383 DOI: 10.1094/phyto-03-24-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localized to the cell wall. Based on sequence similarity, we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. These seven proteins are predicted to contain both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of TGase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans, indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower pathogenicity than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maja Brus-Szkalej
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Bradley Dotson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Christian B Andersen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
3
|
Lerner A, Benzvi C, Vojdani A. The Frequently Used Industrial Food Process Additive, Microbial Transglutaminase: Boon or Bane. Nutr Rev 2025; 83:e1286-e1294. [PMID: 38960726 DOI: 10.1093/nutrit/nuae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Microbial transglutaminase (mTG) is a frequently consumed processed food additive, and use of its cross-linked complexes is expanding rapidly. It was designated as a processing aid and was granted the generally recognized as safe (GRAS) classification decades ago, thus avoiding thorough assessment according to current criteria of toxicity and public health safety. In contrast to the manufacturer's declarations and claims, mTG and/or its transamidated complexes are proinflammatory, immunogenic, allergenic, pathogenic, and potentially toxic, hence raising concerns for public health. Being a member of the transglutaminase family and functionally imitating the tissue transglutaminase, mTG was recently identified as a potential inducer of celiac disease. Microbial transglutaminase and its docked complexes have numerous detrimental effects. Those harmful aspects are denied by the manufacturers, who claim the enzyme is deactivated when heated or by gastric acidity, and that its covalently linked isopeptide bonds are safe. The present narrative review describes the potential side effects of mTG, highlighting its thermostability and activity over a broad pH range, thus, challenging the manufacturers' and distributers' safety claims. The national food regulatory authorities and the scientific community are urged to reevaluate mTG's GRAS status, prioritizing public health protection against the possible risks associated with this enzyme and its health-damaging consequences.
Collapse
Affiliation(s)
- Aaron Lerner
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Carina Benzvi
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Aristo Vojdani
- Research Department, Immunosciences Lab., Inc., Los Angeles, CA 90035, USA
| |
Collapse
|
4
|
Zhao Q, Hu X, Guo K, Li S, Li T. Effects of TGase on the rheological behaviors, structural properties and molecular forces of cowpea protein isolate and cowpea albumin gels. Int J Biol Macromol 2025; 291:139154. [PMID: 39730059 DOI: 10.1016/j.ijbiomac.2024.139154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
The effects of TGase on hardness, water holding capacity (WHC), molecular forces, structural properties, microstructure and rheological behaviors of TGase-induced cowpea protein isolate gel (T-CPIG) and cowpea albumin gel (T-CPAG) were investigated. TGase significantly increased the hardness of gels and the most stable three-dimensional network structures were formed by adding 20 U/g and 28 U/g. Not only the non-network structure proteins of gels and free sulfhydryl groups were fewer but also the β-fold and β-angle relative contents were higher than cowpea protein isolate (CPI) and cowpea albumin (CPA). Hydrophobic interaction and the disulfide bond played main roles in the formation of T-CPIG and T-CPAG. Scanning electron microscopy and rheological properties of the gel suggested that the TGase addition significantly influenced the fundamental structure and mechanical properties of the T-CPIG and T-CPAG. Taken together, the findings shed light on the gelation mechanisms of TGase cowpea proteins.
Collapse
Affiliation(s)
- Qiyue Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Kai Guo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
5
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2025; 93:11-25. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
6
|
Zhu Z, Ding X, Rang J, Xia L. Application and research progress of ARTP mutagenesis in actinomycetes breeding. Gene 2024; 929:148837. [PMID: 39127415 DOI: 10.1016/j.gene.2024.148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) is an emerging artificial mutagenesis breeding technology. In comparison to traditional physical and chemical methods, ARTP technology can induce DNA damage more effectively and obtain mutation strains with stable heredity more easily after screening. It possesses advantages such as simplicity, safety, non-toxicity, and cost-effectiveness, showing high application value in microbial breeding. This article focuses on ARTP mutagenesis breeding of actinomycetes, specifically highlighting the application of ARTP mutagenesis technology in improving the performance of strains and enhancing the biosynthetic capabilities of actinomycetes. We analyzed the advantages and challenges of ARTP technology in actinomycetes breeding and summarized the common features, specific mutation sites and metabolic pathways of ARTP mutagenic strains, which could give guidance for genetic modification. It suggested that the future research work should focus on the establishment of high throughput rapid screening methods and integrate transcriptomics, proteomics, metabonomics and other omics to delve into the genetic regulations and synthetic mechanisms of the bioactive substances in ARTP mutated actinomycetes. This article aims to provide new perspectives for actinomycetes breeding through the establishment and application of ARTP mutagenesis technology, thereby promoting source innovation and the sustainable industrial development of actinomycetes.
Collapse
Affiliation(s)
- Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
7
|
Yuan F, Li G, Li Z, Li M, Yang H, Yu X. Significant enhancement of the thermal stability and catalytic efficiency of transglutaminase in Streptomyces mobaraensis engineered through the novel S. mobaraensis genomic mutant library construction method GHR/Sml. Int J Biol Macromol 2024; 283:137733. [PMID: 39551287 DOI: 10.1016/j.ijbiomac.2024.137733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Herein, we developed a novel Streptomyces mobaraensis genomic mutant library construction method, GHR/Sml, to directly and significantly enhance the thermal stability and catalytic efficiency of TGase in the genome of S. mobaraensis. First, 13 key amino acid residues and their mutations for enhanced thermal stability were identified using error-prone PCR and site-directed mutagenesis. Then, the GHR/Sml method was developed to construct a TGase genomic mutant library with 13 mutations. Positive mutants S23Y/Y24N/S250R, S23Y/Y24N/S303K, S23Y/Y24N/K294L, S23Y/Y24N/S199A/R208L, S23Y/Y24N, and S250R were obtained from 1500 total mutants; their half-life values at 50 °C were increased by 9.3-, 9.5-, 8.7-, 9.0-, 6.9-, and 4.8-fold compared with that of TGLD, respectively. Furthermore, the kcat/Km of mutant S23Y/Y24N/S250R increased by 1.25-fold over that of TGLD. The activity of S23Y/Y24N/S250R reached 65.34 U/mL in a 1000-L fermenter, which was the highest activity reported. This novel GHR/Sml method is of great significance for systematically improving properties of additional enzymes in the genome of S. mobaraensis.
Collapse
Affiliation(s)
- Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing 225400, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing 225400, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Ali Z, Azam F, Mushtaq B, Ahmad S, Ahmad F, Zafar MS, Rasheed A, Khan MQ. Development of sustainable flame-retardant bio-based hydrogel composites from hemp/wool nonwovens with chitosan-banana sap hydrogel. Sci Rep 2024; 14:22116. [PMID: 39333206 PMCID: PMC11437031 DOI: 10.1038/s41598-024-73052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Flame retardant (FR) finishing is crucial for developing protective textiles, traditionally relying on halogen, phosphorus, and phosphorus-nitrogen chemistries, which have limitations like toxicity and fabric stiffening. Innovative approaches such as nanotechnology, plasma treatments, and natural resource-based finishes are being explored to achieve sustainable FR textiles. This study presents the development and comprehensive characterization of hydrogel composites made from nonwoven fabrics composed of various hemp/wool blends (70/30, 80/20, and 90/10). The nonwoven fabrics were treated with a chitosan hydrogel incorporating banana sap to enhance their properties. Scanning electron microscope (SEM) examined the surface morphology and structural integrity of the composites, while Fourier transform infrared spectroscopy (FTIR) identified chemical interactions and functional groups. Differential scanning calorimeter (DSC) revealed thermal properties, water absorbency tests demonstrated hydrophilicity, mechanical testing assessed tensile strength, and vertical flammability tests evaluated fire resistance. SEM and FTIR revealed a successful coating of chitosan hydrogel with banana sap inclusions onto the hemp/wool nonwoven fabric, forming a composite structure. DSC analysis suggests higher chitosan content and hemp fiber ratio (like 70/30) lead to increased thermal stability of hydrogel composites. Higher chitosan concentrations in the hydrogel significantly improve the flame-retardant properties of hemp/wool nonwoven fabrics by reducing char length and enhancing protective char layer formation, with banana sap further promoting charring. These results indicate that the developed composite can be effectively used in flame-retardant textiles.
Collapse
Affiliation(s)
- Zaid Ali
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Farooq Azam
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Bushra Mushtaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sheraz Ahmad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Faheem Ahmad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan.
| | - Muhammad Sohail Zafar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates.
- School of Dentistry, University of Jordan, Amman, Jordan.
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan.
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Qamar Khan
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
9
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
10
|
Rosseto M, Rigueto CVT, Gomes KS, Krein DDC, Loss RA, Dettmer A, Richards NSPDS. Whey filtration: a review of products, application, and pretreatment with transglutaminase enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3185-3196. [PMID: 38151774 DOI: 10.1002/jsfa.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Karolynne Sousa Gomes
- Graduate Program in Food Engineering and Science, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Postgraduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITec), University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
11
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
12
|
Zhao Y, Kim S, Zheng X, Kim SH, Han A, Chen TH, Wang S, Zhong J, Qiu H, Li N. Investigation of High Molecular Weight Size Variant Formation in Antibody-Drug Conjugates: Microbial Transglutaminase-Mediated Crosslinking. J Pharm Sci 2023; 112:2629-2636. [PMID: 37586591 DOI: 10.1016/j.xphs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Microbial transglutaminase (mTG) has become a powerful tool for manufacturing antibody-drug conjugates (ADCs). It enables site-specific conjugation by catalyzing formation of stable isopeptide bond between glutamine (Q) side chain and primary amine. However, the downstream impact of mTG-mediated conjugation on ADC product quality, especially on high molecular weight (HMW) size variant formation has not been studied in a systematic manner. This study investigates the mechanisms underlying the formation of HMW size variants in mTG-mediated ADCs using size exclusion chromatography (SEC) and liquid chromatography-mass spectrometry (LC-MS). Our findings revealed that the mTG-mediated glutamine and lysine (K) crosslinking is the primary source of the increased level of HMW size variants in the ADCs. In the study, two monoclonal antibodies (mAbs) with glutamine engineered for site-specific conjugation were used as model systems. Based on the LC-MS analysis, a single lysine (K56) in the heavy chain (HC) was identified as the major Q-K crosslinking site in one of the two mAbs. The HC C-terminal K was observed to crosslink to the target Q in both mAbs. Quantitative correlation was established between the percentage of HMW size variants determined by SEC and the percentage of crosslinked peptides quantified by MS peptide mapping. Importantly, it was demonstrated that the level of HMW size variants in the second ADC was substantially reduced by the complete removal of HC C-terminal K before conjugation. The current work demonstrates that crosslinking and other side reactions during mTG-mediated conjugation needs to be carefully monitored and controlled to ensure process consistency and high product quality of the final ADC drug product.
Collapse
Affiliation(s)
- Yimeng Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Sunnie Kim
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Xiang Zheng
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Se Hyun Kim
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Amy Han
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Tse-Hong Chen
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Serena Wang
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Jieqiang Zhong
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
13
|
Soybean protein isolate treated with transglutaminase (TGase) enhances the heat tolerance of selected lactic acid bacteria strains to spray drying. Food Chem 2023; 404:134676. [DOI: 10.1016/j.foodchem.2022.134676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/17/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
14
|
Parrotta L, Tanwar UK, Aloisi I, Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Del Duca S. Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology. Cells 2022; 11:cells11091529. [PMID: 35563835 PMCID: PMC9105555 DOI: 10.3390/cells11091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Transglutaminases (TGases) are calcium-dependent enzymes that catalyse an acyl-transfer reaction between primary amino groups and protein-bound Gln residues. They are widely distributed in nature, being found in vertebrates, invertebrates, microorganisms, and plants. TGases and their functionality have been less studied in plants than humans and animals. TGases are distributed in all plant organs, such as leaves, tubers, roots, flowers, buds, pollen, and various cell compartments, including chloroplasts, the cytoplasm, and the cell wall. Recent molecular, physiological, and biochemical evidence pointing to the role of TGases in plant biology and the mechanisms in which they are involved allows us to consider their role in processes such as photosynthesis, plant fertilisation, responses to biotic and abiotic stresses, and leaf senescence. In the present paper, an in-depth description of the biochemical characteristics and a bioinformatics comparison of plant TGases is provided. We also present the phylogenetic relationship, gene structure, and sequence alignment of TGase proteins in various plant species, not described elsewhere. Currently, our knowledge of these proteins in plants is still insufficient. Further research with the aim of identifying and describing the regulatory components of these enzymes and the processes regulated by them is needed.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
15
|
In silico characterization of molecular factors involved in metabolism and pathogenicity of Phytophthora cinnamomi. Mol Biol Rep 2021; 49:1463-1473. [PMID: 34751913 DOI: 10.1007/s11033-021-06901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Phytophthora cinnamomi is classified as one of the most devastating plant pathogens in the world. It has a destructive effect on more than 5000 horticultural and forestry species in the world, and especially on Castanea sativa. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus like organisms which provoke plant diseases via motile zoospores. Control of this organism is considered very challenging because of the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires in-depth knowledge of the cellular and molecular bases of development and metabolism. The aim of this review was to identify molecular factors associated with the metabolism of P. cinnamomi by studying the genes implicated in fundamental metabolism using tools of bioinformatics. Also, some genes involved in pathogenicity will be cited and characterized, such as genes coding for transglycosylases. Genomic sequences of P. cinnamomi were analyzed using an open reading frame (ORF) finder. The identified ORFs products (proteins) were compared to sequences already described and with known functions present in databases such as NCBI and fungi database. In this way, homologous proteins were found, with the respective specific domains, to proteins involved in the metabolism and pathogenicity of Phytophthora ssp.
Collapse
|
16
|
Ahmed I, Chen H, Li J, Wang B, Li Z, Huang G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:5856-5879. [PMID: 34653307 DOI: 10.1111/1541-4337.12855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Food allergy has become a major global public health concern. In the past decades, enzymatic crosslinking technique has been employed to mitigate the immunoreactivity of food allergens. It is an emerging non-thermal technique that can serve as a great alternative to conventional food processing approaches in developing hypoallergenic food products, owing to their benefits of high specificity and selectivity. Enzymatic crosslinking via tyrosinase (TYR), laccase (LAC), peroxidase (PO), and transglutaminase (TG) modifies the structural and biochemical properties of food allergens that subsequently cause denaturation and masking of the antigenic epitopes. LAC, TYR, and PO catalyze the oxidation of tyrosine side chains to initiate protein crosslinking, while TG initiates isopeptide bonding between lysine and glutamine residues. Enzymatic treatment produces a high molecular weight crosslinked polymer with reduced immunoreactivity and IgE-binding potential. Crosslinked allergens further inhibit mast cell degranulation due to the lower immunostimulatory potential that assists in the equilibration of T-helper (Th)1/Th2 immunobalance. This review provides an updated overview of the studies carried out in the last decade on the potential application of enzymatic crosslinking for mitigating food allergenicity that can be of importance in the context of developing hypoallergenic/non-allergenic food products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Huan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Jiale Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| |
Collapse
|
17
|
Lerner A, Benzvi C. Microbial Transglutaminase Is a Very Frequently Used Food Additive and Is a Potential Inducer of Autoimmune/Neurodegenerative Diseases. TOXICS 2021; 9:233. [PMID: 34678929 PMCID: PMC8537092 DOI: 10.3390/toxics9100233] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase (mTG) is a heavily used food additive and its industrial transamidated complexes usage is rising rapidly. It was classified as a processing aid and was granted the GRAS (generally recognized as safe) definition, thus escaping full and thorough toxic and safety evaluations. Despite the manufacturers claims, mTG or its cross-linked compounds are immunogenic, pathogenic, proinflammatory, allergenic and toxic, and pose a risk to public health. The enzyme is a member of the transglutaminase family and imitates the posttranslational modification of gluten, by the tissue transglutaminase, which is the autoantigen of celiac disease. The deamidated and transamidated gliadin peptides lose their tolerance and induce the gluten enteropathy. Microbial transglutaminase and its complexes increase intestinal permeability, suppresses enteric protective pathways, enhances microbial growth and gliadin peptide's epithelial uptake and can transcytose intra-enterocytically to face the sub-epithelial immune cells. The present review updates on the potentially detrimental side effects of mTG, aiming to interest the scientific community, induce food regulatory authorities' debates on its safety, and protect the public from the mTG unwanted effects.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel;
- Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel;
| |
Collapse
|
18
|
Seyed-Moslemi SA, Hesari J, Peighambardoust SH, Peighambardoust SJ. Effect of microbial lipase and transglutaminase on the textural, physicochemical, and microbial parameters of fresh quark cheese. J Dairy Sci 2021; 104:7489-7499. [PMID: 33985784 DOI: 10.3168/jds.2020-19781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022]
Abstract
In this study, the addition of microbial transglutaminase (MTG) and lipase in quark cheese samples was studied during storage (21 d). Four types of cheese were made using 3 different levels of MTG (T1, 0.1 g/L; T2, 0.2 g/L; T3, 0.3 g/L) and lipase (T1, 0.02 g/L; T2, 0.04 g/L; T3, 0.06 g/L), and one cheese was made without any treatment as a control sample. The physicochemical, textural, microbial, and sensory properties of cheese samples were monitored at 1, 7, 14, and 21 d of storage period. The results showed that the treated samples had higher proteolysis and lipolysis activities during storage than the control sample. The textural analysis indicated an insignificant increase in the hardness value of the enzyme-treated sample. Also, the sensory analysis exhibited that the treated samples had higher texture acceptability. The higher concentration of enzymes resulted in lower color, odor, taste, and overall acceptability, and higher microbial population. Finally, the addition of microbial MTG and lipase in preparation of quark cheese samples could be recommended for a short storage time.
Collapse
Affiliation(s)
- Seyed Amir Seyed-Moslemi
- Department of Food Science, College of Agriculture, University of Tabriz, 5166616471 Tabriz, I.R. Iran
| | - Javad Hesari
- Department of Food Science, College of Agriculture, University of Tabriz, 5166616471 Tabriz, I.R. Iran.
| | | | | |
Collapse
|
19
|
Akbari M, Razavi SH, Kieliszek M. Recent advances in microbial transglutaminase biosynthesis and its application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Yin X, Li Y, Zhou J, Rao S, Du G, Chen J, Liu S. Enhanced Production of Transglutaminase in Streptomyces mobaraensis through Random Mutagenesis and Site-Directed Genetic Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3144-3153. [PMID: 33651593 DOI: 10.1021/acs.jafc.1c00645] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptomyces transglutaminase (TGase) is widely used to improve food texture properties. In this study, random mutagenesis and site-directed genetic modification were used to improve the production of TGase in Streptomyces mobaraensis. First, S. mobaraensis DSM40587 (smWT) was subjected to atmospheric and room-temperature plasma mutagenesis, and then a mutant (smY2019) with a 5.5-fold increase in TGase yield was screened from approximately 3000 × 25 (round) mutants. Compared to smWT, smY2019 exhibits a 3.2-fold higher TGase mRNA level and two site mutations within the -10 region of the TGase promoter. The recombinant expression analysis in the TGase-deficient S. mobaraensis suggests that the mutated TGase promoter is more robust than the wild-type one. Finally, we integrated two additional TGase expression cassettes into the smY2019 genome, yielding the recombinant strain smY2019-3C with a 103% increase in TGase production compared to smY2019. The smY2019-3C strain with 40 U/mL of TGase yield could be a suitable candidate for the industrial production of TGase.
Collapse
Affiliation(s)
- Xiaoqiang Yin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yangyang Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Shahbazi M, Jäger H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS APPLIED BIO MATERIALS 2021; 4:325-369. [PMID: 35014287 DOI: 10.1021/acsabm.0c01379] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary additive manufacturing technique that allows rapid prototyping of objects with intricate architectures. This Review covers the recent state-of-the-art of biopolymers (protein and carbohydrate-based materials) application in pharmaceutical, bioengineering, and food printing and main reinforcement approaches of biomacromolecular structure for the development of 3D constructs. Some perspectives and main important limitations with the biomaterials utilization for advanced 3D printing procedures are also provided. Because of the improved the ink's flow behavior and enhance the mechanical strength of resulting printed architectures, biopolymers are the most used materials for 3D printing applications. Biobased polymers by taking advantage of modifying the ink viscosity could improve the resolution of deposited layers, printing precision, and consequently, develop well-defined geometries. In this regard, the rheological properties of printable biopolymeric-based inks and factors affecting ink flow behavior related to structural properties of printed constructs are discussed. On the basis of successful applications of biopolymers in 3D printing, it is suggested that other biomacromolecules and nanoparticles combined with the matrix can be introduced into the ink dispersions to enhance the multifunctionality of 3D structures. Furthermore, tuning the biopolymer's structural properties offers the most common and essential approach to attain the printed architectures with precisely tailored geometry. We finish the Review by giving a viewpoint of the upcoming 3D printing process and recognize some of the existing bottlenecks facing the blossoming 3D pharmaceutical, bioengineering, and food printing applications.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
22
|
Branco I, Choupina A. Bioinformatics: new tools and applications in life science and personalized medicine. Appl Microbiol Biotechnol 2021; 105:937-951. [PMID: 33404829 DOI: 10.1007/s00253-020-11056-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
While we have a basic understanding of the functioning of the gene when coding sequences of specific proteins, we feel the lack of information on the role that DNA has on specific diseases or functions of thousands of proteins that are produced. Bioinformatics combines the methods used in the collection, storage, identification, analysis, and correlation of this huge and complex information. All this work produces an "ocean" of information that can only be "sailed" with the help of computerized methods. The goal is to provide scientists with the right means to explain normal biological processes, dysfunctions of these processes which give rise to disease and approaches that allow the discovery of new medical cures. Recently, sequencing platforms, a large scale of genomes and transcriptomes, have created new challenges not only to the genomics but especially for bioinformatics. The intent of this article is to compile a list of tools and information resources used by scientists to treat information from the massive sequencing of recent platforms to new generations and the applications of this information in different areas of life sciences including medicine. KEY POINTS: • Biological data mining • Omic approaches • From genotype to phenotype.
Collapse
Affiliation(s)
- Iuliia Branco
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
23
|
Ding Y, Hao Y, Yuan Z, Tao B, Chen M, Lin C, Liu P, Cai K. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration. Biomater Sci 2020; 8:1840-1854. [PMID: 31967110 DOI: 10.1039/c9bm01924c] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomaterial-associated bacterial infection is one of the major causes of implant failure. The treatment of such an implant infection typically requires the elimination of bacteria and acceleration of tissue regeneration around implants simultaneously. To address this issue, an ideal implanted material should have the dual functions of bacterial infection therapy and tissue regeneration at the same time. Herein, an enzyme-responsive nanoplatform was fabricated in order to treat implant-associated bacterial infection and accelerate tissue regeneration in vivo. Firstly, Ag nanoparticles were pre-encapsulated in mesoporous silica nanoparticles (MSNs) by a one-pot method. Then, poly-l-glutamic acid (PG) and polyallylamine hydrochloride (PAH) were assembled by the layer-by-layer (LBL) assembly technique on MSN-Ag to form LBL@MSN-Ag nanoparticles. Furthermore, the LBL@MSN-Ag nanoparticles were deposited on the surface of polydopamine-modified Ti substrates. PG is a homogeneous polyamide composed of an amide linkage, which can be degraded by glutamyl endonuclease secreted by Staphylococcus aureus. Inductively coupled plasma spectroscopy (ICP) results proved that the LBL@MSN-Ag particles show a significant enzyme responsive release of Ag ions. Furthermore, results of antibacterial experiments in vitro showed that the Ti substrates modified with an LBL@MSN-Ag nanocoating presented an excellent antibacterial effect. As for an animal experiment in vivo, in a bacterium infected femur-defect rat model, the modified Ti implants effectively treated bacterial infection. More importantly, the results of micro-CT, haematoxylin-eosin staining and Masson's trichrome staining demonstrated that the modified Ti implants significantly promoted the formation of new bone tissue after implantation for 4 weeks. The present system paves the way for developing the next generation of implants with the functions of treating bacterial infection and promoting tissue regeneration.
Collapse
Affiliation(s)
- Yao Ding
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yansha Hao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhang Yuan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Fatima SW, Barua S, Sardar M, Khare SK. Immobilization of Transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. Int J Biol Macromol 2020; 163:1747-1758. [DOI: 10.1016/j.ijbiomac.2020.09.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
|
25
|
Phytopathogenic oomycetes: a review focusing on Phytophthora cinnamomi and biotechnological approaches. Mol Biol Rep 2020; 47:9179-9188. [PMID: 33068230 DOI: 10.1007/s11033-020-05911-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as "pseudo-fungi", within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnology Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).
Collapse
|
26
|
Glodowsky AP, Ruberto LA, Martorell MM, Mac Cormack WP, Levin GJ. Cold active transglutaminase from antarctic Penicillium chrysogenum: Partial purification, characterization and potential application in food technology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Alvarez RG, Karki P, Langleite IE, Bakksjø RJ, Eichacker LA, Furnes C. Characterisation of a novel cold-adapted calcium-activated transglutaminase: implications for medicine and food processing. FEBS Open Bio 2020; 10:495-506. [PMID: 32115900 PMCID: PMC7137806 DOI: 10.1002/2211-5463.12826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Transglutaminases are a family of enzymes that catalyse the cross‐linking of proteins by forming covalent bonds between lysine and glutamine residues in various polypeptides. Cross‐linking reactions are involved in blood clots, skin formation, embryogenesis and apoptosis. Clinically, these enzymes appear to be implicated in neurodegenerative diseases, tumours and coeliac diseases. Transglutaminases have great potential for use in the food industry because of their ability to cross‐link proteins that are not normally linked. Here, a gene coding for transglutaminase from Atlantic cod was cloned into a bacterial expression vector and used to transform protein expression in a strain of Escherichia coli. The successful expression of recombinant transglutaminase protein from Atlantic cod (AcTG‐1) as a soluble protein upon induction at low temperature was confirmed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, immunoblotting and mass spectrometry analysis. Biochemical characterisation demonstrated that the transglutaminase was active between 0 and 65 °C, but was completely inactivated after 20‐min incubation at 70 °C. Interestingly, the enzyme displayed cold‐adapted features, such as temperature instability combined with high catalytic efficiency at low temperatures (8–16 °C). In addition, the enzyme had optimal activity at 50 °C, a new feature for a cold‐adapted enzyme. AcTG‐1 was active in the pH range from 6 to 9, with an optimum at pH 8, and required 5 mm calcium for maximum activity. Potential calcium‐binding sites in the enzyme were predictable, making the enzyme an appropriate model for studying structure–function relationships in the calcium‐dependent transglutaminase family. In vitro gel analysis revealed that transglutaminase cross‐linked casein, collagen and gelatin. The binding of fish fillets in the presence of recombinant AcTG‐1 provided further macroscopic proof for the potential application of AcTG‐1 as a biological cross‐linker in the food industry. Once binding occurred, fish fillets withstood further processing such as frying, boiling, freeze‐thawing and chilling. The low‐temperature activity and new enzymatic properties of AcTG‐1 appear to offer advantages over commercially available enzymatic glues in the food industry.
Collapse
Affiliation(s)
- Rebeca Garcia Alvarez
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Pralav Karki
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ida Elise Langleite
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ragna-Johanne Bakksjø
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Lutz Andreas Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Clemens Furnes
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
28
|
Lerner A, Matthias T. Processed Food Additive Microbial Transglutaminase and Its Cross-Linked Gliadin Complexes Are Potential Public Health Concerns in Celiac Disease. Int J Mol Sci 2020; 21:1127. [PMID: 32046248 PMCID: PMC7037116 DOI: 10.3390/ijms21031127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Microbial transglutaminase (mTG) is a survival factor for microbes, but yeasts, fungi, and plants also produce transglutaminase. mTG is a cross-linker that is heavily consumed as a protein glue in multiple processed food industries. According to the manufacturers' claims, microbial transglutaminase and its cross-linked products are safe, i.e., nonallergenic, nonimmunogenic, and nonpathogenic. The regulatory authorities declare it as "generally recognized as safe" for public users. However, scientific observations are accumulating concerning its undesirable effects on human health. Functionally, mTG imitates its family member, tissue transglutaminase, which is the autoantigen of celiac disease. Both these transglutaminases mediate cross-linked complexes, which are immunogenic in celiac patients. The enzyme enhances intestinal permeability, suppresses mechanical (mucus) and immunological (anti phagocytic) enteric protective barriers, stimulates luminal bacterial growth, and augments the uptake of gliadin peptide. mTG and gliadin molecules are cotranscytosed through the enterocytes and deposited subepithelially. Moreover, mucosal dendritic cell surface transglutaminase induces gliadin endocytosis, and the enzyme-treated wheat products are immunoreactive in CD patients. The present review summarizes and updates the potentially detrimental effects of mTG, aiming to stimulate scientific and regulatory debates on its safety, to protect the public from the enzyme's unwanted effects.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany;
| | | |
Collapse
|
29
|
Xue T, Zheng X, Su X, Chen D, Liu K, Yuan X, Lin R, Huang L, He W, Zhu J, Chen Y. Directed evolution of the transglutaminase from Streptomyces mobaraensis and its enhanced expression in Escherichia coli. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2019.1711112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Xiaomei Su
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Kui Liu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Ronghua Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| |
Collapse
|
30
|
Mostafa HS. Microbial transglutaminase: An overview of recent applications in food and packaging. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1720660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Heba Sayed Mostafa
- Faculty of Agriculture, Department of Food Science, University of Cairo, Giza, Egypt
| |
Collapse
|
31
|
Fu L, Wang Y, Ju J, Cheng L, Xu Y, Yu B, Wang L. Extracellular production of active-form Streptomyces mobaraensis transglutaminase in Bacillus subtilis. Appl Microbiol Biotechnol 2019; 104:623-631. [PMID: 31797004 DOI: 10.1007/s00253-019-10256-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Transglutaminase (TG) from Streptomyces mobaraensis has been widely used in the food industry. It is secreted naturally as an inactive zymogen, which is then activated by the removal of the N-terminal pro-peptide. In this study, the mtg gene from S. mobaraensis was expressed in a food-grade strain of bacterium, Bacillus subtilis. When its native signal peptide was replaced by signal peptide SacB (SPsacB) and the pro-peptide was replaced by that derived from S. hygroscopicus, an extracellular activity of 16.1 U/mg was observed. A modified Saccharomyces cerevisiae vacuolar ATPase subunit (VMA) intein was introduced into the zymogen to simplify its activation process by controlling temperature. When the cleavage site in the C-terminal of VMA was placed between the pro-peptide and core domain, the activation process was carried out at 18 °C. Promoter replacement further increased the enzymatic activity. Finally, the extracellular enzymatic activity reached 2.6 U/mg under the control of the constitutive promoter PyvyD. This is the first report on the extracellular production of active-form Streptomyces TG in B. subtilis without splicing with the cleavage enzyme.
Collapse
Affiliation(s)
- Lihong Fu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yu Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
32
|
Liu Y, Huang L, Shan M, Sang J, Li Y, Jia L, Wang N, Wang S, Shao S, Liu F, Lu F. Enhancing the activity and thermostability of Streptomyces mobaraensis transglutaminase by directed evolution and molecular dynamics simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
García-Gómez B, Vázquez-Odériz ML, Muñoz-Ferreiro N, Romero-Rodríguez MÁ, Vázquez M. Interaction between rennet source and transglutaminase in white fresh cheese production: Effect on physicochemical and textural properties. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Song X, Shao C, Guo Y, Wang Y, Cai J. Improved the expression level of active transglutaminase by directional increasing copy of mtg gene in Pichia pastoris. BMC Biotechnol 2019; 19:54. [PMID: 31362722 PMCID: PMC6668168 DOI: 10.1186/s12896-019-0542-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
Background The microbial transglutaminase (MTG) is inactive when only the mature sequence is expressed in Pichia pastoris. Although co-expression of MTG and its N-terminal pro-peptide can obtain the active MTG, the enzyme activity was still low. One of the basic steps for strain improvement is to ensure a sufficient level of transcription of the heterologous gene, based on promoter strength and gene copy number. To date, high-copy-number recombinants of P. pastoris are achievable only by cloning of gene concatemers, so methods for rapid and reliable multicopy strains are therefore desirable. Results The coexpression strains harboring different copies mtg were obtained successfully by stepwise increasing Zeocin concentration based on the rDNA sequence of P. pastoris. The genome of coexpression strains with the highest enzyme activity was analyzed by real-time fluorescence quantitative PCR, and three copies of mtg gene (mtg-3c) was calculated according to the standard curve of gap and mtg genes (gap is regarded as the single-copy reference gene). The maximum enzyme activity of mtg-3c was up to 1.41 U/mL after being inducted for 72 h in 1 L flask under optimal culture conditions, and two protein bands were observed at the expected molecular weights (40 kDa and 5 kDa) by Western blot. Furthermore, among the strains detected, compared with mtg-2c, mtg-6c or mtg-8c, mtg-3c is the highest expression level and enzyme activity, implying that mtg-3c is the most suitable for co-expression pro-peptide and MTG. Conclusions This study provides an effective strategy for improving the expression level of active MTG by directional increasing of mtg copies in P. pastoris. Electronic supplementary material The online version of this article (10.1186/s12896-019-0542-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmacy, Anhui Medical College, Hefei, 230061, China. .,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, 230022, China.
| | - Changsheng Shao
- Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, 230022, China
| | - Yugang Guo
- Institute of advanced technology, University of Science and Technology of China, Hefei, 230031, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, 230022, China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei, 230061, China
| | - Jingjing Cai
- Department of Pharmacy, Anhui Medical College, Hefei, 230061, China
| |
Collapse
|
35
|
Scarnato L, Gadermaier G, Volta U, De Giorgio R, Caio G, Lanciotti R, Del Duca S. Immunoreactivity of Gluten-Sensitized Sera Toward Wheat, Rice, Corn, and Amaranth Flour Proteins Treated With Microbial Transglutaminase. Front Microbiol 2019; 10:470. [PMID: 30972033 PMCID: PMC6445063 DOI: 10.3389/fmicb.2019.00470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to analyze the effects of microbial transglutaminase (mTG) on the immunoreactivity of wheat and gluten-free cereals flours to the sera of patients with celiac disease (CD) and non-celiac gluten sensitivity (NCGS). Both doughs and sourdoughs, the latter prepared by a two-step fermentation with Lactobacillus sanfranciscensis and Candida milleri, were studied. In order to evaluate the IgG-binding capacity toward the proteins of the studied flours, total protein as well as protein fractions enriched in albumins/globulins, prolamins and glutelins, were analyzed by SDS-PAGE and enzyme-linked immunosorbent assay (ELISA). Results showed that while mTG modified both gluten and gluten-free flour by increasing the amount of cross-linked proteins, it did not affect the serum's immune-recognition. In fact, no significant differences were observed in the immunoreactivity of sera from CD and NCGS patients toward wheat and gluten-free protein extracts after enzyme treatment, nor did this biotechnological treatment affect the immunoreactivity of control samples or the sera of healthy patients. These results suggest that mTG may be used as a tool to create innovative gluten and gluten-free products with improved structural properties, without increasing the immune-reactivity toward proteins present either in doughs or in sourdoughs.
Collapse
Affiliation(s)
- Lucilla Scarnato
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Mucosal Immunology and Biology Research Center and Celiac Center, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Rosalba Lanciotti
- Interdepartmental Center for Industrial Agro-food Research, University of Bologna, Cesena, Italy.,Department of Agricultural and Food Science, University of Bologna, Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Site-specific, covalent immobilization of an engineered enterokinase onto magnetic nanoparticles through transglutaminase-catalyzed bioconjugation. Colloids Surf B Biointerfaces 2019; 177:506-511. [PMID: 30818243 DOI: 10.1016/j.colsurfb.2019.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 12/27/2022]
Abstract
Enterokinase (EK) is one of the most popular enzymes for the in vitro cleavage of fusion proteins due to its high degree of specificity for the amino-acid sequence (Asp)4-Lys. Enzyme reusability is desirable for reducing operating costs and facilitating the industrial application of EK. In this work, we report the controlled, site-specific and covalent cross-linking of an engineered EKLC on amine-modified magnetic nanoparticles (NH2-MNPs) via microbial transglutaminase-catalyzed bioconjugation for the development of the oriented-immobilized enzyme, namely, EKLC@NH2-MNP biocatalyst. Upon the site-specific immobilization, approximately 90% EKLC enzymatic activity was retained, and the biocatalyst exhibited more than 85% of initial enzymatic activity regardless of storage or reusable stability over a month. The EKLC@NH2-MNP biocatalyst was further applied to remove the His tag-(Asp)4-Lys fusion partner from the His tag-(Asp)4-Lys-(GLP-1)3 substrate fusion protein, result suggested the EKLC@NH2-MNP possessed remarkable reusability, without a significant decrease of enzymatic activity over 10 cycles (P > 0.05). Supported by the unique properties of MNPs, the proposed EKLC@NH2-MNP biocatalyst is expected to promote the economical utilization of enterokinase in fusion protein cleavage.
Collapse
|
37
|
The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. Med Sci (Basel) 2019; 7:medsci7020019. [PMID: 30691081 PMCID: PMC6409630 DOI: 10.3390/medsci7020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (transglutaminase type 2; TG2) is the most ubiquitously expressed member of the transglutaminase family (EC 2.3.2.13) that catalyzes specific post-translational modifications of proteins through a calcium-dependent acyl-transfer reaction (transamidation). In addition, this enzyme displays multiple additional enzymatic activities, such as guanine nucleotide binding and hydrolysis, protein kinase, disulfide isomerase activities, and is involved in cell adhesion. Transglutaminase 2 has been reported as one of key enzymes that is involved in all stages of carcinogenesis; the molecular mechanisms of action and physiopathological effects depend on its expression or activities, cellular localization, and specific cancer model. Since it has been reported as both a potential tumor suppressor and a tumor-promoting factor, the role of this enzyme in cancer is still controversial. Indeed, TG2 overexpression has been frequently associated with cancer stem cells’ survival, inflammation, metastatic spread, and drug resistance. On the other hand, the use of inducers of TG2 transamidating activity seems to inhibit tumor cell plasticity and invasion. This review covers the extensive and rapidly growing field of the role of TG2 in cancer stem cells survival and epithelial–mesenchymal transition, apoptosis and differentiation, and formation of aggressive metastatic phenotypes.
Collapse
|
38
|
Giordano D, Facchiano A. Classification of microbial transglutaminases by evaluation of evolution trees, sequence motifs, secondary structure topology and conservation of potential catalytic residues. Biochem Biophys Res Commun 2018; 509:506-513. [PMID: 30595384 DOI: 10.1016/j.bbrc.2018.12.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 01/03/2023]
Abstract
Despite the growing interest for microbial transglutaminases (TGases), and the large number of genome sequencing data, there is no deep investigation about structural properties within this family of enzymes in bacteria. We performed a classification of microbial TGases, starting from large-scale analysis of all protein sequences annotated as TGase (more than 8000) in database PFAM. We developed a reiterative procedure based on the construction of several phylogenetic trees and manual selection, and detected five main groups of microbial TGases. Searches for sequence motifs evidenced strong conservation in regions containing potential catalytic residues for some groups. Protein structure modelling has been possible for three of the five groups. Analyses of motifs, structural topologies and potential catalytic sites suggest possible interpretations for function similarities and divergences among groups.
Collapse
Affiliation(s)
- Deborah Giordano
- Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100, Avellino, Italy; Dottorato di Ricerca in "Innovazione e management di alimenti ad elevata valenza salutistica", Università degli Studi di Foggia, Italy
| | - Angelo Facchiano
- Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100, Avellino, Italy.
| |
Collapse
|
39
|
Torsten M, Aaron L. Microbial Transglutaminase Is Immunogenic and Potentially Pathogenic in Pediatric Celiac Disease. Front Pediatr 2018; 6:389. [PMID: 30619787 PMCID: PMC6297833 DOI: 10.3389/fped.2018.00389] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The enzyme microbial transglutaminase is heavily used in the food processing industries to ameliorate food qualities and elongate the products' shelf life. As a protein's glue, it cross-links gliadin peptides, creating neo-complexes that are immunogenic and potentially pathogenic to celiac disease communities. Even lacking sequence identity, it imitates functionally the endogenous tissue transglutaminase, known to be the autoantigen of celiac disease and representing an undisputable key player in celiac disease initiation and progress. The present review expend on the enzyme characteristics, exogenous intestinal sources, its cross-linking avidity to gluten or gliadin, turning naïve protein to immunogenic ones. Several observation on microbial transglutaminase cross linked complexes immunogenicity in celiac patients are reviewed and its pathogenicity is summarized. Warnings on its potential risks for the gluten dependent conditions are highlighted. When substantiated, it might represent a new environmental factor of celiac disease genesis. It is hoped that the presented knowledge will encourage further research to explore the mechanism and the pathogenic pathways taken by the gliadin cross linked enzyme in driving celiac disease.
Collapse
Affiliation(s)
| | - Lerner Aaron
- AESKU. KIPP Institute, Wendelsheim, Germany
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Abstract
Microbial transglutaminase is heavily used in the food processing industries to improve food qualities. Being a protein's glue, by cross-linking it creates neoepitope complexes that are immunogenic and potentially pathogenic in celiac disease. Despite low sequence identity, it imitates functionally its family member, the endogenous tissue transglutaminase, which is the autoantigen of celiac disease. The present comprehensive review highlights the enzyme characteristics, endogenous and exogenous intestinal sources, its cross-talks with gluten and gliadin, its immunogenicity and potential pathogenicity and risks for the gluten induced conditions. If substantiated, it might represent a new environmental inducer of celiac disease. The present findings might affect nutritional product labeling, processed food additive policies and consumer health education.
Collapse
Affiliation(s)
- Lerner Aaron
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; AESKU.KIPP Institute, Wendelsheim, Germany.
| | | |
Collapse
|
41
|
Wang L, Yu B, Wang R, Xie J. Biotechnological routes for transglutaminase production: Recent achievements, perspectives and limits. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
43
|
Liu Y, Wu HC, Bhokisham N, Li J, Hong KL, Quan DN, Tsao CY, Bentley WE, Payne GF. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjug Chem 2018; 29:1809-1822. [PMID: 29745651 PMCID: PMC7045599 DOI: 10.1021/acs.bioconjchem.8b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.
Collapse
Affiliation(s)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | - Kai-Lin Hong
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
44
|
Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. SEPARATIONS 2018. [DOI: 10.3390/separations5010014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Hardham AR, Blackman LM. Phytophthora cinnamomi. MOLECULAR PLANT PATHOLOGY 2018; 19:260-285. [PMID: 28519717 PMCID: PMC6637996 DOI: 10.1111/mpp.12568] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/12/2023]
Abstract
Phytophthora cinnamomi is one of the most devastating plant pathogens in the world. It infects close to 5000 species of plants, including many of importance in agriculture, forestry and horticulture. The inadvertent introduction of P. cinnamomi into natural ecosystems, including a number of recognized Global Biodiversity Hotspots, has had disastrous consequences for the environment and the biodiversity of flora and fauna. The genus Phytophthora belongs to the Class Oomycetes, a group of fungus-like organisms that initiate plant disease through the production of motile zoospores. Disease control is difficult in agricultural and forestry situations and even more challenging in natural ecosystems as a result of the scale of the problem and the limited range of effective chemical inhibitors. The development of sustainable control measures for the future management of P. cinnamomi requires a comprehensive understanding of the cellular and molecular basis of pathogen development and pathogenicity. The application of next-generation sequencing technologies to generate genomic and transcriptomic data promises to underpin a new era in P. cinnamomi research and discovery. The aim of this review is to integrate bioinformatic analyses of P. cinnamomi sequence data with current knowledge of the cellular and molecular basis of P. cinnamomi growth, development and plant infection. The goal is to provide a framework for future research by highlighting potential pathogenicity genes, shedding light on their possible functions and identifying suitable targets for future control measures. TAXONOMY Phytophthora cinnamomi Rands; Kingdom Chromista; Phylum Oomycota or Pseudofungi; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; genus Phytophthora. HOST RANGE Infects about 5000 species of plants, including 4000 Australian native species. Host plants important for agriculture and forestry include avocado, chestnut, macadamia, oak, peach and pineapple. DISEASE SYMPTOMS A root pathogen which causes rotting of fine and fibrous roots, but which can also cause stem cankers. Root damage may inhibit water movement from roots to shoots, leading to dieback of young shoots. USEFUL WEBSITES: http://fungidb.org/fungidb/; http://genome.jgi.doe.gov/Phyci1/Phyci1.home.html; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314365.1; http://www.ncbi.nlm.nih.gov/assembly/GCA_001314505.1.
Collapse
Affiliation(s)
- Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| | - Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
46
|
Jiang Y, Shang YP, Li H, Zhang C, Pan J, Bai YP, Li CX, Xu JH. Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). BIORESOUR BIOPROCESS 2017; 4:37. [PMID: 28845382 PMCID: PMC5554476 DOI: 10.1186/s40643-017-0168-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 01/30/2023] Open
Abstract
Objectives To improve the fermentation production of transglutaminase (TGase) from Streptomyces mobaraensis for applications in the food industry, the atmospheric and room-temperature plasma (ARTP) mutagenesis was applied to breed S. mobaraensis mutants with increased TGase production. Results After eight rounds of iterative ARTP mutagenesis, four genetically stable mutants, Sm5-V1, Sm6-V13, Sm2-V10, and Sm7-V12, were identified, which showed increased TGase production by 27, 24, 24, and 19%, respectively. The best mutant Sm5-V1 exhibited a maximum TGase activity of 5.85 U/mL during flask fermentation. Compared to the wild-type strain, the transcription levels of the zymogen TGase genes in the mutants increased significantly as indicated by quantitative real-time PCR, while the gene nucleotide sequences of the mutants did not change at all. It was shown that the overexpression of TGase zymogen gene in the mutants contributes to the increase in TGase production. Conclusions ARTP is a potentially efficient tool for microbial mutation breeding to bring some significant changes required for the industrial applications. Electronic supplementary material The online version of this article (doi:10.1186/s40643-017-0168-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Yue-Peng Shang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People's Republic of China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237 People's Republic of China
| |
Collapse
|
47
|
Steffen W, Ko FC, Patel J, Lyamichev V, Albert TJ, Benz J, Rudolph MG, Bergmann F, Streidl T, Kratzsch P, Boenitz-Dulat M, Oelschlaegel T, Schraeml M. Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins. J Biol Chem 2017; 292:15622-15635. [PMID: 28751378 PMCID: PMC5612097 DOI: 10.1074/jbc.m117.797811] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Microbial transglutaminases (MTGs) catalyze the formation of Gln–Lys isopeptide bonds and are widely used for the cross-linking of proteins and peptides in food and biotechnological applications (e.g. to improve the texture of protein-rich foods or in generating antibody-drug conjugates). Currently used MTGs have low substrate specificity, impeding their biotechnological use as enzymes that do not cross-react with nontarget substrates (i.e. as bio-orthogonal labeling systems). Here, we report the discovery of an MTG from Kutzneria albida (KalbTG), which exhibited no cross-reactivity with known MTG substrates or commonly used target proteins, such as antibodies. KalbTG was produced in Escherichia coli as soluble and active enzyme in the presence of its natural inhibitor ammonium to prevent potentially toxic cross-linking activity. The crystal structure of KalbTG revealed a conserved core similar to other MTGs but very short surface loops, making it the smallest MTG characterized to date. Ultra-dense peptide array technology involving a pool of 1.4 million unique peptides identified specific recognition motifs for KalbTG in these peptides. We determined that the motifs YRYRQ and RYESK are the best Gln and Lys substrates of KalbTG, respectively. By first reacting a bifunctionalized peptide with the more specific KalbTG and in a second step with the less specific MTG from Streptomyces mobaraensis, a successful bio-orthogonal labeling system was demonstrated. Fusing the KalbTG recognition motif to an antibody allowed for site-specific and ratio-controlled labeling using low label excess. Its site specificity, favorable kinetics, ease of use, and cost-effective production render KalbTG an attractive tool for a broad range of applications, including production of therapeutic antibody-drug conjugates.
Collapse
Affiliation(s)
- Wojtek Steffen
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany,
| | - Fu Chong Ko
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jigar Patel
- Roche Sequencing, NimbleGen, Madison, Wisconsin 53719, and
| | | | | | - Jörg Benz
- F. Hoffmann-La Roche Ltd., pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- F. Hoffmann-La Roche Ltd., pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Frank Bergmann
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Streidl
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | - Peter Kratzsch
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | | | | | - Michael Schraeml
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
48
|
Qiu C, Hu X, Li L, Yang X, Zhao M, Ren J. Effect of transglutaminase cross-linking on the conformational and emulsifying properties of peanut arachin and conarachin fractions. Eur Food Res Technol 2017; 243:913-920. [DOI: 10.1007/s00217-016-2804-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Javitt G, Ben-Barak-Zelas Z, Jerabek-Willemsen M, Fishman A. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant. BMC Biotechnol 2017; 17:23. [PMID: 28245818 PMCID: PMC5331659 DOI: 10.1186/s12896-017-0339-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/11/2023] Open
Abstract
Background Microbial transglutaminase (mTG) is a robust enzyme catalyzing the formation of an isopeptide bond between glutamine and lysine residues. It has found use in food applications, pharmaceuticals, textiles, and biomedicine. Overexpression of soluble and active mTG in E. coli has been limited due to improper protein folding and requirement for proteolytic cleavage of the pro-domain. Furthermore, to integrate mTG more fully industrially and academically, thermostable and solvent-stable variants may be imperative. Results A novel expression system constitutively producing active mTG was designed. Wild-type (WT) mTG and a S2P variant had similar expression levels, comparable to previous studies. Kinetic constants were determined by a glutamate dehydrogenase-coupled assay, and the S2P variant showed an increased affinity and a doubled enzyme efficiency towards Z-Gln-Gly. The melting temperature (Tm) of the WT was determined by intrinsic fluorescence measurements to be 55.8 ± 0.1 °C and of the S2P variant to be 56.3 ± 0.4 °C and 45.5 ± 0.1 °C, showing a moderately different thermostability profile. Stability in water miscible organic solvents was determined for both the WT and S2P variant. Of the solvents tested, incubation of mTG in isopropanol for 24 h at 4 °C showed the strongest stabilizing effect with mTG retaining 61 and 72% activity for WT and S2P respectively in 70% isopropanol. Both enzymes also showed an increased initial activity in the presence of organic solvents with the highest activity increase in 40% DMSO. Nevertheless, both enzymes were inactivated in 70% of all organic solvents tested. Conclusions A constitutive expression system of active mTG in E. coli without downstream proteolytic cleavage processing was used for overexpression and characterization. High throughput techniques for testing thermostability and kinetics were useful in streamlining analysis and could be used in the future for quickly identifying beneficial mutants. Hitherto untested thermostability and stability of mTG in organic solvents was evaluated, which can pave the way for use of the enzyme in novel applications and processes.
Collapse
Affiliation(s)
- Gabe Javitt
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zohar Ben-Barak-Zelas
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
50
|
Lerner A, Aminov R, Matthias T. Transglutaminases in Dysbiosis As Potential Environmental Drivers of Autoimmunity. Front Microbiol 2017; 8:66. [PMID: 28174571 PMCID: PMC5258703 DOI: 10.3389/fmicb.2017.00066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Protein-glutamine γ-glutamyltransferases (transglutaminases, Tgs) belong to the class of transferases. They catalyze the formation of an isopeptide bond between the acyl group at the end of the side chain of protein- or peptide-bound glutamine residues and the first order 𝜀-amine groups of protein- or peptide-bound lysine. The Tgs are considered to be universal protein cross-linkers, and they play an essential role in a number of human diseases. In this review, we discuss mainly the bacterial Tgs in terms of the functionality of the enzymes and a potential role they may play in bacterial survival. Since microbial transglutaminases (mTgs) are functionally similar to the human homologs, they may be involved in the human disease provocation. We suggest here a potential involvement of Tgs in the pathologies such as autoimmune diseases. In this hypothesis, the endogenous mTgs that are secreted by the gut microbiota, especially in a dysbiotic configuration, are potential drivers of systemic autoimmunity, via the enzymatic posttranslational modification of peptides in the gut lumen. These mTg activities directed toward cross-linking of naïve proteins can potentially generate neo-epitopes that are not only immunogenic but may also activate some immune response cascades leading to the pathological autoimmune processes.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion – Israel Institute of TechnologyHaifa, Israel
- AESKU.KIPP InstituteWendelsheim, Germany
| | - Rustam Aminov
- Gastroenterology Division, School of Medicine and Dentistry, University of AberdeenAberdeen, UK
| | | |
Collapse
|