1
|
Gao X, He Q, Chen H, Cai W, Xu L, Zhang X, Zhu N, Feng S. Advances in the Molecular Modification of Microbial ω-Transaminases for Asymmetric Synthesis of Bulky Chiral Amines. Microorganisms 2025; 13:820. [PMID: 40284656 PMCID: PMC12029284 DOI: 10.3390/microorganisms13040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
ω-Transaminases are biocatalysts capable of asymmetrically synthesizing high-value chiral amines through the reductive amination of carbonyl compounds, and they are ubiquitously distributed across diverse microorganisms. Despite their broad natural occurrence, the industrial utility of naturally occurring ω-transaminases remains constrained by their limited catalytic efficiency toward sterically bulky substrates. Over recent decades, the use of structure-guided molecular modifications, leveraging three-dimensional structures, catalytic mechanisms, and machine learning-driven predictions, has emerged as a transformative strategy to address this limitation. Notably, these advancements have unlocked unprecedented progress in the asymmetric synthesis of bulky chiral amines, which is exemplified by the industrial-scale production of sitagliptin using engineered ω-transaminases. This review systematically explores the structural and mechanistic foundations of ω-transaminase engineering. We first delineate the substrate binding regions of these enzymes, focusing on their defining features such as substrate tunnels and dual pockets. These structural elements serve as critical targets for rational design to enhance substrate promiscuity. Next, we dissect the catalytic and substrate recognition mechanisms of (S)- and (R)-ω-transaminases. Drawing on these insights, we consolidate recent advances in engineering ω-transaminases to highlight their performance in synthesizing bulky chiral amines and aim to guide future research and the industrial implementation of tailored ω-transaminases.
Collapse
Affiliation(s)
- Xinxing Gao
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Qingming He
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Hailong Chen
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Wangshui Cai
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Long Xu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Xin Zhang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
2
|
Bakunova AK, Matyuta IO, Minyaev ME, Isaikina TY, Boyko KM, Popov VO, Bezsudnova EY. Multifunctionality of arginine residues in the active sites of non-canonical d-amino acid transaminases. Arch Biochem Biophys 2024; 756:110011. [PMID: 38649133 DOI: 10.1016/j.abb.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Structure-function relationships are key to understanding enzyme mechanisms, controlling enzyme activities, and designing biocatalysts. Here, we investigate the functions of arginine residues in the active sites of pyridoxal-5'-phosphate (PLP)-dependent non-canonical d-amino acid transaminases, focusing on the analysis of a transaminase from Haliscomenobacter hydrossis. Our results show that the tandem of arginine residues R28* and R90, which form the conserved R-[RK] motif in non-canonical d-amino acid transaminases, not only facilitates effective substrate binding but also regulates the catalytic properties of PLP. Non-covalent interactions between residues R28*, R90, and Y147 strengthen the hydrogen bond between Y147 and PLP, thereby maintaining the reactivity of the cofactor. Next, the R90 residue contributes to the stability of the holoenzyme. Finally, the R90I substitution induces structural changes that lead to substrate promiscuity, as evidenced by the effective binding of substrates with and without the α-carboxylate group. This study sheds light on the structural determinants of the activity of non-canonical d-amino acid transaminases. Understanding the structural basis of the active site plasticity in the non-canonical transaminase from H. hydrossis, which is characterized by effective conversion of d-amino acids and α-keto acids, may help to tailor it for industrial applications.
Collapse
Affiliation(s)
- Alina K Bakunova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia.
| | - Ilya O Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, 119334, Moscow, Russia
| | - Tatiana Y Isaikina
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119991, Moscow, Russia
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
3
|
Tang K, Dong J, Zheng Z, Zhang T, Pan H, Jia H, Li Y, Wei P. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors. Anal Bioanal Chem 2023; 415:1733-1740. [PMID: 36840810 DOI: 10.1007/s00216-023-04573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.
Collapse
Affiliation(s)
- Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiacheng Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhengheng Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Metagenomic Type IV Aminotransferases Active toward (R)-Methylbenzylamine. Catalysts 2023. [DOI: 10.3390/catal13030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate-dependent enzymes that catalyze the reversible transfer of an amino group from an amino donor to a keto substrate. ATs are promising biocatalysts that are replacing traditional chemical routes for the production of chiral amines. In this study, an in silico-screening of a metagenomic library isolated from the Curonian Lagoon identified 11 full-length fold type IV aminotransferases that were successfully expressed and used for substrate profiling. Three of them (AT-872, AT-1132, and AT-4421) were active toward (R)-methylbenzylamine. Purified proteins showed activity with L- and D-amino acids and various aromatic compounds such as (R)-1-aminotetraline. AT-872 and AT-1132 exhibited thermostability and retained about 55% and 80% of their activities, respectively, even after 24 h of incubation at 50 °C. Active site modeling revealed that AT-872 and AT-4421 have an unusual active site environment similar to the AT of Haliscomenobacter hydrossis, while AT-1132 appeared to be structurally related to the AT from thermophilic archaea Geoglobus acetivorans. Thus, we have identified and characterized PLP fold type IV ATs that were active toward both amino acids and a variety of (R)-amines.
Collapse
|
5
|
Kollipara M, Matzel P, Bornscheuer U, Höhne M. Activity Levels of Amine Transaminases Correlate with Active Site Hydrophobicity. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manideep Kollipara
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Philipp Matzel
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Uwe Bornscheuer
- University of Greifswald Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Matthias Höhne
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| |
Collapse
|
6
|
Engineering Novel ( R)-Selective Transaminase for Efficient Symmetric Synthesis of d-Alanine. Appl Environ Microbiol 2022; 88:e0006222. [PMID: 35465694 DOI: 10.1128/aem.00062-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
d-Alanine belongs to nonessential amino acids that have diverse applications in the fields of food and health care. (R)-transaminase [(R)-TA]-catalyzed asymmetric amination of pyruvate is a feasible alternative for the synthesis of d-alanine, but low catalytic efficiency and thermostability limit enzymatic utilization. In this work, several potential (R)-TAs were discovered using NCBI database mining synchronously with enzymatic structure-function analysis, among which Capronia epimyces TA (CeTA) showed the highest activity for amination of pyruvate using (R)-α-methylbenzylamine as the donor. Furthermore, enzymatic residues surrounding a large catalysis pocket were subjected to saturation and combinatorial mutagenesis, and positive mutant F113T showed dramatic improvement in activity and thermostability. Molecular modeling indicated that the substitution of phenylalanine with threonine afforded alleviation of steric hindrance in the pocket and induced formation of additional hydrogen bonds with neighboring residues. Finally, using recombinant cells containing F113T as a biocatalyst, the conversion yield of amination of 100 mM pyruvate to d-alanine achieved up to 95.2%, which seemed to be the highest level in the literature regarding synthesis of d-alanine using TAs. The inherent characteristics rendered CeTA F113T a promising platform for efficient preparation of d-alanine operating with high productivity. IMPORTANCE d-Alanine is an important compound with many valuable applications. Its asymmetric synthesis employing (R)-ω-TA is considered an attractive choice. According to the stereoselectivity, ω-TAs have either (R)- or (S)-enantiopreference. There has been a variety of literature regarding screening, characterizing, and molecular modification of (S)-ω-TAs; in contrast, the research about (R)-ω-TA has lagged behind. In this work, we identify several (R)-ω-TAs and succeeded in creating mutant F113T, which showed not only better efficiency toward pyruvate but also higher thermostability compared with the original enzyme. The obtained original enzymes and positive mutants displayed important application value for pushing symmetric synthesis of d-alanine to a higher level.
Collapse
|
7
|
Zhou F, Xu Y, Mu X, Nie Y. A Sustainable Approach for Synthesizing ( R)-4-Aminopentanoic Acid From Levulinic Acid Catalyzed by Structure-Guided Tailored Glutamate Dehydrogenase. Front Bioeng Biotechnol 2022; 9:770302. [PMID: 35083200 PMCID: PMC8784811 DOI: 10.3389/fbioe.2021.770302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, a novel enzymatic approach to transform levulinic acid (LA), which can be obtained from biomass, into value-added (R)-4-aminopentanoic acid using an engineered glutamate dehydrogenase from Escherichia coli (EcGDH) was developed. Through crystal structure comparison, two residues (K116 and N348), especially residue 116, were identified to affect the substrate specificity of EcGDH. After targeted saturation mutagenesis, the mutant EcGDHK116C, which was active toward LA, was identified. Screening of the two-site combinatorial saturation mutagenesis library with EcGDHK116C as positive control, the k cat/K m of the obtained EcGDHK116Q/N348M for LA and NADPH were 42.0- and 7.9-fold higher, respectively, than that of EcGDHK116C. A molecular docking investigation was conducted to explain the catalytic activity of the mutants and stereoconfiguration of the product. Coupled with formate dehydrogenase, EcGDHK116Q/N348M was found to be able to convert 0.4 M LA by more than 97% in 11 h, generating (R)-4-aminopentanoic acid with >99% enantiomeric excess (ee). This dual-enzyme system used sustainable raw materials to synthesize (R)-4-aminopentanoic acid with high atom utilization as it utilizes cheap ammonia as the amino donor, and the inorganic carbonate is the sole by-product.
Collapse
Affiliation(s)
- Feng Zhou
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoqing Mu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute of Industrial Technology, Suqian Jiangnan University, Suqian, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Xie YY, Wang J, Yang L, Wang W, Liu QH, Wang H, Wei D. The identification and application of a robust ω-transaminase with high tolerance of substrate and isopropylamine from a directed soil metagenome. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ω-transaminase-mediated asymmetric amination of a ketone substrate has gained significant attention for its immense potential to synthesize chiral amine pharmaceuticals and precursors. However, few of these have been authentically...
Collapse
|
9
|
Ming H, Yuan B, Qu G, Sun Z. Engineering the activity of amine dehydrogenase in the asymmetric reductive amination of hydroxyl ketones. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An engineered AmDH derived from a leucine dehydrogenase was used as the starting enzyme to improve its activity in the synthesis of (R)-3-amino-1-butanol. Preparative-scale synthesis of the (R)-product (90% yield, >99%) was performed on a gram-scale.
Collapse
Affiliation(s)
- Hui Ming
- Department of Life Sciences and Medicine, University of Science and technology of China, Hefei 230022, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
10
|
Luo W, Hu J, Lu J, Zhang H, Wang X, Liu Y, Dong L, Yu X. One pot cascade synthesis of L-2-aminobutyric acid employing ω-transaminase from Paracoccus pantotrophus. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Jia DX, Peng C, Li JL, Wang F, Liu ZQ, Zheng YG. Redesign of (R)-Omega-Transaminase and Its Application for Synthesizing Amino Acids with Bulky Side Chain. Appl Biochem Biotechnol 2021; 193:3624-3640. [PMID: 34347249 DOI: 10.1007/s12010-021-03616-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
ω-Transaminase (ω-TA) is an attractive biocatalyst for stereospecific preparation of amino acids and derivatives, but low catalytic efficiency and unfavorable substrate specificity hamper their industrial application. In this work, to obtain applicable (R)-ω-TA responsible for amination of α-keto acids substrates, the reactivities of eight previously synthesized ω-TAs toward pyruvate using (R)-α-methylbenzylamine ((R)-α-MBA) as amine donor were investigated, and Gibberella zeae TA (GzTA) with the highest (R)-TA activity and stereoselectivity was selected as starting scaffold for engineering. Site-directed mutagenesis around enzymatic active pocket and access tunnel identified three positive mutation sites, S214A, F113L, and V60A. Kinetic analysis synchronously with molecular docking revealed that these mutations afforded desirable alleviation of steric hindrance for pyruvate and α-MBA. Furthermore, the constructed single-, double-, and triple-mutant exhibited varying degrees of improved specificities toward bulkier α-keto acids. Using 2-oxo-2-phenylacetic acid (1d) as substrate, the conversion rate of triple-mutant F113L/V60A/S214A increased by 3.8-fold relative to that of wide-type GzTA. This study provided a practical engineering strategy for improving catalytic efficiency and substrate specificity of (R)-ω-TA. The obtained experience shed light on creating more industrial ω-TAs mutants that can accommodate structurally diverse substrates.
Collapse
Affiliation(s)
- Dong-Xu Jia
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Chen Peng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Jun-Liang Li
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou, 310005, People's Republic of China
| | - Fan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
12
|
Bezsudnova EY, Nikolaeva AY, Bakunova AK, Rakitina TV, Suplatov DA, Popov VO, Boyko KM. Probing the role of the residues in the active site of the transaminase from Thermobaculum terrenum. PLoS One 2021; 16:e0255098. [PMID: 34324538 PMCID: PMC8320979 DOI: 10.1371/journal.pone.0255098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022] Open
Abstract
Creating biocatalysts for (R)-selective amination effectively is highly desirable in organic synthesis. Despite noticeable progress in the engineering of (R)-amine activity in pyridoxal-5'-phosphate-dependent transaminases of fold type IV, the specialization of the activity is still an intuitive task, as there is poor understanding of sequence-structure-function relationships. In this study, we analyzed this relationship in transaminase from Thermobaculum terrenum, distinguished by expanded substrate specificity and activity in reactions with L-amino acids and (R)-(+)-1-phenylethylamine using α-ketoglutarate and pyruvate as amino acceptors. We performed site-directed mutagenesis to create a panel of the enzyme variants, which differ in the active site residues from the parent enzyme to a putative transaminase specific to (R)-primary amines. The variants were examined in the overall transamination reactions and half-reaction with (R)-(+)-1-phenylethylamine. A structural analysis of the most prominent variants revealed a spatial reorganization in the active sites, which caused changes in activity. Although the specialization to (R)-amine transaminase was not implemented, we succeeded in understanding the role of the particular active site residues in expanding substrate specificity of the enzyme. We showed that the specificity for (R)-(+)-1-phenylethylamine in transaminase from T. terrenum arises without sacrificing the specificity for L-amino acids and α-ketoglutarate and in consensus with it.
Collapse
Affiliation(s)
- Ekaterina Yu. Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Alena Yu. Nikolaeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Alina K. Bakunova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana V. Rakitina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry A. Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Moscow, Russian Federation
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
13
|
Wang C, Tang K, Dai Y, Jia H, Li Y, Gao Z, Wu B. Identification, Characterization, and Site-Specific Mutagenesis of a Thermostable ω-Transaminase from Chloroflexi bacterium. ACS OMEGA 2021; 6:17058-17070. [PMID: 34250363 PMCID: PMC8264935 DOI: 10.1021/acsomega.1c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we have identified an ω-transaminase (ω-TA) from Chloroflexi bacterium from the genome database by using two ω-TA sequences (ATA117 Arrmut11 from Arthrobacter sp. KNK168 and amine transaminase from Aspergillus terreus NIH2624) as templates in a BLASTP search and motif sequence alignment. The protein sequence of the ω-TA from C. bacterium (CbTA) shows 38% sequence identity to that of ATA117 Arrmut11. The gene sequence of CbTA was inserted into pRSF-Duet1 and functionally expressed in Escherichia coli BL21(DE3). The results showed that the recombinant CbTA has a specific activity of 1.19 U/mg for (R)-α-methylbenzylamine [(R)-MBA] at pH 8.5 and 45 °C. The substrate acceptability test showed that CbTA has significant reactivity to aromatic amino donors and amino receptors. More importantly, CbTA also exhibited good affinity toward some cyclic substrates. The homology model of CbTA was built by Discovery Studio, and docking was performed to describe the relative activity toward some substrates. CbTA evolved by site-specific mutagenesis and found that the Q192G mutant increased the activity to (R)-MBA by around 9.8-fold. The Q192G mutant was then used to convert two cyclic ketones, N-Boc-3-pyrrolidinone and N-Boc-3-piperidone, and both the conversions were obviously improved compared to that of the parental CbTA.
Collapse
|
14
|
Telzerow A, Paris J, Håkansson M, González‐Sabín J, Ríos‐Lombardía N, Gröger H, Morís F, Schürmann M, Schwab H, Steiner K. Expanding the Toolbox of R-Selective Amine Transaminases by Identification and Characterization of New Members. Chembiochem 2021; 22:1232-1242. [PMID: 33242357 PMCID: PMC8048526 DOI: 10.1002/cbic.202000692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Amine transaminases (ATAs) are used to synthesize enantiomerically pure amines, which are building blocks for pharmaceuticals and agrochemicals. R-selective ATAs belong to the fold type IV PLP-dependent enzymes, and different sequence-, structure- and substrate scope-based features have been identified in the past decade. However, our knowledge is still restricted due to the limited number of characterized (R)-ATAs, with additional bias towards fungal origin. We aimed to expand the toolbox of (R)-ATAs and contribute to the understanding of this enzyme subfamily. We identified and characterized four new (R)-ATAs. The ATA from Exophiala sideris contains a motif characteristic for d-ATAs, which was previously believed to be a disqualifying factor for (R)-ATA activity. The crystal structure of the ATA from Shinella is the first from a Gram-negative bacterium. The ATAs from Pseudonocardia acaciae and Tetrasphaera japonica are the first characterized (R)-ATAs with a shortened/missing N-terminal helix. The active-site charges vary significantly between the new and known ATAs, correlating with their diverging substrate scope.
Collapse
Affiliation(s)
- Aline Telzerow
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
- InnoSyn B.V.Urmonderbaan 226167RDGeleenThe Netherlands
| | - Juraj Paris
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
- EntreChem SLVivero Ciencias de la Salud33011OviedoSpain
| | | | | | | | - Harald Gröger
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
| | | | | | - Helmut Schwab
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Kerstin Steiner
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
15
|
Han R, Cao X, Fang H, Zhou J, Ni Y. Structure-based engineering of ω-transaminase for enhanced catalytic efficiency toward (R)-(+)-1-(1-naphthyl)ethylamine synthesis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
17
|
Structural and Functional Analysis of the Only Two Pyridoxal 5′-Phosphate-Dependent Fold Type IV Transaminases in Bacillus altitudinis W3. Catalysts 2020. [DOI: 10.3390/catal10111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aminotransferases are employed as industrial biocatalysts to produce chiral amines with high enantioselectivity and yield. BpTA-1 and BpTA-2 are the only two pyridoxal 5′-phosphate-dependent fold type IV transaminase enzymes in Bacillus altitudinis W3. Herein, we compared the structures and biochemical characteristics of BpTA-1 and BpTA-2 using bioinformatic analysis, circular dichroism spectroscopy, atomic force microscopy and other approaches. BpTA-1 and BpTA-2 are similar overall; both form homodimers and utilize a catalytic lysine. However, there are distinct differences in the substrate cofactor-binding pocket, molecular weight and the proportion of the secondary structure. Both enzymes have the same stereoselectivity but different enzymatic properties. BpTA-2 is more active under partial alkaline and ambient temperature conditions and BpTA-1 is more sensitive to pH and temperature. BpTA-2 as novel enzyme not only fills the building blocks of transaminase but also has broader industrial application potential for (R)-α-phenethylamines than BpTA-1. Structure-function relationships were explored to assess similarities and differences. The findings lay the foundation for modifying these enzymes via protein engineering to enhance their industrial application potential.
Collapse
|
18
|
Cui C, Lin H, Pu W, Guo C, Liu Y, Pei XQ, Wu ZL. Asymmetric Epoxidation and Sulfoxidation Catalyzed by a New Styrene Monooxygenase from Bradyrhizobium. Appl Biochem Biotechnol 2020; 193:65-78. [PMID: 32808246 DOI: 10.1007/s12010-020-03413-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Asymmetric epoxidation catalyzed with styrene monooxygenase (SMO) is a powerful enzymatic process producing enantiopure styrene epoxide derivatives. To establish a more diversified reservoir of SMOs, a new SMO from Bradyrhizobium sp. ORS 375, named BrSMO, was mined from the database and characterized. BrSMO was constituted of an epoxygenase component of 415 amino acid residues and an NADH-dependent flavin reductase component of 175 residues. BrSMO catalyzed the epoxidation of styrene and 7 more styrene derivatives, yielding the corresponding (S)-epoxides with excellent enantiomeric excesses (95- > 99% ee), with the highest activity achieved for styrene. BrSMO also catalyzed the asymmetric sulfoxidation of 7 sulfides, producing the corresponding (R)-sulfoxides (20-90% ee) with good yields.
Collapse
Affiliation(s)
- Can Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Lin
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| | - Wei Pu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Guo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao-Qiong Pei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
19
|
Improving the catalytic thermostability of Bacillus altitudinis W3 ω-transaminase by proline substitutions. 3 Biotech 2020; 10:323. [PMID: 32656056 DOI: 10.1007/s13205-020-02321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 01/10/2023] Open
Abstract
As a green biocatalyst, transaminase with high thermostability can be better employed to synthesize many pharmaceutical intermediates in industry. To improve the thermostability of (R)-selective amine transaminase from Bacillus altitudinis W3, related mutation sites were determined by multiple amino acid sequence alignment between wild-type ω-transaminase and four potential thermophilic ω-transaminases, followed by replacement of the related amino acid residues with proline by site-directed mutagenesis. Three stabilized mutants (D192P, T237P, and D192P/T237P) showing the highest stability were obtained and used for further analysis. Comparison with the wild-type enzyme revealed that the double mutant D192P/T237P exhibited the largest shift in thermostability, with a 2.5-fold improvement of t 1/2 at 40 °C, and a 6.3 °C increase in T 50 15, and a 5 °C higher optimal catalytic temperature. Additionally, this mutant exhibited an increase in catalytic efficiency (k cat/K m) relative to the wild-type enzyme. Modeling analysis indicated that the improved thermostability of the mutants could be associated with newly formed hydrophobic interactions and hydrogen bonds. This study shown that proline substitutions guided by sequence alignment to improve the thermostability of (R)-selective amine transaminase was effective and this method can also be used to engineering other enzymes.
Collapse
|
20
|
Kelly SA, Mix S, Moody TS, Gilmore BF. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol 2020; 104:4781-4794. [PMID: 32300853 PMCID: PMC7228992 DOI: 10.1007/s00253-020-10585-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/04/2022]
Abstract
Transaminases (TAms) are important enzymes for the production of chiral amines for the pharmaceutical and fine chemical industries. Novel TAms for use in these industries have been discovered using a range of approaches, including activity-guided methods and homologous sequence searches from cultured microorganisms to searches using key motifs and metagenomic mining of environmental DNA libraries. This mini-review focuses on the methods used for TAm discovery over the past two decades, analyzing the changing trends in the field and highlighting the advantages and drawbacks of the respective approaches used. This review will also discuss the role of protein engineering in the development of novel TAms and explore possible directions for future TAm discovery for application in industrial biocatalysis. KEY POINTS: • The past two decades of TAm enzyme discovery approaches are explored. • TAm sequences are phylogenetically analyzed and compared to other discovery methods. • Benefits and drawbacks of discovery approaches for novel biocatalysts are discussed. • The role of protein engineering and future discovery directions is highlighted.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Stefan Mix
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
| | - Thomas S Moody
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland.
| |
Collapse
|
21
|
Gao X, Zhang X, Zhu N, Mou Y, Zhang H, Liu X, Wei P. Reshaping the substrate binding region of (R)-selective ω-transaminase for asymmetric synthesis of (R)-3-amino-1-butanol. Appl Microbiol Biotechnol 2020; 104:3959-3969. [PMID: 32185434 DOI: 10.1007/s00253-020-10539-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 01/27/2023]
Abstract
(R)-Selective ω-transaminase (ω-TA) is a key enzyme for the asymmetric reductive amination of carbonyl compounds to produce chiral amines which are essential parts of many therapeutic compounds. However, its practical industrial applications are hindered by the low catalytic efficiency and poor thermostability of naturally occurring enzymes. In this work, we report the molecular modification of (R)-selective ω-TA from Aspergillus terreus (AtTA) to allow asymmetric reductive amination of 4-hydroxy-2-butanone, producing (R)-3-amino-1-butanol. Based on substrate docking analysis, 4 residues in the substrate tunnel and binding pocket of AtTA were selected as mutation hotspots. The screening procedure was facilitated by the construction of a "small-intelligent" library and the use of thin-layer chromatography for preliminary screening. The resulting mutant AtTA-M5 exhibited a 9.6-fold higher kcat/Km value and 9.4 °C higher [Formula: see text] than that of wild-type AtTA. Furthermore, the conversion of 20 and 50 g L-1 4-hydroxy-2-butanone by AtTA-M5 reached 90.8% and 79.1%, suggesting significant potential for production of (R)-3-amino-1-butanol. Under the same conditions, wild-type AtTA achieved less than 5% conversion. Moreover, the key mutation (S215P in AtTA) was validated in 7 other (R)-selective ω-TAs, indicating its general applicability in improving the catalytic efficiency of homologous (R)-selective ω-TAs.
Collapse
Affiliation(s)
- Xinxing Gao
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China.
| | - Xin Zhang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Yi Mou
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai, 264005, Shandong, China
| | - Xin Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Pinghe Wei
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
22
|
Bezsudnova EY, Popov VO, Boyko KM. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol 2020; 104:2343-2357. [PMID: 31989227 DOI: 10.1007/s00253-020-10369-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Pyridoxal-5'-phosphate-dependent transaminases of fold type IV (class IV) are promising enzymes for (R)-selective amination of organic compounds. Transaminases of fold type IV exhibit either strict (R)-selectivity or (S)-selectivity that is implemented within geometrically similar active sites of different amino acid compositions. Based on substrate specificity, class IV comprises three large families of transaminases: (S)-selective branched-chain L-amino acid aminotransferases and (R)-selective D-amino acid aminotransferases and (R)-amine:pyruvate transaminases. In this review, we aim to analyze the substrate profiles and correlations between the substrate specificity and organization of the active site in transaminases from these structurally related families. New transaminases with an expanded substrate specificity are also discussed. An analysis of the structural features of substrate binding and comparisons of structural determinants of chiral discrimination between members of the class IV transaminases could be helpful in identifying new biocatalytically relevant enzymes as well as rational protein engineering.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, Russian Federation, 123182
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071
| |
Collapse
|
23
|
Márquez SL, Atalah J, Blamey JM. Characterization of a novel thermostable (S)-amine-transaminase from an Antarctic moderately-thermophilic bacterium Albidovulum sp. SLM16. Enzyme Microb Technol 2019; 131:109423. [PMID: 31615676 DOI: 10.1016/j.enzmictec.2019.109423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Amine-transaminases (ATAs) are enzymes that catalyze the reversible transfer of an amino group between primary amines and carbonyl compounds. They have been widely studied in the last decades for their application in stereoselective synthesis of chiral amines, which are one of the most valuable building blocks in pharmaceuticals manufacturing. Their excellent enantioselectivity, use of low-cost substrates and no need for external cofactors has turned these enzymes into a promising alternative to the chemical synthesis of chiral amines. Nevertheless, its application at industrial scale remains limited mainly because most of the available ATAs are scarcely tolerant to harsh reaction conditions such as high temperatures and presence of organic solvents. In this work, a novel (S)-ATA was discovered in a thermophilic bacterium, Albidovulum sp. SLM16, isolated from a geothermal Antarctic environmental sample, more specifically from a shoreline fumarole in Deception Island. The transaminase-coding gene was identified in the genome of the microorganism, cloned and overexpressed in Escherichia coli for biochemical characterization. The activity of the recombinant ATA was optimal at 65 °C and pH 9.5. Molecular mass estimates suggest a 75 kDa homodimeric structure. The enzyme turned out to be highly thermostable, maintaining 80% of its specific activity after 5 days of incubation at 50 °C. These results indicate that ATA_SLM16 is an excellent candidate for potential applications in biocatalytic synthesis. To the best of our knowledge, this would be the first report of the characterization of a thermostable (S)-ATA discovered by means of in vivo screening of thermophilic microorganisms.
Collapse
Affiliation(s)
- Sebastián L Márquez
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Joaquín Atalah
- Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Jenny M Blamey
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile.
| |
Collapse
|
24
|
Marchenkova MA, Konarev PV, Rakitina TV, Timofeev VI, Boikova AS, Dyakova YA, Ilina KB, Korzhenevskiy DA, Yu Nikolaeva A, Pisarevsky YV, Kovalchuk MV. Dodecamers derived from the crystal structure were found in the pre-crystallization solution of the transaminase from the thermophilic bacterium Thermobaculum terrenum by small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2939-2944. [PMID: 31347457 DOI: 10.1080/07391102.2019.1649195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pre-crystallization solution of the transaminase from Thermobaculum terrenum (TaTT) has been studied by small-angle X-ray scattering (SAXS). Regular changes in the oligomeric composition of the protein were observed after the addition of the precipitant. Comparison of the observed oligomers with the crystal structure of TaTT (PDB ID 6GKR) shows that dodecamers may act as building blocks in the growth of transaminase single crystals. Correlating of these results to the similar X-ray studies of other proteins suggests that SAXS may be a valuable tool for searching optimum crystallization conditions. AbbreviationSAXSsmall-angle X-ray scatteringTatransaminaseTaTTtransaminase from Thermobaculum terrenumPLPpyridoxal-5'-phosphateR-PEAR-(þ)-1-phenylethylamineBCATbranched-chain amino acid aminotransferaseDAATD-aminoacid aminotransferaseR-TAR-amine:pyruvate transaminaseCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Margarita A Marchenkova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Petr V Konarev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Tatiana V Rakitina
- National Research Centre 'Kurchatov Institute', Moscow, Russian Federation.,Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Hormonal Regulation Proteins, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Anastasiia S Boikova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Yulia A Dyakova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Kseniia B Ilina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | | | - Alena Yu Nikolaeva
- National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Yurii V Pisarevsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Mikhail V Kovalchuk
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation.,St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
25
|
Li BC, Zhang T, Li YQ, Ding GB. Target Discovery of Novel α-L-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol 2019; 189:1245-1261. [PMID: 31236895 DOI: 10.1007/s12010-019-03063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
As a green and powerful tool, biocatalysis has emerged as a perfect alternative to traditional chemistry. The bottleneck during process development is discovery of novel enzymes with desired properties and independent intellectual property. Herein, we have successfully bioprospected three novel bacterial α-L-rhamnosidases from human fecal metagenome using a combinatorial strategy by high-throughput de novo sequencing combined with in silico searching for catalytic key motifs. All three novel α-L-rhamnosidases shared low sequence identities with reported (< 35%) and putative ones (< 57%) from public database. All three novel α-L-rhamnosidases were over-expressed as soluble form in Escherichia coli with high-level production. Furthermore, all three novel α-L-rhamnosidases hydrolyzed the synthetic substrate p-nitrophenyl α-L-rhamnopyranoside and natural flavonoid glycosides rutin and naringin with some excellent properties, such as high activity in acidic pH, high activity at low or high temperature, and good tolerance for alcohols and DMSO. Our findings would provide a convenient route for target discovery of the promising biocatalysts from the metagenomes for biotransformation and biosynthesis.
Collapse
Affiliation(s)
- Bin-Chun Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| | - Tian Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Yan-Qin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Guo-Bin Ding
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
26
|
Zeifman YS, Boyko KM, Nikolaeva AY, Timofeev VI, Rakitina TV, Popov VO, Bezsudnova EY. Functional characterization of PLP fold type IV transaminase with a mixed type of activity from Haliangium ochraceum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:575-585. [PMID: 30902765 DOI: 10.1016/j.bbapap.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are industrially important enzymes catalyzing the stereoselective amination of ketones and keto acids. Transaminases of PLP fold type IV are characterized by (R)- or (S)-stereoselective transfer of amino groups, depending on the substrate profile of the enzyme. PLP fold type IV transaminases include branched-chain amino acid transaminases (BCATs), D-amino acid transaminases and (R)-amine:pyruvate transaminases. Recently, transaminases with a mixed type of activity were identified and characterized. Here, we report biochemical and structural characterization of a transaminase from myxobacterium Haliangium ochraceum (Hoch3033), which is active towards keto analogs of branched-chain amino acids (specific substrates for BCATs) and (R)-(+)-α-methylbenzylamine (specific substrate for (R)-amine:pyruvate transaminases). The enzyme is characterized by an alkaline pH optimum (pH 10.0-10.5) and a tolerance to high salt concentrations (up to 2 M NaCl). The structure of Hoch3033 was determined at 2.35 Å resolution. The overall fold of the enzyme was similar to those of known enzymes of PLP fold type IV. The mixed type of activity of Hoch3033 was implemented within the BCAT-like active site. However, in the active site of Hoch3033, we observed substitutions of specificity-determining residues that are important for substrate binding in canonical BCATs. We suggest that these changes result in the loss of activity towards α-ketoglutarate and increase the affinity towards (R)-(+)-α-methylbenzylamine. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further research to understand the structural basis of substrate specificity in these enzymes.
Collapse
Affiliation(s)
- Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Vladimir I Timofeev
- Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation; FSRC «Crystallography and Photonics» RAS, Leninskiy Prospekt 59, 119333 Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation; Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| |
Collapse
|
27
|
Efficient biosynthesis of (R)-3-amino-1-butanol by a novel (R)-selective transaminase from Actinobacteria sp. J Biotechnol 2019; 295:49-54. [PMID: 30853639 DOI: 10.1016/j.jbiotec.2019.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
(R)-3-amino-1-butanol is a key intermediate of Dolutegravir for the treatment of HIV/AIDS and its green and efficient biosynthesis has attracted a great deal of attention. Transaminases are currently used as promising biocatalyst for the synthesis of chiral amines. However, many transaminases have (S)-specificity and (R)-selective transaminases were less exploited and studied, making the production of (R)-amines remain challenging. In this study, a novel transaminase from Actinobacteria sp. (As-TA) was obtained and applied for the biosynthesis of (R)-3-amino-1-butanol by transferring the amino group from isopropylamine to 4-hydroxy-2-butanone. After optimization of the reaction condition and using a substrate fed-batch strategy, the conversion of 100, 200, 300, 400 and 500 mM 4-hydroxy-2-butanone reached 100%, 94.9%, 86.1%, 76.1% and 70.9%, respectively. (R)-3-amino-1-butanol with a maximum yield of 29.6 g/L and 99.9% e.e. value was obtained. This was the first time demonstrating the successful biosynthesis of (R)-3-amino-1-butanol with transaminase as biocatalyst and the obtained As-TA enriched the enzyme pool of transaminase with (R)-specificity.
Collapse
|
28
|
Du K, Li R, Zhang D, Feng W. Covalent Linkage of an R-ω-Transaminase to a d-Amino Acid Oxidase through Protein Splicing to Enhance Enzymatic Catalysis of Transamination. Chembiochem 2019; 20:701-709. [PMID: 30447031 DOI: 10.1002/cbic.201800646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 11/07/2022]
Abstract
R-ω-Transaminases (RTAs) catalyse the conversion of R-configured amines [e.g., (R)-1-phenylethylamine] into the corresponding ketones (e.g., acetophenone), by transferring an amino group from an amino donor [e.g., (R)-1-phenylethylamine] onto an amino acceptor (e.g., pyruvate), resulting in a co-product (e.g., d-alanine). d-Alanine can be deaminated back to pyruvate by d-amino acid oxidase (DAAOs). Here, through in vivo subunit splicing, the N terminus of an RTA subunit (RTAS ) was specifically ligated to the C terminus of a DAAO subunit (DAAOS ) through native peptide bonds (RTA&DAAO). RTAS is in close proximity to DAAOS , at a molecular-scale distance. Thus the transfer of pyruvate and d-alanine between RTA and DAAO can be directional and efficient. Pyruvate→d-alanine→pyruvate cycles are efficiently formed, thus promoting the forward transamination reaction. In a different, in vitro noncovalent approach, based on coiled-coil association, the RTAS N terminus was specifically associated with the DAAOS C terminus (RTA#DAAO). In addition, the two mixed individual enzymes (RTA+DAAO) were also studied. RTA&DAAO has a shorter distance between the paired subunits (RTAS -DAAOS ) than RTA#DAAO, and the number of the paired subunits is higher than in the case of RTA#DAAO, whereas RTA+DAAO cannot form the paired subunits. RTA&DAAO exhibited a transamination catalysis efficiency higher than that of RTA#DAAO and much higher than that of RTA+DAAO.
Collapse
Affiliation(s)
- Kun Du
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beisanhuandonglu 15, Beijing, 100029, China
| | - Rong Li
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beisanhuandonglu 15, Beijing, 100029, China
| | - Dongrui Zhang
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beisanhuandonglu 15, Beijing, 100029, China
| | - Wei Feng
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beisanhuandonglu 15, Beijing, 100029, China
| |
Collapse
|
29
|
Bioprospecting Reveals Class III ω-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Appl Environ Microbiol 2019; 85:AEM.02404-18. [PMID: 30413473 PMCID: PMC6328768 DOI: 10.1128/aem.02404-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022] Open
Abstract
Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and (R) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and (R)- and (S) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing (R)-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways. Amination of bulky ketones, particularly in (R) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent (S) selectivity. We also report representatives from the class III ω-TAs capable of converting (R) and (S) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of (R) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and (R) amines for the production of high-value products and to screen for those converting putrescine. IMPORTANCE Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and (R) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and (R)- and (S) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing (R)-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways.
Collapse
|
30
|
Rocha JF, Pina AF, Sousa SF, Cerqueira NMFSA. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01210a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PLP-dependent enzymes described on this review are attractive targets for enzyme engineering towards their application in an industrial biotechnology framework.
Collapse
Affiliation(s)
- Juliana F. Rocha
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - André F. Pina
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | | |
Collapse
|
31
|
Bezsudnova EY, Boyko KM, Nikolaeva AY, Zeifman YS, Rakitina TV, Suplatov DA, Popov VO. Biochemical and structural insights into PLP fold type IV transaminase from Thermobaculum terrenum. Biochimie 2018; 158:130-138. [PMID: 30599183 DOI: 10.1016/j.biochi.2018.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
The high catalytic efficiency of enzymes under reaction conditions is one of the main goals in biocatalysis. Despite the dramatic progress in the development of more efficient biocatalysts by protein design, the search for natural enzymes with useful properties remains a promising strategy. The pyridoxal 5'-phosphate (PLP)-dependent transaminases represent a group of industrially important enzymes due to their ability to stereoselectively transfer amino groups between diverse substrates; however, the complex mechanism of substrate recognition and conversion makes the design of transaminases a challenging task. Here we report a detailed structural and kinetic study of thermostable transaminase from the bacterium Thermobaculum terrenum (TaTT) using the methods of enzyme kinetics, X-ray crystallography and molecular modeling. TaTT can convert L-branched-chain and L-aromatic amino acids as well as (R)-(+)-1-phenylethylamine at a high rate and with high enantioselectivity. The structures of TaTT in complex with the cofactor pyridoxal 5'-phosphate covalently bound to enzyme and in complex with its reduced form, pyridoxamine 5'-phosphate, were determined at resolutions of 2.19 Å and 1.5 Å, and deposited in the Protein Data Bank as entries 6GKR and 6Q8E, respectively. TaTT is a fold type IV PLP-dependent enzyme. In terms of structural similarity, the enzyme is close to known branched-chain amino acid aminotransferases, but differences in characteristic sequence motifs in the active site were observed in TaTT compared to canonical branched-chain amino acid aminotransferases, which can explain the improved binding of aromatic amino acids and (R)-(+)-1-phenylethylamine. This study has shown for the first time that high substrate specificity towards both various l-amino acids and (R)-primary amines can be implemented within one pyridoxal 5'-phosphate-dependent active site of fold type IV. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further biochemical and bioinformatic studies to understand the sequence-structure-function relationship in these enzymes.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation; Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str. 16/10, 117997, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119991, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|
32
|
Telzerow A, Paris J, Håkansson M, González-Sabín J, Ríos-Lombardía N, Schürmann M, Gröger H, Morís F, Kourist R, Schwab H, Steiner K. Amine Transaminase from Exophiala Xenobiotica—Crystal Structure and Engineering of a Fold IV Transaminase that Naturally Converts Biaryl Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aline Telzerow
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- InnoSyn B. V., Urmonderbaan 22, 6167RD Geleen, The Netherlands
| | - Juraj Paris
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- Entrechem, S.L., Vivero Ciencias de la Salud, Santo Domingo de Guzmán,
s/n, 33011 Oviedo, Spain
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 22381 Lund, Sweden
| | - Javier González-Sabín
- Entrechem, S.L., Vivero Ciencias de la Salud, Santo Domingo de Guzmán,
s/n, 33011 Oviedo, Spain
| | - Nicolás Ríos-Lombardía
- Entrechem, S.L., Vivero Ciencias de la Salud, Santo Domingo de Guzmán,
s/n, 33011 Oviedo, Spain
| | | | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Francisco Morís
- Entrechem, S.L., Vivero Ciencias de la Salud, Santo Domingo de Guzmán,
s/n, 33011 Oviedo, Spain
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Helmut Schwab
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Kerstin Steiner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
33
|
Buß O, Dold SM, Obermeier P, Litty D, Muller D, Grüninger J, Rudat J. Enantiomer discrimination in β-phenylalanine degradation by a newly isolated Paraburkholderia strain BS115 and type strain PsJN. AMB Express 2018; 8:149. [PMID: 30242525 PMCID: PMC6150868 DOI: 10.1186/s13568-018-0676-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023] Open
Abstract
Despite their key role in numerous natural compounds, β-amino acids have rarely been studied as substrates for microbial degradation. Fermentation of the newly isolated Paraburkholderia strain BS115 and the type strain P. phytofirmans PsJN with β-phenylalanine (β-PA) as sole nitrogen source revealed (S)-selective transamination of β-PA to the corresponding β-keto acid by both strains, accompanied by substantial formation of acetophenone (AP) from spontaneous decarboxylation of the emerging β-keto acid. While the PsJN culture became stationary after entire (S)-β-PA consumption, BS115 showed further growth at a considerably slower rate, consuming (R)-β-PA without generation of AP which points to a different degradation mechanism for this enantiomer. This is the first report on degradation of both enantiomers of any β-amino acid by one single bacterial strain.
Collapse
|
34
|
Bezsudnova EY, Boyko KM, Popov VO. Properties of Bacterial and Archaeal Branched-Chain Amino Acid Aminotransferases. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523060 DOI: 10.1134/s0006297917130028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metabolism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the "lock and key" mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal temperature, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.
Collapse
Affiliation(s)
- E Yu Bezsudnova
- Bach Institute of Biochemistry, The Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
35
|
Identification of ( R )-selective ω-aminotransferases by exploring evolutionary sequence space. Enzyme Microb Technol 2018; 110:46-52. [DOI: 10.1016/j.enzmictec.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022]
|
36
|
Bezsudnova EY, Dibrova DV, Nikolaeva AY, Rakitina TV, Popov VO. Identification of branched-chain amino acid aminotransferases active towards (R)-(+)-1-phenylethylamine among PLP fold type IV transaminases. J Biotechnol 2018; 271:26-28. [PMID: 29453991 DOI: 10.1016/j.jbiotec.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/29/2017] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
New class IV transaminases with activity towards L-Leu, which is typical of branched-chain amino acid aminotransferases (BCAT), and with activity towards (R)-(+)-1-phenylethylamine ((R)-PEA), which is typical of (R)-selective (R)-amine:pyruvate transaminases, were identified by bioinformatics analysis, obtained in recombinant form, and analyzed. The values of catalytic activities in the reaction with L-Leu and (R)-PEA are comparable to those measured for characteristic transaminases with the corresponding specificity. Earlier, (R)-selective class IV transaminases were found to be active, apart from (R)-PEA, only with some other (R)-primary amines and D-amino acids. Sequences encoding new transaminases with mixed type of activity were found by searching for changes in the conserved motifs of sequences of BCAT by different bioinformatics tools.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation.
| | - Daria V Dibrova
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskie Gory 1-73, Moscow 119991, Russian Federation
| | - Alena Yu Nikolaeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Tatiana V Rakitina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| |
Collapse
|
37
|
Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF. Application of ω-Transaminases in the Pharmaceutical Industry. Chem Rev 2017; 118:349-367. [PMID: 29251912 DOI: 10.1021/acs.chemrev.7b00437] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral amines are valuable building blocks for the pharmaceutical industry. ω-TAms have emerged as an exciting option for their synthesis, offering a potential "green alternative" to overcome the drawbacks associated with conventional chemical methods. In this review, we explore the application of ω-TAms for pharmaceutical production. We discuss the diverse array of reactions available involving ω-TAms and process considerations of their use in both kinetic resolution and asymmetric synthesis. With the aid of specific drug intermediates and APIs, we chart the development of ω-TAms using protein engineering and their contribution to elegant one-pot cascades with other enzymes, including carbonyl reductases (CREDs), hydrolases and monoamine oxidases (MAOs), providing a comprehensive overview of their uses, beginning with initial applications through to the present day.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Stefan Pohle
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Scott Wharry
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Stefan Mix
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Christopher C R Allen
- School of Biological Sciences, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Thomas S Moody
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K.,Arran Chemical Company Limited , Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| |
Collapse
|
38
|
Gao S, Su Y, Zhao L, Li G, Zheng G. Characterization of a (R)-selective amine transaminase from Fusarium oxysporum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|
40
|
Identification, expression and characterization of an R-ω-transaminase from Capronia semiimmersa. Appl Microbiol Biotechnol 2017; 101:5677-5687. [PMID: 28516206 DOI: 10.1007/s00253-017-8309-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Chiral amines are essential precursors in the production of biologically active compounds, including several important drugs. Among the biocatalytic strategies that have been developed for their synthesis, the use of ω-transaminases (ω-TA) appears as an attractive alternative allowing the stereoselective amination of prochiral ketones. However, the problems associated with narrow substrate specificity, unfavourable reaction equilibrium and expensive amine donors still hamper its industrial application. The search for novel enzymes from nature can contribute to expand the catalytic repertoire of ω-TA and help to circumvent some of these problems. A genome mining approach, based on the work described by Höhne et al., was applied for selection of potential R-ω-TA. Additional criteria were used to select an enzyme that differs from previously described ones. A candidate R-ω-TA from Capronia semiimmersa was selected, cloned and expressed in Escherichia coli. Interestingly, alignment of this enzyme with previously reported TA sequences revealed the presence of two additional amino acid residues in a loop close to the active site. The impact of this change was analysed with a structural model based on crystallized R-ω-TAs. Analysis of the substrate specificity of R-ω-TA from C. semiimmersa indicates that it accepts a diversity of ketones as substrates yielding the corresponding amine with good yields and excellent enantioselectivity. The expressed enzyme accepts isopropylamine as amine donor what makes it suitable for industrial processes.
Collapse
|
41
|
Sun J, Cui WH, Du K, Gao Q, Du M, Ji P, Feng W. Immobilization of R -ω-transaminase on MnO 2 nanorods for catalyzing the conversion of ( R )-1-phenylethylamine. J Biotechnol 2017; 245:14-20. [DOI: 10.1016/j.jbiotec.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023]
|
42
|
Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold. Sci Rep 2016; 6:38183. [PMID: 27905516 PMCID: PMC5131300 DOI: 10.1038/srep38183] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Transaminases are useful biocatalysts for the production of amino acids and chiral amines as intermediates for a broad range of drugs and fine chemicals. Here, we describe the discovery and characterisation of new transaminases from microorganisms which were enriched in selective media containing (R)-amines as sole nitrogen source. While most of the candidate proteins were clearly assigned to known subgroups of the fold IV family of PLP-dependent enzymes by sequence analysis and characterisation of their substrate specificity, some of them did not fit to any of these groups. The structure of one of these enzymes from Curtobacterium pusillum, which can convert d-amino acids and various (R)-amines with high enantioselectivity, was solved at a resolution of 2.4 Å. It shows significant differences especially in the active site compared to other transaminases of the fold IV family and thus indicates the existence of a new subgroup within this family. Although the discovered transaminases were not able to convert ketones in a reasonable time frame, overall, the enrichment-based approach was successful, as we identified two amine transaminases, which convert (R)-amines with high enantioselectivity, and can be used for a kinetic resolution of 1-phenylethylamine and analogues to obtain the (S)-amines with e.e.s >99%.
Collapse
|
43
|
Stekhanova TN, Rakitin AL, Mardanov AV, Bezsudnova EY, Popov VO. A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme Microb Technol 2016; 96:127-134. [PMID: 27871372 DOI: 10.1016/j.enzmictec.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
Abstract
A new fold-type IV branched-chain amino acid aminotransferase VMUT0738 from the hyperthermophilic Crenarchaeon Vulcanisaeta moutnovskia was successfully expressed in Escherichia coli. Purified VMUT0738 showed activity toward numerous aliphatic and aromatic l-amino acids and 2-oxo acids at optimal pH 8.0. Distinguishing features of the VMUT0738 compared with typical BCAT are the absence of activity toward acidic substrates, high activity toward basic ones, and low but detectable activity toward the (R)-enantiomer of α-methylbenzylamine (0.0076U/mg) The activity of VMUT0738 increases with a rise in the temperature from 60°C to 90°C. VMUT0738 showed high thermostability (after 24h incubation at 70°C the enzyme lost only 27% of the initial activity) and the resistance to organic solvents. The sequence alignment revealed two motifs (V/I)xLDxR and PFG(K/H)YL characteristic of BCATs from species of the related genera Vulcanisaeta, Pyrobaculum and Thermoproteus that might be responsible for the unique substrate recognition profile of the enzyme.
Collapse
Affiliation(s)
- Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation.
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| |
Collapse
|
44
|
Bezsudnova EY, Stekhanova TN, Suplatov DA, Mardanov AV, Ravin NV, Popov VO. Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis. Arch Biochem Biophys 2016; 607:27-36. [PMID: 27523731 DOI: 10.1016/j.abb.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023]
Abstract
PLP-Dependent fold-type IV branched-chain amino acid aminotransferases (BCATs) from archaea have so far been poorly characterized. A new BCAT from the hyperthermophilic archaeon Thermoproteus uzoniensis (TUZN1299) has been studied. TUZN1299 was found to be highly active toward branched-chain amino acids (BCAAs), positively charged amino acids, l-methionine, l-threonine, l-homoserine, l-glutamine, as well as toward 2-oxobutyrate and keto analogs of BCAAs, whereas l-glutamate and α-ketoglutarate were not converted in the overall reaction. According to stopped-flow experiments, the enzyme showed the highest specificity to BCAAs and their keto analogs. In order to explain the molecular mechanism of the unusual specificity of TUZN1299, bioinformatic analysis was implemented to identify the subfamily-specific positions in the aminotransferase class IV superfamily of enzymes. The role of the selected residues in binding of various ligands in the active site was further studied using molecular modeling. The results indicate that Glu188 forms a novel binding site for positively charged and polar side-chains of amino acids. Lack of accommodation for α-ketoglutarate and l-glutamate is due to the unique orientation and chemical properties of residues 102-106 in the loop forming the A-pocket. The likely functional roles of TUZN1299 in cellular metabolism - in the synthesis and degradation of BCAAs - are discussed.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119992, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|
45
|
Mathew S, Deepankumar K, Shin G, Hong EY, Kim BG, Chung T, Yun H. Identification of novel thermostable ω-transaminase and its application for enzymatic synthesis of chiral amines at high temperature. RSC Adv 2016. [DOI: 10.1039/c6ra15110h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel thermostable ω-transaminase from Thermomicrobium roseum showing broad substrate specificity and high enantioselectivity was identified, expressed and biochemically characterized and it could produce chiral amines at high temperature.
Collapse
Affiliation(s)
- Sam Mathew
- Department of Bioscience & Biotechnology
- Konkuk University
- Seoul
- South Korea
| | - Kanagavel Deepankumar
- School of Materials Science and Engineering
- Biological & Biomimetic Material Laboratory
- Nanyang Technological University
- Singapore
| | - Giyoung Shin
- School of Interdisciplinary Bioscience and Bioengineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Eun Young Hong
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- South Korea
| | - Taeowan Chung
- School of Biotechnology
- Yeungnam University
- Gyeongsan
- South Korea
| | - Hyungdon Yun
- Department of Bioscience & Biotechnology
- Konkuk University
- Seoul
- South Korea
| |
Collapse
|
46
|
Payer SE, Schrittwieser JH, Grischek B, Simon RC, Kroutil W. Regio- and Stereoselective Biocatalytic Monoamination of a Triketone Enables Asymmetric Synthesis of Both Enantiomers of the Pyrrolizidine Alkaloid Xenovenine Employing Transaminases. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Gao Q, Fu Y, Peng Y, Liu W, Feng W. Genetically-modified R-ω-transaminase: purification and self-assembly facilitating interaction with substrate droplets. Biotechnol Lett 2015; 38:489-94. [DOI: 10.1007/s10529-015-1998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 11/30/2022]
|
48
|
Fuchs M, Farnberger JE, Kroutil W. The Industrial Age of Biocatalytic Transamination. European J Org Chem 2015; 2015:6965-6982. [PMID: 26726292 PMCID: PMC4690199 DOI: 10.1002/ejoc.201500852] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 12/25/2022]
Abstract
During the last decade the use of ω-transaminases has been identified as a very powerful method for the preparation of optically pure amines from the corresponding ketones. Their immense potential for the preparation of chiral amines, together with their ease of use in combination with existing biocatalytic methods, have made these biocatalysts a competitor to any chemical methodology for (asymmetric) amination. An increasing number of examples, especially from industry, shows that this biocatalytic technology outmaneuvers existing chemical processes by its simple and flexible nature. In the last few years numerous publications and patents on synthetic routes, mainly to pharmaceuticals, involving ω-transaminases have been published. The review gives an overview of the application of ω-transaminases in organic synthesis with a focus on active pharmaceutical ingredients (APIs) and the developments during the last few years.
Collapse
Affiliation(s)
- Michael Fuchs
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz NAWI Graz Heinrichstrasse 28, 8010 Graz, Austria E-mail: http://biocatalysis.uni-graz.at
| | - Judith E Farnberger
- Austrian Centre of Industrial Biotechnology (acib), c/o University of Graz Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz NAWI Graz Heinrichstrasse 28, 8010 Graz, Austria E-mail: http://biocatalysis.uni-graz.at
| |
Collapse
|