1
|
Reddy JV, Leibiger T, Singh SK, Lee KH, Papoutsakis E, Ierapetritou M. A Novel, Site-Specific N-Linked Glycosylation Model Provides Mechanistic Insights Into the Process-Condition Dependent Distinct Fab and Fc Glycosylation of an IgG1 Monoclonal Antibody Produced by CHO VRC01 Cells. Biotechnol Bioeng 2025; 122:761-778. [PMID: 39740206 DOI: 10.1002/bit.28916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
The CHO VRC01 cell line produces an anti-HIV IgG1 monoclonal antibody containing N-linked glycans on both the Fab (variable) and Fc (constant) regions. Site-specific glycan analysis was used to measure the complex effects of cell culture process conditions on Fab and Fc glycosylation. Experimental data revealed major differences in glycan fractions across the two sites. Bioreactor pH was found to influence fucosylation, galactosylation, and sialylation in the Fab region and galactosylation in the Fc region. To understand the complex effects of process conditions on site-specific N-linked glycosylation, a kinetic model of site-specific N-linked glycosylation was developed. The model parameters provided mechanistic insights into the differences in glycan fractions observed in the Fc and Fab regions. Enzyme activities calculated from the model provided insights into the effect of bioreactor pH on site-specific N-linked glycosylation. Model predictions were experimentally tested by measuring glycosyltransferase-enzyme mRNA-levels and intracellular nucleotide sugar concentrations. The model was used to demonstrate the effect of increasing galactosyltransferase activity on site-specific N-linked glycan fractions. Experiments involving galactose and MnCl2 supplementation were used to test model predictions. The model is capable of providing insights into experimentally measured data and also of making predictions that can be used to design media supplementation strategies.
Collapse
Affiliation(s)
| | - Thomas Leibiger
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Sumit Kumar Singh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, & Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Reyes SJ, Lemire L, Durocher Y, Voyer R, Henry O, Pham PL. Investigating the metabolic load of monoclonal antibody production conveyed to an inducible CHO cell line using a transfer-rate online monitoring system. J Biotechnol 2025; 399:47-62. [PMID: 39828082 DOI: 10.1016/j.jbiotec.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale. Recent advances in modern sensing technology have allowed OTR monitoring to be available at the shake flask level. It is now possible to multiplex time-of-action (e.g., Induction, temperature shift, pH shift, feeding initiation, point of harvest) characterization studies by relying on careful analysis of OTR profile kinetics. As a result, there is potential to save time and capital expenditures while exploring process intensification studies though accurate and physiologically relevant online data. In this article, we detail the application of OTR monitoring to characterize the impact that recombinant protein production has on an inducible CHO cell line expressing Palivizumab. We then test out time-of-action studies to intensify protein production outcomes. We observe that recombinant protein expression causes a metabolic load that diminishes potential biomass growth. As a result, when compared to a control standard process, delaying induction and temperature shift has the potential to improve viable cell densities (VCD) by 2-fold thus increasing recombinant protein yield by over 30 %. The study also demonstrates that OTR can serve as a useful tool to detect cessation of exponential growth. Consequently, time-of-action points that are characteristic of inducible systems can be formulated accurately and reliably to maximize production performance.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Lucas Lemire
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada.
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada.
| |
Collapse
|
3
|
Balassi V, Otto M, Kretzmer C, Petersen A, McLaurin C, Mahadevan J, Gustin J, Borgschulte T, Razafsky D. Improving outcomes in intensified processing via optimization of the cell line development workflow. Biotechnol Prog 2025:e70003. [PMID: 39968655 DOI: 10.1002/btpr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
As the industry continues to explore the benefits of continuous and intensified manufacturing, it is important to assure that the cell line development (CLD) workflows in practice today are well suited to generate clones that meet the unique challenges associated with these processes. Most cell lines used in intensified processes are currently developed using traditional fed-batch CLD workflows followed by adaptation of these cell lines to perfusion processes. This method maybe suboptimal as fed-batch CLD workflows select clones which produce high volumetric titers irrespective of cell growth rate and specific productivity (qP). Although sufficient for fed-batch processes, performance of cells derived from this traditional CLD workflow may not be maintained in perfusion processes, where an intricate balance of performance parameters is needed. Until now, a thorough investigation into the effect of the CLD workflow on top clone performance in perfusion processes has not been conducted. Here, we show how the CLD workflow impacts cell performance in both fed-batch and perfusion processes, emphasizing the advantages of adopting a perfusion-specific CLD workflow which includes the use of medium specially designed for expansion and production in a perfusion setting, scale-down models which more accurately simulate perfusion process, and the adoption of perfusion-specific cell line selection criteria. Together, this results in the development of more efficient cell lines, fit for continuous and intensified processing.
Collapse
Affiliation(s)
- Vincent Balassi
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| | - Mary Otto
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| | - Corey Kretzmer
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| | - Amber Petersen
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| | - Channing McLaurin
- Cell Culture Media and Process Development, MilliporeSigma, Saint Louis, Missouri, USA
| | - Jana Mahadevan
- Cell Culture Media and Process Development, MilliporeSigma, Saint Louis, Missouri, USA
| | - Jason Gustin
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| | - Trissa Borgschulte
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| | - David Razafsky
- Expression Systems and Novel Biopharmaceutical Materials, MilliporeSigma, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Identification of Cell Culture Factors Influencing Afucosylation Levels in Monoclonal Antibodies by Partial Least-Squares Regression and Variable Importance Metrics. Processes (Basel) 2023. [DOI: 10.3390/pr11010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analysis of historic data for cell culture processes is a powerful tool to develop further process understanding. In particular, deploying retrospective analyses can identify important cell culture process parameters for controlling critical quality attributes, e.g., afucosylation, for the production of monoclonal antibodies (mAbs). However, a challenge of analyzing large cell culture data is the high correlation between regressors (particularly media composition), which makes traditional analyses, such as analysis of variance and multivariate linear regression, inappropriate. Instead, partial least-squares regression (PLSR) models, in combination with machine learning techniques such as variable importance metrics, are an orthogonal or alternative approach to identifying important regressors and overcoming the challenge of a highly covariant data structure. A specific workflow for the retrospective analysis of cell culture data is proposed that covers data curation, PLS regression, model analysis, and further steps. In this study, the proposed workflow was applied to data from four mAb products in an industrial cell culture process to identify significant process parameters that influence the afucosylation levels. The PLSR workflow successfully identified several significant parameters, such as temperature and media composition, to enhance process understanding of the relationship between cell culture processes and afucosylation levels.
Collapse
|
5
|
Kager J, Bartlechner J, Herwig C, Jakubek S. Direct control of recombinant protein production rates in E. coli fed-batch processes by nonlinear feedback linearization. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Rameez S, Gowtham YK, Nayar G, Mostafa SS. Modulation of high mannose levels in N-linked glycosylation through cell culture process conditions to increase antibody-dependent cell-mediated cytotoxicity activity for an antibody biosimilar. Biotechnol Prog 2021; 37:e3176. [PMID: 34021724 DOI: 10.1002/btpr.3176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
The regulatory approval of a biosimilar product is contingent on the favorable comparability of its safety and efficacy to that of the innovator product. As such, it is important to match the critical quality attributes of the biosimilar product to that of the innovator product. The N-glycosylation profile of a monoclonal antibody (mAb) can influence effector function activities such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity. In this study, we describe efforts to modulate the high-mannose (HM) levels of a biosimilar mAb produced in a Chinese hamster ovary cell fed-batch process. Because the HM level of the mAb was observed to impact ADCC activity, it was desirable to match it to the innovator mAb's levels. Several cell culture process related factors known to modulate the HM content of N-glycosylation were investigated, including osmolality, ammonium chloride (NH4 Cl) addition, glutamine concentration, monensin addition, and the addition of alternate sugars and amino sugars to the feed medium. The process conditions evaluated varied in impact on HM levels, process performance and product quality. One condition, the addition of alternate sugars and amino sugars to feed medium, was identified as the preferred method for increasing HM levels with minimal disruptions to process performance or other product quality attributes. Interestingly, a secondary interaction between sugar and amino sugar supplemented feeds and osmolality was observed during process scale-up. These studies demonstrate sugar and amino sugar concentrations and osmolality are critical variables to evaluate to match HM content in biosimilar and their innovator mAbs.
Collapse
Affiliation(s)
- Shahid Rameez
- Process Development, KBI Biopharma Inc., Durham, North Carolina, USA
| | | | - Gautam Nayar
- Process Development, KBI Biopharma Inc., Durham, North Carolina, USA
| | - Sigma S Mostafa
- Process Development, KBI Biopharma Inc., Durham, North Carolina, USA
| |
Collapse
|
7
|
Mastrangeli R, Audino MC, Palinsky W, Broly H, Bierau H. The Formidable Challenge of Controlling High Mannose-Type N-Glycans in Therapeutic mAbs. Trends Biotechnol 2020; 38:1154-1168. [DOI: 10.1016/j.tibtech.2020.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
|
8
|
Brantley TJ, Mitchelson FG, Khattak SF. A class of low-cost alternatives to kifunensine for increasing high mannose N-linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells. Biotechnol Prog 2020; 37:e3076. [PMID: 32888259 DOI: 10.1002/btpr.3076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
N-linked glycosylation of therapeutic monoclonal antibodies is an important product quality attribute for drug safety and efficacy. An increase in the percent of high mannose N-linked glycosylation may be required for drug efficacy or to match the glycosylation profile of the innovator drug during the development of a biosimilar. In this study, the addition of several chemical additives to a cell culture process resulted in high mannose N-glycans on monoclonal antibodies produced by Chinese hamster ovary (CHO) cells without impacting cell culture performance. The additives, which include known mannosidase inhibitors (kifunensine and deoxymannojirimycin) as well as novel inhibitors (tris, bis-tris, and 1-amino-1-methyl-1,3-propanediol), contain one similar molecular structure: 2-amino-1,3-propanediol, commonly referred to as serinol. The shared chemical structure provides insight into the binding and inhibition of mannosidase in CHO cells. One of the novel inhibitors, tris, is safer compared to kifunensine, 35x as cost-effective, and stable at room temperature. In addition, tris and bis-tris provide multiple low-cost alternatives to kifunensine for manipulating glycosylation in monoclonal antibody production in a cell culture process with minimal impact to productivity or cell health.
Collapse
Affiliation(s)
- Timothy J Brantley
- Cell Culture Development, Pharmaceutical Operations and Technology, Biogen Inc., Research Triangle Park, North Carolina, USA
| | - Fernie G Mitchelson
- Manufacturing Sciences, Pharmaceutical Operations and Technology, Biogen Inc., Research Triangle Park, North Carolina, USA
| | - Sarwat F Khattak
- Cell Culture Development, Pharmaceutical Operations and Technology, Biogen Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
A Reliable Automated Sampling System for On-Line and Real-Time Monitoring of CHO Cultures. Processes (Basel) 2020. [DOI: 10.3390/pr8060637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Timely monitoring and control of critical process parameters and product attributes are still the basic tasks in bioprocess development. The current trend of automation and digitization in bioprocess technology targets an improvement of these tasks by reducing human error and increasing through-put. The gaps in such automation procedures are still the sampling procedure, sample preparation, sample transfer to analyzers, and the alignment of process and sample data. In this study, an automated sampling system and the respective data management software were evaluated for system performance; applicability with HPLC for measurement of vitamins, product and amino acids; and applicability with a biochemical analyzer. The focus was especially directed towards the adaptation and assessment of an appropriate amino acid method, as these substances are critical in cell culture processes. Application of automated sampling in a CHO fed-batch revealed its potential with regard to data evaluation. The higher sampling frequency compared to manual sampling increases the generated information content, which allows easier interpretation of the metabolism, extraction of e.g., ks values, application of smoothing algorithms, and more accurate detection of process events. A comparison with sensor technology shows the advantages and disadvantages in terms of measurement errors and measurement frequency.
Collapse
|
10
|
Fratz-Berilla EJ, Angart P, Graham RJ, Powers DN, Mohammad A, Kohnhorst C, Faison T, Velugula-Yellela SR, Trunfio N, Agarabi C. Impacts on product quality attributes of monoclonal antibodies produced in CHO cell bioreactor cultures during intentional mycoplasma contamination events. Biotechnol Bioeng 2020; 117:2802-2815. [PMID: 32436993 PMCID: PMC7496122 DOI: 10.1002/bit.27436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 01/29/2023]
Abstract
A mycoplasma contamination event in a biomanufacturing facility can result in costly cleanups and potential drug shortages. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and penetrate the standard 0.2‐µm filters used in the clarification of harvested cell culture fluid. Previously, we reported a study regarding the ability of Mycoplasma arginini to persist in a single‐use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G 1 (IgG1) antibody. Our previous work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Careful evaluation of certain identified process parameters over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before detection from a traditional method. In this report, we studied the changes in the IgG1 product quality produced by CHO cells considered to be induced by the M. arginini contamination events. We observed changes in critical quality attributes correlated with the duration of contamination, including increased acidic charge variants and high mannose species, which were further modeled using principal component analysis to explore the relationships among M. arginini contamination, CHO cell growth and metabolites, and IgG1 product quality attributes. Finally, partial least square models using NIR spectral data were used to establish predictions of high levels (≥104 colony‐forming unit [CFU/ml]) of M. arginini contamination, but prediction of levels below 104 CFU/ml were not reliable. Contamination of CHO cells with M. arginini resulted in significant reduction of antibody product quality, highlighting the importance of rapid microbiological testing and mycoplasma testing during particularly long upstream bioprocesses to ensure product safety and quality.
Collapse
Affiliation(s)
- Erica J Fratz-Berilla
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Biotechnology Products, Silver Spring, Maryland
| | - Phillip Angart
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Biotechnology Products, Silver Spring, Maryland
| | - Ryan J Graham
- Division of Product Quality Research, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, Maryland.,Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| | - David N Powers
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Biotechnology Products, Silver Spring, Maryland
| | - Adil Mohammad
- Division of Product Quality Research, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, Maryland
| | | | - Talia Faison
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Biotechnology Products, Silver Spring, Maryland
| | - Sai Rashmika Velugula-Yellela
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Biotechnology Products, Silver Spring, Maryland
| | | | - Cyrus Agarabi
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Biotechnology Products, Silver Spring, Maryland
| |
Collapse
|
11
|
Coats MT, Bydlinski N, Maresch D, Diendorfer A, Klanert G, Borth N. mRNA Transfection into CHO-Cells Reveals Production Bottlenecks. Biotechnol J 2019; 15:e1900198. [PMID: 31475780 DOI: 10.1002/biot.201900198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/27/2019] [Indexed: 12/19/2022]
Abstract
Obtaining highly productive Chinese hamster ovary (CHO)-cell clones for the production of therapeutic proteins relies on multiple time-consuming selection steps. Several CHO-cell strains with high degrees of genomic and epigenetic variation are available. Each harbor potential advantages and disadvantages for any given product, particularly those considered difficult to express. A simple test system to quickly assess compatibility of cell line and product may therefore prove useful. Transient plasmid transfection falls short of the specific productivities of stable producer cells, making it unsuitable for the elucidation of high specific productivity bottlenecks. The aim of the study is to reach specific productivities approaching those of industrial production cell lines by transfection of in vitro transcribed mRNA. The system is characterized with respect to transfection efficacy (by quantitative PCR) and protein production (by flow cytometry and biolayer interferometry). Fluorescence of intracellular eGFP saturates at higher amounts of mRNA per cell, while the amount of secreted and intracellular EPO-Fc remain linearly correlated to the amount of mRNA taken up. Nevertheless, MS shows a severe reduction in N-glycosylation quality. This method allows for rapid elucidation of bottlenecks that would otherwise remain undetected until later during cell line development, giving insight into suitable strategies for preemptive targeted metabolic engineering and host cell line optimization.
Collapse
Affiliation(s)
- Michael T Coats
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Nina Bydlinski
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | | | - Gerald Klanert
- Austrian Centre of Industrial Biotechnology GmbH, 8010, Graz, Austria
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology GmbH, 8010, Graz, Austria
| |
Collapse
|
12
|
Manahan M, Nelson M, Cacciatore JJ, Weng J, Xu S, Pollard J. Scale‐down model qualification of ambr® 250 high‐throughput mini‐bioreactor system for two commercial‐scale mAb processes. Biotechnol Prog 2019; 35:e2870. [DOI: 10.1002/btpr.2870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew Manahan
- Biologics Process Development and Clinical ManufacturingMerck & Co., Inc. Kenilworth New Jersey
| | - Michael Nelson
- Biologics Process Development and Clinical ManufacturingMerck & Co., Inc. Kenilworth New Jersey
| | - Jonathan J. Cacciatore
- Biologics Process Development and CommercializationMerck & Co., Inc. Kenilworth New Jersey
| | - Jessica Weng
- Biologics Process Development and CommercializationMerck & Co., Inc. Kenilworth New Jersey
| | - Sen Xu
- Biologics Process Development and Clinical ManufacturingMerck & Co., Inc. Kenilworth New Jersey
| | - Jennifer Pollard
- Biologics Process Development and Clinical ManufacturingMerck & Co., Inc. Kenilworth New Jersey
| |
Collapse
|
13
|
Jiang R, Chen H, Xu S. pH excursions impact CHO cell culture performance and antibody N-linked glycosylation. Bioprocess Biosyst Eng 2018; 41:1731-1741. [DOI: 10.1007/s00449-018-1996-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|