1
|
Kim DG, Lee CM, Lee YS, Yoon SH, Kim SY. Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. Int J Mol Sci 2024; 26:216. [PMID: 39796082 PMCID: PMC11720594 DOI: 10.3390/ijms26010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The black soldier fly, Hermetia illucens, is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from H. illucens. Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity. Sequence analysis of the fosmid revealed a novel mannan-degrading gene, ManEM6, composed of 1185 base pairs encoding 394 amino acids, with a deduced 20-amino-acid N-terminal signal peptide sequence. The conceptual translation of ManEM6 exhibited the highest identity (78%) to endo-1,4-β-mannosidase from Dysgonomonas mossii. Phylogenetic and domain analyses indicated that ManEM6 encodes a novel mannanase with a glycoside hydrolase family 26 domain. The recombinant protein rManEM6 showed its highest activity at 40 °C and pH 7.0, and it remained stable in the range of pH 5-10.0. rManEM6 hydrolyzed substrates with β-1,4-glycosidic mannoses, showing maximum enzymatic activity toward locust bean gum galactomannan, while it did not hydrolyze p-nitrophenyl-β-pyranosides, demonstrating endo-form mannosidase activity. rManEM6 was highly stable under stringent conditions, including those of polar organic solvents, as well as reducing and denaturing reagents. Therefore, ManEM6 may be an attractive candidate for the degradation of mannan under high-organic-solvent and protein-denaturing processes in the food and feed industries.
Collapse
Affiliation(s)
- Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Chang-Muk Lee
- Technology Services Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Seok Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Sang-Hong Yoon
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Su-Yeon Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| |
Collapse
|
2
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|
3
|
Sadaqat B, Dar MA, Sha C, Abomohra A, Shao W, Yong YC. Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. World J Microbiol Biotechnol 2024; 40:130. [PMID: 38460032 DOI: 10.1007/s11274-024-03912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
β-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable β-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic β-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.
Collapse
Affiliation(s)
- Beenish Sadaqat
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 22100, Lund, Sweden
| | - Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Chong Sha
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Weilan Shao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| |
Collapse
|
4
|
Gao J, Zheng H, Wang X, Li Y. Characterization of a novel GH26 β-mannanase from Paenibacillus polymyxa and its application in the production of mannooligosaccharides. Enzyme Microb Technol 2023; 165:110197. [PMID: 36680817 DOI: 10.1016/j.enzmictec.2023.110197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
A novel glycoside hydrolase family 26 β-mannanase gene ppman26a was cloned from Paenibacillus polymyxa KF-1. The full-length enzyme PpMan26A and its truncated products CBM35pp (aa 35-328) and PpMan26A-Δ205 (aa 206-656) were overexpressed in Escherichia coli. PpMan26A hydrolyzed locust bean gum, guar gum, konjac gum and ivory nut mannan, with the highest specific activity toward konjac gum. The Km and kcat values for konjac gum were 2.13 mg/mL and 416.66 s-1, respectively. The oligosaccharides fraction obtained from the hydrolysis of konjac gum by PpMan26A was analyzed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometer (MALDI-TOF-MS). The degradation products were mainly mannooligosaccharides with a degree of polymerization of 3-8. CBM35pp exerted strong binding activity toward mannans but without β-mannanase activity. PpMan26A-Δ205, with the deletion of the N-terminal CBM domain, showed lower substrate binding capacity, resulting in reduced enzymatic activity and thermostability. This study complements our understanding of GH26 β-mannanases and expands the potential industrial application of PpMan26A.
Collapse
Affiliation(s)
- Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| | - Haolei Zheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Xiaoqian Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
5
|
Lan Q, Duan Y, Wu P, Li X, Yu Y, Shi B, Zhou J, Lu H. Coordinately express hemicellulolytic enzymes in Kluyveromyces marxianus to improve the saccharification and ethanol production from corncobs. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:220. [PMID: 34809677 PMCID: PMC8607645 DOI: 10.1186/s13068-021-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hemicellulose acts as one factor contributing to the recalcitrance of lignocellulose that prevents cellulases to degrade the cellulose efficiently even in low quantities. Supplement of hemicellulases can enhance the performance of commercial cellulases in the enzymatic hydrolyses of lignocellulose. Kluyveromyce marxianus is an attractive yeast for cellulosic ethanol fermentation, as well as a promising host for heterologous protein production, since it has remarkable thermotolerance, high growth rate, and broad substrate spectrum etc. In this study, we attempted to coordinately express multiple hemicellulases in K. marxianus through a 2A-mediated ribosome skipping to self-cleave polyproteins, and investigated their capabilities for saccharification and ethanol production from corncobs. RESULTS Two polycistronic genes IMPX and IMPαX were constructed to test the self-cleavage of P2A sequence from the Foot-and-Mouth Disease virus (FMDV) in K. marxianus. The IMPX gene consisted of a β-mannanase gene M330 (without the stop codon), a P2A sequence and a β-xylanase gene Xyn-CDBFV in turn. In the IMPαX gene, there was an additional α-factor signal sequence in frame with the N-terminus of Xyn-CDBFV. The extracellular β-mannanase activities of the IMPX and IMPαX strains were 21.34 and 15.50 U/mL, respectively, but the extracellular β-xylanase activity of IMPαX strain was much higher than that of the IMPX strain, which was 136.17 and 42.07 U/mL, respectively. Subsequently, two recombinant strains, the IXPαR and IMPαXPαR, were constructed to coordinately and secretorily express two xylantic enzymes, Xyn-CDBFV and β-D-xylosidase RuXyn1, or three hemicellulolytic enzymes including M330, Xyn-CDBFV and RuXyn1. In fed-batch fermentation, extracellular activities of β-xylanase and β-xylosidase in the IXPαR strain were 1664.2 and 0.90 U/mL. Similarly, the IMPαXPαR strain secreted the three enzymes, β-mannanase, β-xylanase, and β-xylosidase, with the activities of 159.8, 2210.5, and 1.25 U/mL, respectively. Hemicellulolases of both strains enhanced the yields of glucose and xylose from diluted acid pretreated (DAP) corncobs when acted synergistically with commercial cellulases. In hybrid saccharification and fermentation (HSF) of DAP corncobs, hemicellulases of the IMPαXPαR strain increased the ethanol yield by 8.7% at 144 h compared with the control. However, both ethanol and xylose yields were increased by 12.7 and 18.2%, respectively, at 120 h in HSF of aqueous ammonia pretreated (AAP) corncobs with this strain. Our results indicated that coordinate expression of hemicellulolytic enzymes in K. marxianus promoted the saccharification and ethanol production from corncobs. CONCLUSIONS The FMDV P2A sequence showed high efficiency in self-cleavage of polyproteins in K. marxianus and could be used for secretory expression of multiple enzymes in the presence of their signal sequences. The IMPαXPαR strain coexpressed three hemicellulolytic enzymes improved the saccharification and ethanol production from corncobs, and could be used as a promising strain for ethanol production from lignocelluloses.
Collapse
Affiliation(s)
- Qing Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Yitong Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Xueyin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Bo Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China.
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
6
|
Novel Nematode-Killing Protein-1 (Nkp-1) from a Marine Epiphytic Bacterium Pseudoalteromonas tunicata. Biomedicines 2021; 9:biomedicines9111586. [PMID: 34829814 PMCID: PMC8615270 DOI: 10.3390/biomedicines9111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of anti-nematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytes are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising yet underexplored source for anti-nematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce several bioactive compounds. Screening heterologously expressed genomic libraries of P. tunicata against the nematode Caenorhabditis elegans, identified as an E. coli clone (HG8), shows fast-killing activity. Here we show that clone HG8 produces a novel nematode-killing protein-1 (Nkp-1) harbouring a predicted carbohydrate-binding domain with weak homology to known bacterial pore-forming toxins. We found bacteria expressing Nkp-1 were able to colonise the C. elegans intestine, with exposure to both live bacteria and protein extracts resulting in physical damage and necrosis, leading to nematode death within 24 h of exposure. Furthermore, this study revealed C. elegans dar (deformed anal region) and internal hatching may act as a nematode defence strategy against Nkp-1 toxicity. The characterisation of this novel protein and putative mode of action not only contributes to the development of novel anti-nematode applications in the future but reaffirms the potential of marine epiphytic bacteria as a new source of novel biomolecules.
Collapse
|
7
|
Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production. Processes (Basel) 2021. [DOI: 10.3390/pr9091583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To mitigate the current global energy and the environmental crisis, biofuels such as bioethanol have progressively gained attention from both scientific and industrial perspectives. However, at present, commercialized bioethanol is mainly derived from edible crops, thus raising serious concerns given its competition with feed production. For this reason, lignocellulosic biomasses (LCBs) have been recognized as important alternatives for bioethanol production. Because LCBs supply is sustainable, abundant, widespread, and cheap, LCBs-derived bioethanol currently represents one of the most viable solutions to meet the global demand for liquid fuel. However, the cost-effective conversion of LCBs into ethanol remains a challenge and its implementation has been hampered by several bottlenecks that must still be tackled. Among other factors related to the challenging and variable nature of LCBs, we highlight: (i) energy-demanding pretreatments, (ii) expensive hydrolytic enzyme blends, and (iii) the need for microorganisms that can ferment mixed sugars. In this regard, thermophiles represent valuable tools to overcome some of these limitations. Thus, the aim of this review is to provide an overview of the state-of-the-art technologies involved, such as the use of thermophilic enzymes and microorganisms in industrial-relevant conditions, and to propose possible means to implement thermophiles into second-generation ethanol biorefineries that are already in operation.
Collapse
|
8
|
Sadaqat B, Sha C, Rupani PF, Wang H, Zuo W, Shao W. Man/Cel5B, a Bifunctional Enzyme Having the Highest Mannanase Activity in the Hyperthermic Environment. Front Bioeng Biotechnol 2021; 9:637649. [PMID: 33796509 PMCID: PMC8007966 DOI: 10.3389/fbioe.2021.637649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Thermotoga maritima (Tma) contains genes encoding various hyperthermophilic enzymes with great potential for industrial applications. The gene TM1752 in Tma genome has been annotated as cellulase gene encoding protein Cel5B. In this work, the gene TM1752 was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified and characterized. Interestingly, the purified enzyme exhibited specific activities of 416 and 215 U/mg on substrates galactomannan and carboxy methyl cellulose, which is the highest among thermophilic mannanases. However, the putative enzyme did not show sequence homology with any of the previously reported mannanases; therefore, the enzyme Cel5B was identified as bifunctional mannanase and cellulase and renamed as Man/Cel5B. Man/Cel5B exhibited maximum activity at 85°C and pH 5.5. This enzyme retained more than 50% activity after 5 h of incubation at 85°C, and retained up to 80% activity after incubated for 1 h at pH 5–8. The Km and Vmax of Man/Cel5B were observed to be 4.5 mg/mL galactomannan and 769 U/mg, respectively. Thin layer chromatography depicted that locust bean gum could be efficiently degraded to mannobiose, mannotriose, and mannooligosaccharides by Man/Cel5B. These characteristics suggest that Man/Cel5B has attractive applications for future food, feed, and biofuel industries.
Collapse
Affiliation(s)
- Beenish Sadaqat
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chong Sha
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Parveen Fatemeh Rupani
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Hongcheng Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wanbing Zuo
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weilan Shao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Wang NN, Liu J, Li YX, Ma JW, Yan QJ, Jiang ZQ. High-level expression of a glycoside hydrolase family 26 β-mannanase from Aspergillus niger in Pichia pastoris for production of partially hydrolysed fenugreek gum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Karnaouri A, Zerva A, Christakopoulos P, Topakas E. Screening of Recombinant Lignocellulolytic Enzymes Through Rapid Plate Assays. Methods Mol Biol 2021; 2178:479-503. [PMID: 33128767 DOI: 10.1007/978-1-0716-0775-6_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the search for novel biomass-degrading enzymes through mining microbial genomes, it is necessary to apply functional tests during high-throughput screenings, which are capable of detecting enzymatic activities directly by way of plate assay. Using the most efficient expression systems of Escherichia coli and Pichia pastoris, the production of a high amount of His-tagged recombinant proteins could be thrived, allowing the one-step isolation by affinity chromatography. Here, we describe simple and efficient assay techniques for the detection of various biomass-degrading enzymatic activities on agar plates, such as cellulolytic, hemicellulolytic, and ligninolytic activities and their isolation using immobilized-metal affinity chromatography.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
11
|
Dawood A, Ma K. Applications of Microbial β-Mannanases. Front Bioeng Biotechnol 2020; 8:598630. [PMID: 33384989 PMCID: PMC7770148 DOI: 10.3389/fbioe.2020.598630] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Mannans are main components of hemicellulosic fraction of softwoods and they are present widely in plant tissues. β-mannanases are the major mannan-degrading enzymes and are produced by different plants, animals, actinomycetes, fungi, and bacteria. These enzymes can function under conditions of wide range of pH and temperature. Applications of β-mannanases have therefore, been found in different industries such as animal feed, food, biorefinery, textile, detergent, and paper and pulp. This review summarizes the most recent studies reported on potential applications of β-mannanases and bioengineering of β-mannanases to modify and optimize their key catalytic properties to cater to growing demands of commercial sectors.
Collapse
Affiliation(s)
- Aneesa Dawood
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
12
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
13
|
Liu S, Cui T, Song Y. Expression, homology modeling and enzymatic characterization of a new β-mannanase belonging to glycoside hydrolase family 1 from Enterobacter aerogenes B19. Microb Cell Fact 2020; 19:142. [PMID: 32665004 PMCID: PMC7362650 DOI: 10.1186/s12934-020-01399-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND β-mannanase can hydrolyze β-1,4 glycosidic bond of mannan by the manner of endoglycosidase to generate mannan-oligosaccharides. Currently, β-mannanase has been widely applied in food, medicine, textile, paper and petroleum exploitation industries. β-mannanase is widespread in various organisms, however, microorganisms are the main source of β-mannanases. Microbial β-mannanases display wider pH range, temperature range and better thermostability, acid and alkali resistance, and substrate specificity than those from animals and plants. Therefore microbial β-mannanases are highly valued by researchers. Recombinant bacteria constructed by gene engineering and modified by protein engineering have been widely applied to produce β-mannanase, which shows more advantages than traditional microbial fermentation in various aspects. RESULTS A β-mannanase gene (Man1E), which encoded 731 amino acid residues, was cloned from Enterobacter aerogenes. Man1E was classified as Glycoside Hydrolase family 1. The bSiteFinder prediction showed that there were eight essential residues in the catalytic center of Man1E as Trp166, Trp168, Asn229, Glu230, Tyr281, Glu309, Trp341 and Lys374. The catalytic module and carbohydrate binding module (CBM) of Man1E were homologously modeled. Superposition analysis and molecular docking revealed the residues located in the catalytic module of Man1E and the CBM of Man1E. The recombinant enzyme was successfully expressed, purified, and detected about 82.5 kDa by SDS-PAGE. The optimal reaction condition was 55 °C and pH 6.5. The enzyme exhibited high stability below 60 °C, and in the range of pH 3.5-8.5. The β-mannanase activity was activated by low concentration of Co2+, Mn2+, Zn2+, Ba2+ and Ca2+. Man1E showed the highest affinity for Locust bean gum (LBG). The Km and Vmax values for LBG were 3.09 ± 0.16 mg/mL and 909.10 ± 3.85 μmol/(mL min), respectively. CONCLUSIONS A new type of β-mannanase with high activity from E. aerogenes is heterologously expressed and characterized. The enzyme belongs to an unreported β-mannanase family (CH1 family). It displays good pH and temperature features and excellent catalysis capacity for LBG and KGM. This study lays the foundation for future application and molecular modification to improve its catalytic efficiency and substrate specificity.
Collapse
Affiliation(s)
- Siyu Liu
- School of Biological Science and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Tangbing Cui
- School of Biological Science and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Yan Song
- School of Biological Science and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020. [DOI: 10.3390/catal10070743] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The constant depletion of fossil fuels along with the increasing need for novel materials, necessitate the development of alternative routes for polymer synthesis. Lignocellulosic biomass, the most abundant carbon source on the planet, can serve as a renewable starting material for the design of environmentally-friendly processes for the synthesis of polyesters, polyamides and other polymers with significant value. The present review provides an overview of the main processes that have been reported throughout the literature for the production of bio-based monomers from lignocellulose, focusing on physicochemical procedures and biocatalysis. An extensive description of all different stages for the production of furans is presented, starting from physicochemical pretreatment of biomass and biocatalytic decomposition to monomeric sugars, coupled with isomerization by enzymes prior to chemical dehydration by acid Lewis catalysts. A summary of all biotransformations of furans carried out by enzymes is also described, focusing on galactose, glyoxal and aryl-alcohol oxidases, monooxygenases and transaminases for the production of oxidized derivatives and amines. The increased interest in these products in polymer chemistry can lead to a redirection of biomass valorization from second generation biofuels to chemical synthesis, by creating novel pathways to produce bio-based polymers.
Collapse
|
15
|
Liu Z, Ning C, Yuan M, Yang S, Wei X, Xiao M, Fu X, Zhu C, Mou H. High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation. BIORESOURCE TECHNOLOGY 2020; 295:122257. [PMID: 31648129 DOI: 10.1016/j.biortech.2019.122257] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
An engineered thermophilic and acidophilic β-mannanase (ManAK) from Aspergillus kawachii IFO 4308 was highly expressed in Pichia pastoris. Through high cell density fermentation, the maximum yield reached 11,600 U/mL and 15.5 g/L, which is higher than most extreme β-mannanases. The recombinant ManAK was thermostable with a temperature optimum of 80 °C, and acid tolerant with a pH optimum of 2.0. ManAK could efficiently degrade locust bean gum, konjac gum, and guar gum into small molecular mannooligosaccharide (<2000 Da), even at high initial substrate concentration (10%), and displayed different Mw distributions in their end products. Docking analysis demonstrated that the catalytic pocket of ManAK could only accommodate a galactopyranosyl residue in subsite -1, which might be responsible for the distinct hydrolysis product compositions from locust bean gum and guar gum. These superior properties of ManAK strongly facilitate mannooligosaccharide preparation and application in food and feed area.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
16
|
A novel thermophilic β-mannanase with broad-range pH stability from Lichtheimia ramosa and its synergistic effect with α-galactosidase on hydrolyzing palm kernel meal. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Ismail SA, Hassan AA, Emran MA. Economic production of thermo-active endo β-mannanase for the removal of food stain and production of antioxidant manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
dos Santos Gomes AC, Falkoski D, Battaglia E, Peng M, Nicolau de Almeida M, Coconi Linares N, Meijnen JP, Visser J, de Vries RP. Myceliophthora thermophila Xyr1 is predominantly involved in xylan degradation and xylose catabolism. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:220. [PMID: 31534479 PMCID: PMC6745793 DOI: 10.1186/s13068-019-1556-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Myceliophthora thermophila is a thermophilic ascomycete fungus that is used as a producer of enzyme cocktails used in plant biomass saccharification. Further development of this species as an industrial enzyme factory requires a detailed understanding of its regulatory systems driving the production of plant biomass-degrading enzymes. In this study, we analyzed the function of MtXlr1, an ortholog of the (hemi-)cellulolytic regulator XlnR first identified in another industrially relevant fungus, Aspergillus niger. RESULTS The Mtxlr1 gene was deleted and the resulting strain was compared to the wild type using growth profiling and transcriptomics. The deletion strain was unable to grow on xylan and d-xylose, but showed only a small growth reduction on l-arabinose, and grew similar to the wild type on Avicel and cellulose. These results were supported by the transcriptome analyses which revealed reduction of genes encoding xylan-degrading enzymes, enzymes of the pentose catabolic pathway and putative pentose transporters. In contrast, no or minimal effects were observed for the expression of cellulolytic genes. CONCLUSIONS Myceliophthora thermophila MtXlr1 controls the expression of xylanolytic genes and genes involved in pentose transport and catabolism, but has no significant effects on the production of cellulases. It therefore resembles more the role of its ortholog in Neurospora crassa, rather than the broader role described for this regulator in A. niger and Trichoderma reesei. By revealing the range of genes controlled by MtXlr1, our results provide the basic knowledge for targeted strain improvement by overproducing or constitutively activating this regulator, to further improve the biotechnological value of M. thermophila.
Collapse
Affiliation(s)
- Ana Carolina dos Santos Gomes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Daniel Falkoski
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present Address: Novozymes Latin America, Professor Francisco Ribeiro Street 683, Araucária, PR 83707-660 Brazil
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maira Nicolau de Almeida
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- DuPont Industrial Biosciences, Archimedesweg 30, 2333 CN Leiden, The Netherlands
- Present Address: Federal University of São João del Rei, Praça Dom Helvécio, 74, São João del Rei, Minas Gerais Brazil
| | - Nancy Coconi Linares
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jean-Paul Meijnen
- DuPont Industrial Biosciences, Archimedesweg 30, 2333 CN Leiden, The Netherlands
- Present Address: Dutch DNA Biotech BV, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
19
|
Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis. Enzyme Microb Technol 2019; 124:70-78. [DOI: 10.1016/j.enzmictec.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
|
20
|
von Freiesleben P, Moroz OV, Blagova E, Wiemann M, Spodsberg N, Agger JW, Davies GJ, Wilson KS, Stålbrand H, Meyer AS, Krogh KBRM. Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Sci Rep 2019; 9:2266. [PMID: 30783168 PMCID: PMC6381184 DOI: 10.1038/s41598-019-38602-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Endo-β(1 → 4)-mannanases (endomannanases) catalyse degradation of β-mannans, an abundant class of plant polysaccharides. This study investigates structural features and substrate binding of YpenMan26A, a non-CBM carrying endomannanase from Yunnania penicillata. Structural and sequence comparisons to other fungal family GH26 endomannanases showed high sequence similarities and conserved binding residues, indicating that fungal GH26 endomannanases accommodate galactopyranosyl units in the -3 and -2 subsites. Two striking amino acid differences in the active site were found when the YpenMan26A structure was compared to a homology model of Wsp.Man26A from Westerdykella sp. and the sequences of nine other fungal GH26 endomannanases. Two YpenMan26A mutants, W110H and D37T, inspired by differences observed in Wsp.Man26A, produced a shift in how mannopentaose bound across the active site cleft and a decreased affinity for galactose in the -2 subsite, respectively, compared to YpenMan26A. YpenMan26A was moreover found to have a flexible surface loop in the position where PansMan26A from Podospora anserina has an α-helix (α9) which interacts with its family 35 CBM. Sequence alignment inferred that the core structure of fungal GH26 endomannanases differ depending on the natural presence of this type of CBM. These new findings have implications for selecting and optimising these enzymes for galactomannandegradation.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark.,DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga V Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mathias Wiemann
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Jane W Agger
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Anne S Meyer
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
21
|
Aulitto M, Fusco S, Limauro D, Fiorentino G, Bartolucci S, Contursi P. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications. World J Microbiol Biotechnol 2019; 35:32. [DOI: 10.1007/s11274-019-2591-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
|
22
|
Katsimpouras C, Dedes G, Bistis P, Kekos D, Kalogiannis KG, Topakas E. Acetone/water oxidation of corn stover for the production of bioethanol and prebiotic oligosaccharides. BIORESOURCE TECHNOLOGY 2018; 270:208-215. [PMID: 30218937 DOI: 10.1016/j.biortech.2018.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Ethanol production at high-gravity promise to achieve concentrations over the threshold for an economical distillation process and concurrently reduce water consumption. However, a persisting limitation is the poor mass transfer conditions resulting in low ethanol yields and concentrations. Hereby, the combination of an acetone/water oxidation pretreatment process (AWO) with a liquefaction/saccharification step, using a free-fall mixer, before simultaneous saccharification and fermentation (SSF) can realize ethanol concentrations of up to ca. 74 g/L at a solids content of 20 wt%. The free-fall mixer achieved a biomass slurry viscosity reduction by 87% after only 2 h of enzymatic saccharification, indicating the efficiency of the mixing system. Furthermore, the direct enzymatic treatment of AWO pretreated corn stover (CS) by a GH11 recombinant xylanase, led to the production of xylooligosaccharides (XOS) with prebiotic potential and the removal of insoluble fibers of hemicellulose improved the glucose release of AWOCS by 22%.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Grigorios Dedes
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Perrakis Bistis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Dimitrios Kekos
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Konstantinos G Kalogiannis
- Chemical Process and Energy Resources Institute (CPERI), CERTH, 6(th) km Harilaou-Thermi Road, 57001, Thermi, Thessaloniki, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece; Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
23
|
Wang XC, You SP, Zhang JX, Dai YM, Zhang CY, Qi W, Dou TY, Su RX, He ZM. Rational design of a thermophilic β-mannanase fromBacillus subtilis TJ-102 to improve its thermostability. Enzyme Microb Technol 2018; 118:50-56. [DOI: 10.1016/j.enzmictec.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
|
24
|
Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2018; 268:308-314. [PMID: 30092484 DOI: 10.1016/j.biortech.2018.07.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
A multi-tolerant β-mannanase (ManAo) was produced by Aspergillus oryzae on copra meal, a low-cost agro waste. Under statistically optimized conditions, 4.3-fold increase in β-mannanase production (434 U/gds) was obtained. Purified ManAo had MW ∼34 kDa and specific activity of 335.85 U/mg with optimum activity at 60 °C and at pH 5.0. Activity of ManAo was enhanced by most metal ions and modulators while maximum enhancement was noticed with Ag+ and Triton X-100. Km and Vmax were 2.7 mg/mL and 1388.8 µmol/min/mg for locust bean gum while the enzyme showed lower affinity towards konjac gum (8.8 mg/mL, 555.5 µmol/min/mg). Evaluation of various thermodynamic parameters indicated high-efficiency of the ManAo with activation energy 12.42 KJ/mol and 23.31 KJ/mol towards LBG and konjac gum, respectively. End product analysis of β-mannanase action by fluorescence assisted carbohydrate electrophoresis (FACE) revealed the generation of sugars from DP 1-4 with some higher DP MOS from different mannans.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Hemant Soni
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
25
|
Song J, Kim SY, Kim DH, Lee YS, Sim JS, Hahn BS, Lee CM. Characterization of an inhibitor-resistant endo-1,4-β-mannanase from the gut microflora metagenome of Hermetia illucens. Biotechnol Lett 2018; 40:1377-1387. [DOI: 10.1007/s10529-018-2596-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
|
26
|
von Freiesleben P, Spodsberg N, Stenbæk A, Stålbrand H, Krogh KBRM, Meyer AS. Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:194. [PMID: 30026809 PMCID: PMC6048861 DOI: 10.1186/s13068-018-1184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Softwood is a promising feedstock for lignocellulosic biorefineries, but as it contains galactoglucomannan efficient mannan-degrading enzymes are required to unlock its full potential. RESULTS Boosting of the saccharification of pretreated softwood (Canadian lodgepole pine) was investigated for 10 fungal endo-β(1→4)-mannanases (endomannanases) from GH5 and GH26, including 6 novel GH26 enzymes. The endomannanases from Trichoderma reesei (TresMan5A) and Podospora anserina (PansMan26) were investigated with and without their carbohydrate-binding module (CBM). The pH optimum and initial rates of enzyme catalysed hydrolysis were determined on pure β-mannans, including acetylated and deacetylated spruce galactoglucomannan. Melting temperature (Tm) and stability of the endomannanases during prolonged incubations were also assessed. The highest initial rates on the pure mannans were attained by GH26 endomannanases. Acetylation tended to decrease the enzymatic rates to different extents depending on the enzyme. Despite exhibiting low rates on the pure mannan substrates, TresMan5A with CBM1 catalysed highest release among the endomannanases of both mannose and glucose during softwood saccharification. The presence of the CBM1 as well as the catalytic capability of the TresMan5A core module itself seemed to allow fast and more profound degradation of portions of the mannan that led to better cellulose degradation. In contrast, the presence of the CBM35 did not change the performance of PansMan26 in softwood saccharification. CONCLUSIONS This study identified TresMan5A as the best endomannanase for increasing cellulase catalysed glucose release from softwood. Except for the superior performance of TresMan5A, the fungal GH5 and GH26 endomannanases generally performed on par on the lignocellulosic matrix. The work also illustrated the importance of using genuine lignocellulosic substrates rather than simple model substrates when selecting enzymes for industrial biomass applications.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| | | | - Anne Stenbæk
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | - Anne S. Meyer
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Li YX, Yi P, Liu J, Yan QJ, Jiang ZQ. High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. BIORESOURCE TECHNOLOGY 2018; 256:30-37. [PMID: 29428611 DOI: 10.1016/j.biortech.2018.01.138] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
An engineered β-mannanase (mRmMan5A) from Rhizomucor miehei was successfully expressed in Pichia pastoris. Through high cell density fermentation, the expression level of mRmMan5A reached 79,680 U mL-1. The mRmMan5A showed maximum activity at pH 4.5 and 65 °C, and exhibited high specific activities towards mannans. To produce manno-oligosaccharides, palm kernel cake (PKC) was pretreated by steam explosion at 200 °C for 7.5 min, and then hydrolyzed by mRmMan5A. As a result, the total manno-oligosaccharide yield reached 34.8 g/100 g dry PKC, indicating that 80.6% of total mannan in PKC was hydrolyzed. Moreover, the kilo-scale production of manno-oligosaccharides was carried out to verify the feasibility of mass production. A total of 261.3 g manno-oligosaccharides were produced from 1.0 kg of dry PKC. An effective β-mannanase for the bioconversion of mannan-rich biomasses and an efficient method for the production of manno-oligosaccharides from PKC are provided in this paper.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Ping Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China.
| | - Zheng-Qiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China.
| |
Collapse
|
28
|
Trp residue at subsite − 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut. Appl Microbiol Biotechnol 2018; 102:1737-1747. [DOI: 10.1007/s00253-017-8726-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
29
|
Secretome profiling reveals temperature-dependent growth of Aspergillus fumigatus. SCIENCE CHINA-LIFE SCIENCES 2017; 61:578-592. [PMID: 29067645 DOI: 10.1007/s11427-017-9168-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteases in the secretome revealed the strong capability of A. fumigatus to degrade plant biomass and protein substrates. In total, 129 pathogenesis-related proteins detected in the secretome were strongly correlated with glycoside hydrolases and proteases. The variety and abundance of proteins remained at temperatures of 34°C-45°C. The percentage of endo-1,4-xylanase increased when the temperature was lowered to 20°C, while the percentage of cellobiohydrolase increased as temperature was increased, suggesting that the strain obtains carbon mainly by degrading xylan and cellulose, and the main types of proteases in the secretome were aminopeptidases and carboxypeptidases. Only half of the proteins were retained and their abundance declined to 9.7% at 55°C. The activities of the remaining β-glycosidases and proteases were merely 35% and 24%, respectively, when the secretome was treated at 60°C for 2 h. Therefore, temperatures >60°C restrict the growth of A. fumigatus.
Collapse
|
30
|
Li YX, Yi P, Yan QJ, Qin Z, Liu XQ, Jiang ZQ. Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:143. [PMID: 28588644 PMCID: PMC5457547 DOI: 10.1186/s13068-017-0833-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND β-Mannanase randomly cleaves the β-1,4-linked mannan backbone of hemicellulose, which plays the most important role in the enzymatic degradation of mannan. Although the industrial applications of β-mannanase have tremendously expanded in recent years, the wild-type β-mannanases are still defective for some industries. The glycoside hydrolase (GH) family 5 β-mannanase (RmMan5A) from Rhizomucor miehei shows many outstanding properties, such as high specific activity and hydrolysis property. However, owing to the low catalytic activity in acidic and thermophilic conditions, the application of RmMan5A to the biorefinery of mannan biomasses is severely limited. RESULTS To overcome the limitation, RmMan5A was successfully engineered by directed evolution. Through two rounds of screening, a mutated β-mannanase (mRmMan5A) with high catalytic activity in acidic and thermophilic conditions was obtained, and then characterized. The mutant displayed maximal activity at pH 4.5 and 65 °C, corresponding to acidic shift of 2.5 units in optimal pH and increase by 10 °C in optimal temperature. The catalytic efficiencies (kcat/Km) of mRmMan5A towards many mannan substrates were enhanced more than threefold in acidic and thermophilic conditions. Meanwhile, the high specific activity and excellent hydrolysis property of RmMan5A were inherited by the mutant mRmMan5A after directed evolution. According to the result of sequence analysis, three amino acid residues were substituted in mRmMan5A, namely Tyr233His, Lys264Met, and Asn343Ser. To identify the function of each substitution, four site-directed mutations (Tyr233His, Lys264Met, Asn343Ser, and Tyr233His/Lys264Met) were subsequently generated, and the substitutions at Tyr233 and Lys264 were found to be the main reason for the changes of mRmMan5A. CONCLUSIONS Through directed evolution of RmMan5A, two key amino acid residues that controlled its catalytic efficiency under acidic and thermophilic conditions were identified. Information about the structure-function relationship of GH family 5 β-mannanase was acquired, which could be used for modifying β-mannanases to enhance the feasibility in industrial application, especially in biorefinery process. This is the first report on a β-mannanase from zygomycete engineered by directed evolution.
Collapse
Affiliation(s)
- Yan-xiao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083 China
| | - Ping Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083 China
| | - Qiao-juan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083 China
| | - Zhen Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue-qiang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083 China
| | - Zheng-qiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Jia D, Wang B, Li X, Peng W, Zhou J, Tan H, Tang J, Huang Z, Tan W, Gan B, Yang Z, Zhao J. Proteomic Analysis Revealed the Fruiting-Body Protein Profile of Auricularia polytricha. Curr Microbiol 2017; 74:943-951. [DOI: 10.1007/s00284-017-1268-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
|
32
|
Acylation of soluble polysaccharides in a biphasic system catalyzed by a CE2 acetyl esterase. Carbohydr Polym 2017; 163:208-215. [DOI: 10.1016/j.carbpol.2017.01.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 11/15/2022]
|