1
|
Zhu P, Zhang C, Chen J, Zeng X. Multilevel systemic engineering of Bacillus licheniformis for efficient production of acetoin from lignocellulosic hydrolysates. Int J Biol Macromol 2024; 279:135142. [PMID: 39208901 DOI: 10.1016/j.ijbiomac.2024.135142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bio-refining lignocellulosic resource offers a renewable and sustainable approach for producing biofuels and biochemicals. However, the conversion efficiency of lignocellulosic resource is still challenging due to the intrinsic inefficiency in co-utilization of xylose and glucose. In this study, the industrial bacterium Bacillus licheniformis was engineered for biorefining lignocellulosic resource to produce acetoin. First, adaptive evolution was conducted to improve acetoin tolerance, leading to a 19.6 % increase in acetoin production. Then, ARTP mutagenesis and 60Co-γ irradiation was carried out to enhance the production of acetoin, obtaining 73.0 g/L acetoin from glucose. Further, xylose uptake and xylose utilization pathway were rewired to facilitate the co-utilization of xylose and glucose, enabling the production of 60.6 g/L acetoin from glucose and xylose mixtures. Finally, this efficient cell factory was utilized for acetoin production from lignocellulosic hydrolysates with the highest titer of 68.3 g/L in fed-batch fermentation. This strategy described here holds great applied potential in the biorefinery of lignocellulose for the efficient synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Pan Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jiaying Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Yatabe F, Seike T, Okahashi N, Ishii J, Matsuda F. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting. Microb Cell Fact 2023; 22:204. [PMID: 37807050 PMCID: PMC10560415 DOI: 10.1186/s12934-023-02221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.
Collapse
Affiliation(s)
- Futa Yatabe
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisuke Seike
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Wichmann J, Behrendt G, Boecker S, Klamt S. Characterizing and utilizing oxygen-dependent promoters for efficient dynamic metabolic engineering. Metab Eng 2023; 77:199-207. [PMID: 37054967 DOI: 10.1016/j.ymben.2023.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Promoters adjust cellular gene expression in response to internal or external signals and are key elements for implementing dynamic metabolic engineering concepts in fermentation processes. One useful signal is the dissolved oxygen content of the culture medium, since production phases often proceed in anaerobic conditions. Although several oxygen-dependent promoters have been described, a comprehensive and comparative study is missing. The goal of this work is to systematically test and characterize 15 promoter candidates that have been previously reported to be induced upon oxygen depletion in Escherichia coli. For this purpose, we developed a microtiter plate-level screening using an algal oxygen-independent flavin-based fluorescent protein and additionally employed flow cytometry analysis for verification. Various expression levels and dynamic ranges could be observed, and six promoters (nar-strong, nar-medium, nar-weak, nirB-m, yfiD-m, and fnrF8) appear particularly suited for dynamic metabolic engineering applications. We demonstrate applicability of these candidates for dynamic induction of enforced ATP wasting, a metabolic engineering approach to increase productivity of microbial strains that requires a narrow level of ATPase expression for optimal function. The selected candidates exhibited sufficient tightness under aerobic conditions while, under complete anaerobiosis, driving expression of the cytosolic F1-subunit of the ATPase from E. coli to levels that resulted in unprecedented specific glucose uptake rates. We finally utilized the nirB-m promoter to demonstrate the optimization of a two-stage lactate production process by dynamically enforcing ATP wasting, which is automatically turned on in the anaerobic (growth-arrested) production phase to boost the volumetric productivity. Our results are valuable for implementing metabolic control and bioprocess design concepts that use oxygen as signal for regulation and induction.
Collapse
Affiliation(s)
- Julian Wichmann
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Gerrich Behrendt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
4
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Zeng H, Hu W, Liu G, Xu H, Wei Y, Zhang J, Shi H. Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:66-74. [PMID: 34971956 DOI: 10.1016/j.plaphy.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The phyllosphere is one of the most abundant habitats for global microbiota. The ionome is the composition of mineral elements in plants. The correlation between phyllosphere microbiota and the ionome remains elusive in plants, especially in the most important tropical crop cassava. In this study, microbiome-wide association studies (MWASs) of thirty varieties were performed to reveal the association between phyllosphere microbiota and ionomic variations in cassava. Annotation of metagenomic species identified some species that were significantly correlated with ionomic variations in cassava. Among them, Lactococcus lactis abundance was negatively associated with leaf aluminium (Al) levels but positively related to leaf potassium (K) levels. Notably, both the reference and isolated L. lactis showed strong binding capacity to Al. Further bacterial transplantation of isolated L. lactis could significantly decrease endogenous Al levels but increase K levels in cassava, and it can also lead to increased citric acid and lactic acid levels as well as higher transcript levels of K uptake-related genes. Taken together, this study reveals the involvement of phyllosphere microbiota in ionomic variation in cassava, and the correlation between L. lactis abundance and Al and K levels provides novel insights into alleviating Al accumulation and promoting K uptake simultaneously.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan province, 571101, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan province, 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China.
| |
Collapse
|
6
|
Espinel‐Ríos S, Bettenbrock K, Klamt S, Findeisen R. Maximizing batch fermentation efficiency by constrained model‐based optimization and predictive control of adenosine triphosphate turnover. AIChE J 2022. [DOI: 10.1002/aic.17555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sebastián Espinel‐Ríos
- Laboratory for Systems Theory and Automatic Control Otto von Guericke University Magdeburg Germany
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Katja Bettenbrock
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
- Technische Universität Darmstadt Darmstadt Germany
| | - Rolf Findeisen
- Laboratory for Systems Theory and Automatic Control Otto von Guericke University Magdeburg Germany
- Control and Cyber‐Physical Systems Laboratory Technical University of Darmstadt Darmstadt Germany
| |
Collapse
|
7
|
Boecker S, Slaviero G, Schramm T, Szymanski W, Steuer R, Link H, Klamt S. Deciphering the physiological response of Escherichia coli under high ATP demand. Mol Syst Biol 2021; 17:e10504. [PMID: 34928538 PMCID: PMC8686765 DOI: 10.15252/msb.202110504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
One long-standing question in microbiology is how microbes buffer perturbations in energy metabolism. In this study, we systematically analyzed the impact of different levels of ATP demand in Escherichia coli under various conditions (aerobic and anaerobic, with and without cell growth). One key finding is that, under all conditions tested, the glucose uptake increases with rising ATP demand, but only to a critical level beyond which it drops markedly, even below wild-type levels. Focusing on anaerobic growth and using metabolomics and proteomics data in combination with a kinetic model, we show that this biphasic behavior is induced by the dual dependency of the phosphofructokinase on ATP (substrate) and ADP (allosteric activator). This mechanism buffers increased ATP demands by a higher glycolytic flux but, as shown herein, it collapses under very low ATP concentrations. Model analysis also revealed two major rate-controlling steps in the glycolysis under high ATP demand, which could be confirmed experimentally. Our results provide new insights on fundamental mechanisms of bacterial energy metabolism and guide the rational engineering of highly productive cell factories.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological NetworksMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Giulia Slaviero
- Analysis and Redesign of Biological NetworksMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Thorben Schramm
- Dynamic Control of Metabolic NetworksMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Witold Szymanski
- Core Facility for Mass Spectrometry and ProteomicsMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Ralf Steuer
- Institute for BiologyHumboldt‐University of BerlinBerlinGermany
| | - Hannes Link
- Dynamic Control of Metabolic NetworksMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Steffen Klamt
- Analysis and Redesign of Biological NetworksMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
8
|
Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0107921. [PMID: 34613757 PMCID: PMC8612267 DOI: 10.1128/aem.01079-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acetoin, 3-hydroxyl,2-butanone, is extensively used as a flavor additive in food products. This volatile compound is produced by the dairy bacterium Lactococcus lactis when aerobic respiration is activated by haem addition, and comprises ∼70% of carbohydrate degradation products. Here we investigate the targets of acetoin toxicity, and determine how acetoin impacts L. lactis physiology and survival. Acetoin caused damage to DNA and proteins, which related to reactivity of its keto group. Acetoin stress was reflected in proteome profiles, which revealed changes in lipid metabolic proteins. Acetoin provoked marked changes in fatty acid composition, with massive accumulation of cycC19:0 cyclopropane fatty acid at the expense of its unsaturated C18:1 fatty acid precursor. Deletion of the cfa gene, encoding the cycC19:0 synthase, sensitized cells to acetoin stress. Acetoin-resistant transposon mutagenesis revealed a hot spot in the high affinity phosphate transporter operon pstABCDEF, which is known to increase resistance to multiple stresses. This work reveals the causes and consequences of acetoin stress on L. lactis, and may facilitate control of lactic acid bacteria production in technological processes. IMPORTANCE Acetoin, 3-hydroxyl,2-butanone, has diverse uses in chemical industry, agriculture, and dairy industries as a volatile compound that generates aromas. In bacteria, it can be produced in high amount by Lactococcus lactis when it grows under aerobic respiration. However, acetoin production can be toxic and detrimental for growth and/or survival. Our results showed that it damages DNA and proteins via its keto group. We also showed that acetoin modifies membrane fatty acid composition with the production of cyclopropane C19:0 fatty acid at the expense of an unsaturated C18:1. We isolated mutants more resistant to acetoin than the wild-type strain. All of them mapped to a single locus pstABCDEF operon, suggesting a simple means to limit acetoin toxicity in dairy bacteria and to improve its production.
Collapse
|
9
|
Liu JM, Chen L, Jensen PR, Solem C. Food grade microbial synthesis of the butter aroma compound butanedione using engineered and non-engineered Lactococcus lactis. Metab Eng 2021; 67:443-452. [PMID: 34438072 DOI: 10.1016/j.ymben.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
The design-build-test-learn (DBTL) cycle has been implemented in metabolic engineering processes for optimizing the production of valuable compounds, including food ingredients. However, the use of recombinant microorganisms for producing food ingredients is associated with different challenges, e.g., in the EU, a content of more than 0.9% of such ingredients requires to be labeled. Therefore, we propose to expand the DBTL cycle and use the "learn" module to guide the development of non-engineered strains for clean label production. Here, we demonstrate how this approach can be used to generate engineered and natural cell factories able to produce the valuable food flavor compound - butanedione (diacetyl). Through comprehensive rerouting of the metabolism of Lactococcus lactis MG1363 and re-installment of the capacity to metabolize lactose and dairy protein, we managed to achieve a high titer of diacetyl (6.7 g/L) in pure dairy waste. Based on learnings from the engineering efforts, we successfully achieved the production of diacetyl without using recombinant DNA technology. We accomplish the latter by process optimization and by relying on high-throughput screening using a microfluidic system. Our results demonstrate the great potential that lies in combining metabolic engineering and natural approaches for achieving efficient production of food ingredients.
Collapse
Affiliation(s)
- Jian-Ming Liu
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Lin Chen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Peter Ruhdal Jensen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Christian Solem
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
10
|
Schneider P, Mahadevan R, Klamt S. Systematizing the different notions of growth-coupled product synthesis and a single framework for computing corresponding strain designs. Biotechnol J 2021; 16:e2100236. [PMID: 34432943 DOI: 10.1002/biot.202100236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/08/2022]
Abstract
A widely used design principle for metabolic engineering of microorganisms aims to introduce interventions that enforce growth-coupled product synthesis such that the product of interest becomes a (mandatory) by-product of growth. However, different variants and partially contradicting notions of growth-coupled production (GCP) exist. Herein, we propose an ontology for the different degrees of GCP and clarify their relationships. Ordered by coupling degree, we distinguish four major classes: potentially, weakly, and directionally growth-coupled production (pGCP, wGCP, dGCP) as well as substrate-uptake coupled production (SUCP). We then extend the framework of Minimal Cut Sets (MCS), previously used to compute dGCP and SUCP strain designs, to allow inclusion of implicit optimality constraints, a feature required to compute pGCP and wGCP designs. This extension closes the gap between MCS-based and bilevel-based strain design approaches and enables computation (and comparison) of designs for all GCP classes within a single framework. By computing GCP strain designs for a range of products, we illustrate the hierarchical relationships between the different coupling degrees. We find that feasibility of coupling is not affected by the chosen GCP degree and that strongest coupling (SUCP) requires often only one or two more interventions than wGCP and dGCP. Finally, we show that the principle of coupling can be generalized to couple product synthesis with other cellular functions than growth, for example, with net ATP formation. This work provides important theoretical results and algorithmic developments and a unified terminology for computational strain design based on GCP.
Collapse
Affiliation(s)
- Philipp Schneider
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
11
|
Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0077921. [PMID: 34105983 DOI: 10.1128/aem.00779-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis has great potential for high-yield production of mannitol, which has not yet been fully realized. In this study, we characterize how the mannitol genes in L. lactis are organized and regulated and use this information to establish efficient mannitol production. Although the organization of the mannitol genes in L. lactis was similar to that in other Gram-positive bacteria, mtlF and mtlD, encoding the enzyme IIA component (EIIAmtl) of the mannitol phosphotransferase system (PTS) and the mannitol-1-phosphate dehydrogenase, respectively, were separated by a transcriptional terminator, and the mannitol genes were found to be organized in two transcriptional units: an operon comprising mtlA, encoding the enzyme IIBC component (EIIBCmtl) of the mannitol PTS, mtlR, encoding a transcriptional activator, and mtlF, as well as a separately expressed mtlD gene. The promoters driving expression of the two transcriptional units were somewhat similar, and both contained predicted catabolite responsive element (cre) genes. The presence of carbon catabolite repression was demonstrated and was shown to be relieved in stationary-phase cells. The transcriptional activator MtlR (mtlR), in some Gram-positive bacteria, is repressed by phosphorylation by EIIAmtl, and when we knocked out mtlF, we indeed observed enhanced expression from the two promoters, which indicated that this mechanism was in place. Finally, by overexpressing the mtlD gene and using stationary-phase cells as biocatalysts, we attained 10.1 g/liter mannitol with a 55% yield, which, to the best of our knowledge, is the highest titer ever reported for L. lactis. Summing up, the results of our study should be useful for improving the mannitol-producing capacity of this important industrial organism. IMPORTANCE Lactococcus lactis is the most studied species of the lactic acid bacteria, and it is widely used in various food fermentations. To date, there have been several attempts to persuade L. lactis to produce mannitol, a sugar alcohol with important therapeutic and food applications. Until now, to achieve mannitol production in L. lactis with significant titer and yield, it has been necessary to introduce and express foreign genes, which precludes the use of such strains in foods, due to their recombinant status. In this study, we systematically characterize how the mannitol genes in L. lactis are regulated and demonstrate how this impacts mannitol production capability. We harnessed this information and managed to establish efficient mannitol production without introducing foreign genes.
Collapse
|
12
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Lactic acid bacteria: little helpers for many human tasks. Essays Biochem 2021; 65:163-171. [PMID: 33739395 DOI: 10.1042/ebc20200133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) are a group of highly specialised bacteria specifically adapted to a diverse range of habitats. They are found in the gut of humans and other animals, in many food fermentations, and on plants. Their natural specialisation in close relation to human activities make them particularly interesting from an industrial point of view. They are relevant not only for traditional food fermentations, but also as probiotics, potential therapeutics and cell factories for the production of many different products. Many new tools and methods are being developed to analyse and modify these microorganisms. This review shall give an overview highlighting some of the most striking characteristics of lactic acid bacteria and our approaches to harness their potential in many respects - from home made food to industrial chemical production, from probiotic activities to the most modern cancer treatments and vaccines.
Collapse
|
14
|
Boecker S, Harder BJ, Kutscha R, Pflügl S, Klamt S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microb Cell Fact 2021; 20:63. [PMID: 33750397 PMCID: PMC7941745 DOI: 10.1186/s12934-021-01554-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background The alcohol 2,3-butanediol (2,3-BDO) is an important chemical and an Escherichia coli producer strain was recently engineered for bio-based production of 2,3-BDO. However, further improvements are required for realistic applications. Results Here we report that enforced ATP wasting, implemented by overexpressing the genes of the ATP-hydrolyzing F1-part of the ATPase, leads to significant increases of yield and especially of productivity of 2,3-BDO synthesis in an E. coli producer strain under various cultivation conditions. We studied aerobic and microaerobic conditions as well as growth-coupled and growth-decoupled production scenarios. In all these cases, the specific substrate uptake and 2,3-BDO synthesis rate (up to sixfold and tenfold higher, respectively) were markedly improved in the ATPase strain compared to a control strain. However, aerobic conditions generally enable higher productivities only with reduced 2,3-BDO yields while high product yields under microaerobic conditions are accompanied with low productivities. Based on these findings we finally designed and validated a three-stage process for optimal conversion of glucose to 2,3-BDO, which enables a high productivity in combination with relatively high yield. The ATPase strain showed again superior performance and finished the process twice as fast as the control strain and with higher 2,3-BDO yield. Conclusions Our results demonstrate the high potential of enforced ATP wasting as a generic metabolic engineering strategy and we expect more applications to come in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01554-x.
Collapse
Affiliation(s)
- Simon Boecker
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Björn-Johannes Harder
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Regina Kutscha
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany.
| |
Collapse
|
15
|
Suo F, Liu J, Chen J, Li X, Solem C, Jensen PR. Efficient Production of Pyruvate Using Metabolically Engineered Lactococcus lactis. Front Bioeng Biotechnol 2021; 8:611701. [PMID: 33490054 PMCID: PMC7815928 DOI: 10.3389/fbioe.2020.611701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial production of commodity chemicals has gained increasing attention and most of the focus has been on reducing the production cost. Selecting a suitable microorganism, which can grow rapidly on cheap feedstocks, is of key importance when developing an economically feasible bioprocess. We chose Lactococcus lactis, a well-characterized lactic acid bacterium, as our microbial host to produce pyruvate, which is a commodity chemical with various important applications. Here we report the engineering of Lactococcus lactis into becoming an efficient microbial platform for producing pyruvate. The strain obtained, FS1076 (MG1363 Δ3 ldh Δpta ΔadhE Δals), was able to produce pyruvate as the sole product. Since all the competitive pathways had been knocked out, we achieved growth-coupled production of pyruvate with high yield. More than 80 percent of the carbon flux was directed toward pyruvate, and a final titer of 54.6 g/L was obtained using a fed-batch fermentation setup. By introducing lactose catabolism into FS1076, we obtained the strain FS1080, which was able to generate pyruvate from lactose. We then demonstrated the potential of FS1080 for valorizing lactose contained in dairy side-streams, by achieving a high titer (40.1 g/L) and high yield (78.6%) of pyruvate using residual whey permeate (RWP) as substrate. The results obtained, show that the L. lactis platform is well-suited for transforming lactose in dairy waste into food-grade pyruvate, and the yields obtained are the highest reported in the literature. These results demonstrate that it is possible to achieve sustainable bioconversion of waste products from the dairy industry (RWP) to valuable products.
Collapse
Affiliation(s)
- Fan Suo
- Division of Production and Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jianming Liu
- Division of Production and Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jun Chen
- Division of Production and Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Xuanji Li
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Solem
- Division of Production and Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Peter R. Jensen
- Division of Production and Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
16
|
Shen J, Chen J, Solem C, Jensen PR, Liu JM. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors. Appl Environ Microbiol 2020; 86:e02114-20. [PMID: 33036990 PMCID: PMC7688235 DOI: 10.1128/aem.02114-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/22/2023] Open
Abstract
Identifying and overcoming the limitations preventing efficient high-yield production of chemicals remain important tasks in metabolic engineering. In an attempt to rewire Corynebacterium glutamicum to produce ethanol, we attained a low yield (63% of the theoretical) when using resting cells on glucose, and large amounts of succinate and acetate were formed. To prevent the by-product formation, we knocked out the malate dehydrogenase and replaced the native E3 subunit of the pyruvate dehydrogenase complex (PDHc) with that from Escherichia coli, which is active only under aerobic conditions. However, this tampering resulted in a 10-times-reduced glycolytic flux as well as a greatly increased NADH/NAD+ ratio. When we replaced glucose with fructose, we found that the glycolytic flux was greatly enhanced, which led us to speculate whether the source of reducing power could be the pentose phosphate pathway (PPP) that is bypassed when fructose is metabolized. Indeed, after shutting down the PPP by deleting the zwf gene, encoding glucose-6-phosphate dehydrogenase, the ethanol yield on glucose increased significantly, to 92% of the theoretical. Based on that, we managed to rechannel the metabolism of C. glutamicum into d-lactate with high yield, 98%, which is the highest that has been reported. It is further demonstrated that the PPP-inactivated platform strain can offer high-yield production of valuable chemicals using lactose contained in dairy waste as feedstock, which paves a promising way for potentially turning dairy waste into a valuable product.IMPORTANCE The widely used industrial workhorse C. glutamicum possesses a complex anaerobic metabolism under nongrowing conditions, and we demonstrate here that the PPP in resting C. glutamicum is a source of reducing power that can interfere with otherwise redox-balanced metabolic pathways and reduce yields of desired products. By harnessing this physiological insight, we employed the PPP-inactivated platform strains to produce ethanol, d-lactate, and alanine using the dairy waste whey permeate as the feedstock. The production yield was high, and our results show that inactivation of the PPP flux in resting cells is a promising strategy when the aim is to use nongrowing C. glutamicum cells for producing valuable compounds. Overall, we describe the benefits of disrupting the oxidative PPP in nongrowing C. glutamicum and provide a feasible approach toward waste valorization.
Collapse
Affiliation(s)
- Jing Shen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jun Chen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jian-Ming Liu
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Zahoor A, Messerschmidt K, Boecker S, Klamt S. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:185. [PMID: 33292464 PMCID: PMC7654063 DOI: 10.1186/s13068-020-01822-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/23/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Enforced ATP wasting has been recognized as a promising metabolic engineering strategy to enhance the microbial production of metabolites that are coupled to ATP generation. It also appears to be a suitable approach to improve production of ethanol by Saccharomyces cerevisiae. In the present study, we constructed different S. cerevisiae strains with heterologous expression of genes of the ATP-hydrolyzing F1-part of the ATPase enzyme to induce enforced ATP wasting and quantify the resulting effect on biomass and ethanol formation. RESULTS In contrast to genomic integration, we found that episomal expression of the αβγ subunits of the F1-ATPase genes of Escherichia coli in S. cerevisiae resulted in significantly increased ATPase activity, while neither genomic integration nor episomal expression of the β subunit from Trichoderma reesei could enhance ATPase activity. When grown in minimal medium under anaerobic growth-coupled conditions, the strains expressing E. coli's F1-ATPase genes showed significantly improved ethanol yield (increase of 10% compared to the control strain). However, elevated product formation reduces biomass formation and, therefore, volumetric productivity. We demonstrate that this negative effect can be overcome under growth-decoupled (nitrogen-starved) operation with high and constant biomass concentration. Under these conditions, which mimic the second (production) phase of a two-stage fermentation process, the ATPase-expressing strains showed significant improvement in volumetric productivity (up to 111%) compared to the control strain. CONCLUSIONS Our study shows that expression of genes of the F1-portion of E. coli's ATPase induces ATPase activity in S. cerevisiae and can be a promising way to improve ethanol production. This ATP-wasting strategy can be easily applied to other metabolites of interest, whose formation is coupled to ATP generation.
Collapse
Affiliation(s)
- Ahmed Zahoor
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Katrin Messerschmidt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| |
Collapse
|
18
|
Man Z, Guo J, Zhang Y, Cai Z. Regulation of intracellular ATP supply and its application in industrial biotechnology. Crit Rev Biotechnol 2020; 40:1151-1162. [PMID: 32862717 DOI: 10.1080/07388551.2020.1813071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient cell factories are the core of industrial biotechnology. In recent years, synthetic biology develops rapidly, and more and more modified microbial cell factories are employed in industrial biotechnology. ATP plays vital roles in biosynthesis, metabolism regulation, and cellular maintenance. Regulating cellular ATP supply can effectively modify cellular metabolism. This paper presents a review of recent studies on the regulation of the intracellular ATP supply and its application in industrial biotechnology. Detailed strategies for regulating the ATP supply and the resulting impact on bioproduction are introduced. It is observed that regulating the cellular ATP supply can provide great possibilities for making microbial cells into efficient factories. Future perspectives for further understanding the function of ATP are also discussed.
Collapse
Affiliation(s)
- Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang, China
| | - Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Yingyang Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, China.,School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| |
Collapse
|
19
|
Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. BIORESOURCE TECHNOLOGY 2020; 309:123307. [PMID: 32315913 DOI: 10.1016/j.biortech.2020.123307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The biotransformation of phytosterol to androstenedione (AD) by mycobacteria is a unique process accompanied by energy-producing. However, high intracellular ATP content can severely inhibit the efficient production of AD. In this study, a novel citrate-based ATP futile cycle (AFC) and pyruvate-based AFC were constructed for the first time. Application of AFCs reduced intracellular ATP and propionyl-CoA levels and increased NAD+/NADH ratios and cell viability. The forced consumption of ATP promotes the transcription of critical genes in propionyl-CoA metabolism. The synergistic effect of enhanced propionyl-CoA metabolism and AFC increased AD conversion yield from 60.6% to 97.3%. The AD productivity was further improved by repeated batch fermentation using untreated cane molasses. The maximum productivity was 181% higher than that of the original strain. Therefore, the strategy of combining AFC and repeated batch fermentation is a valuable tool for the efficient and low-cost production of AD and other steroidal pharmaceutical precursors.
Collapse
Affiliation(s)
- Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zehui Zan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
20
|
Mu Y, Xin Y, Guo T, Kong J. Identification and characterization of a moonlighting protein-enolase for surface display in Streptococcus thermophilus. Microb Cell Fact 2020; 19:132. [PMID: 32552809 PMCID: PMC7301973 DOI: 10.1186/s12934-020-01389-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Streptococcus thermophilus is an important food starter and receiving more attention to serve as cell factories for production of high-valued metabolites. However, the low yields of intracellular or extracellular expression of biotechnological and biomedical proteins limit its practical applications. Results Here, an enolase EnoM was identified from S. thermophilus CGMCC7.179 with about 94% identities to the surface-located enolases from other Streptococcus spp. strains. The EnoM was used as an anchor to achieve surface display in S. thermophilus using GFP as a reporter. After respectively mixing the GFP-EnoM fusion protein or GFP with S. thermophilus cells in vitro, the relative fluorescence units (RFU) of the S. thermophilus cells with GFP-EnoM was 80-folds higher than that with purified GFP. The sharp decrease in the RFU of sodium dodecyl sulfate (SDS) pretreated cells compared to those of non-pretreated cells demonstrated that the membrane proteins were the binding ligand of EnoM. Furthermore, an engineered β-galactosidase (β-Gal) was also successfully displayed on the cell surface of S. thermophilus CGMCC7.179 and the relative activity of the immobilized β-Gal remained up to 64% after reused 8 times. Finally, we also demonstrated that EnoM could be used as an anchor for surface display in L. casei, L. bulgaricus, L. lactis and Leuconostoc lactis. Conclusion To our knowledge, EnoM from S. thermophilus was firstly identified as an anchor and successfully achieved surface display in LAB. The EnoM-based surface display system provided a novel strategy for the enzyme immobilization.
Collapse
Affiliation(s)
- Yingli Mu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China
| | - Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
21
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|
22
|
Liu JM, Chen L, Dorau R, Lillevang SK, Jensen PR, Solem C. From Waste to Taste-Efficient Production of the Butter Aroma Compound Acetoin from Low-Value Dairy Side Streams Using a Natural (Nonengineered) Lactococcus lactis Dairy Isolate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5891-5899. [PMID: 32363876 DOI: 10.1021/acs.jafc.0c00882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lactococcus lactis subsp. lactis biovar diacetylactis is widely used in dairy fermentations as it can form the butter aroma compounds acetoin and diacetyl from citrate in milk. Here, we explore the possibility of producing acetoin from the more abundant lactose. Starting from a dairy isolate of L. lactis biovar diacetylactis, we obtained a series of mutants with low lactate dehydrogenase (ldh) activity. One isolate, RD1M5, only had a single insertion mutation in the ldh gene compared to its parental strain as revealed by whole genome resequencing. We tested the ability of RD1M5 to produce acetoin in milk. With aeration, all the lactose could be consumed, and the only product was acetoin. In a simulated cheese fermentation, a 50% increase in acetoin concentration could be achieved. RD1M5 turned out to be an excellent cell factory for acetoin and was able to convert lactose in dairy waste into acetoin with high titer (41 g/L) and high yield (above 90% of the theoretical yield). Summing up, RD1M5 was found to be highly robust and to grow excellently in milk or dairy waste. Being natural in origin opens up for applications within dairies as well as for safe production of food-grade acetoin from low-cost substrates.
Collapse
Affiliation(s)
- Jian-Ming Liu
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lin Chen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Robin Dorau
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Xiao H, Wang Q, Bang-Berthelsen CH, Jensen PR, Solem C. Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by Lactococcus lactis Using Its Native Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4912-4921. [PMID: 32233405 DOI: 10.1021/acs.jafc.0c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mannitol can be obtained as a by-product of certain heterolactic lactic acid bacteria, when grown on substrates containing fructose. Lactococcus lactis, a homolactic lactic acid bacterium, normally does not form mannitol but can be persuaded into doing so by expressing certain foreign enzyme activities. In this study, we find that L. lactis has an inherent capacity to form mannitol from glucose. By adaptively evolving L. lactis or derivatives blocked in NAD+ regenerating pathways, we manage to accelerate growth on mannitol. When cells of the adapted strains are resuspended in buffer containing glucose, 4-58% of the glucose metabolized is converted into mannitol, in contrast to nonadapted strains. The highest conversion was obtained for a strain lacking all major NAD+ regenerating pathways. Mannitol had an inhibitory effect on the conversion, which we speculated was due to the mannitol uptake system. After its inactivation, 60% of the glucose was converted into mannitol by cells suspended in glucose buffer. Using a two-stage setup, where biomass first was accumulated by aerated culturing, followed by a nonaerated phase (static conditions), it was possible to obtain 6.1 g/L mannitol, where 60% of the glucose had been converted into mannitol, which is the highest yield reported for L. lactis.
Collapse
Affiliation(s)
- Hang Xiao
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Qi Wang
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | | | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Li X, Chen J, Andersen JM, Chu J, Jensen PR. Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in Saccharopolyspora erythraea. ACS Synth Biol 2020; 9:655-670. [PMID: 32078772 DOI: 10.1021/acssynbio.9b00528] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharopolyspora erythraea is used for industrial erythromycin production. To explore the physiological role of intracellular energy state in metabolic regulation by S. erythraea, we initially overexpressed the F1 part of the endogenous F1F0-ATPase in the high yielding erythromycin producing strain E3. The F1-ATPase expression resulted in lower [ATP]/[ADP] ratios, which was accompanied by a strong increase in the production of a reddish pigment and a decreased erythromycin production. Subsequent transcriptional analysis revealed that the lower intracellular [ATP]/[ADP] ratios exerted a pleotropic regulation on the metabolism of S. erythraea. The lower [ATP]/[ADP] ratios induced physiological changes to restore the energy balance, mainly via pathways that tend to produce ATP or regenerate NADH. The F1-ATPase overexpression strain exhibited a state of redox stress, which was correlated to an alteration of electron transport at the branch of the terminal oxidases, and S. erythraea channeled the enhanced glycolytic flux toward a reddish pigment in order to reduce NADH formation. The production of erythromycin was decreased, which is in accordance with the net ATP requirement and the excess NADH formed through this pathway. Partial growth inhibition by apramycin increased the intracellular [ATP]/[ADP] ratios and demonstrated a positive correlation between [ATP]/[ADP] ratios and erythromycin synthesis. Finally, overexpression of the entire F1F0-ATPase complex resulted in 28% enhanced erythromycin production and markedly reduced pigment synthesis in E3. The work illustrates a feasible strategy to optimize the distribution of fluxes in secondary metabolism.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| | - Joakim M. Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Peter R. Jensen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| |
Collapse
|
25
|
Mar MJ, Andersen JM, Kandasamy V, Liu J, Solem C, Jensen PR. Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:45. [PMID: 32180827 PMCID: PMC7065357 DOI: 10.1186/s13068-020-01689-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The secondary alcohol 2-butanol has many important applications, e.g., as a solvent. Industrially, it is usually made by sulfuric acid-catalyzed hydration of butenes. Microbial production of 2-butanol has also been attempted, however, with little success as witnessed by the low titers and yields reported. Two important reasons for this, are the growth-hampering effect of 2-butanol on microorganisms, and challenges associated with one of the key enzymes involved in its production, namely diol dehydratase. RESULTS We attempt to link the metabolism of an engineered Lactococcus lactis strain, which possesses all enzyme activities required for fermentative production of 2-butanol from glucose, except for diol dehydratase, which acts on meso-2,3-butanediol (mBDO), with that of a Lactobacillus brevis strain which expresses a functional dehydratase natively. We demonstrate growth-coupled production of 2-butanol by the engineered L. lactis strain, when co-cultured with L. brevis. After fine-tuning the co-culture setup, a titer of 80 mM (5.9 g/L) 2-butanol, with a high yield of 0.58 mol/mol is achieved. CONCLUSIONS Here, we demonstrate that it is possible to link the metabolism of two bacteria to achieve redox-balanced production of 2-butanol. Using a simple co-cultivation setup, we achieved the highest titer and yield from glucose in a single fermentation step ever reported. The data highlight the potential that lies in harnessing microbial synergies for producing valuable compounds.
Collapse
Affiliation(s)
- Mette J. Mar
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Joakim M. Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Peter R. Jensen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
26
|
Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods 2020; 170:105862. [DOI: 10.1016/j.mimet.2020.105862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
|
27
|
Kalnenieks U, Balodite E, Rutkis R. Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of Zymomonas mobilis. Front Bioeng Biotechnol 2019; 7:327. [PMID: 31781557 PMCID: PMC6861446 DOI: 10.3389/fbioe.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and relevance for improvement of stress tolerance are analyzed.
Collapse
Affiliation(s)
- Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
28
|
Liu JM, Solem C, Jensen PR. Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microb Biotechnol 2019; 13:54-66. [PMID: 31386283 PMCID: PMC6922530 DOI: 10.1111/1751-7915.13472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023] Open
Abstract
White biotechnology relies on the sophisticated chemical machinery inside living cells for producing a broad range of useful compounds in a sustainable and environmentally friendly way. However, despite the impressive repertoire of compounds that can be generated using white biotechnology, this approach cannot currently fully replace traditional chemical production, often relying on petroleum as a raw material. One challenge is the limited number of chemical transformations taking place in living organisms. Biocompatible chemistry, that is non‐enzymatic chemical reactions taking place under mild conditions compatible with living organisms, could provide a solution. Biocompatible chemistry is not a novel invention, and has since long been used by living organisms. Examples include Fenton chemistry, used by microorganisms for degrading plant materials, and manganese or ketoacids dependent chemistry used for detoxifying reactive oxygen species. However, harnessing biocompatible chemistry for expanding the chemical repertoire of living cells is a relatively novel approach within white biotechnology, and it could potentially be used for producing valuable compounds which living organisms otherwise are not able to generate. In this mini review, we discuss such applications of biocompatible chemistry, and clarify the potential that lies in using biocompatible chemistry in conjunction with metabolically engineered cell factories for cheap substrate utilization, improved cell physiology, efficient pathway construction and novel chemicals production.
Collapse
Affiliation(s)
- Jian-Ming Liu
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Boecker S, Zahoor A, Schramm T, Link H, Klamt S. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli. Biotechnol J 2019; 14:e1800438. [PMID: 30927494 DOI: 10.1002/biot.201800438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Indexed: 01/21/2023]
Abstract
The targeted increase of cellular adenosine triphosphate (ATP) turnover (enforced ATP wasting) has recently been recognized as a promising tool for metabolic engineering when product synthesis is coupled with net ATP formation. The goal of the present study is to further examine and to further develop the concept of enforced ATP wasting and to broaden its scope for potential applications. In particular, considering the fermentation products synthesized by Escherichia coli under anaerobic conditions as a proxy for target chemical(s), i) a new genetic module for dynamic and gradual induction of the F1 -part of the ATPase is developed and it is found that ii) induction of the ATPase leads to higher metabolic activity and increased product formation in E. coli under anaerobic conditions, and that iii) ATP wasting significantly increases substrate uptake and productivity of growth-arrested cells, which is vital for its use in two-stage processes. To the best of the authors' knowledge, the glucose uptake rate of 6.49 mmol gCDW-1 h-1 achieved with enforced ATP wasting is the highest value reported for nongrowing E. coli cells. In summary, this study shows that enforced ATP wasting can be used to improve yield and titer (in growth-coupled processes) as well as volumetric productivity (in two-stage processes) depending on which of the performance measures is more crucial for the process and product of interest.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ahmed Zahoor
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Thorben Schramm
- Dynamic Control of Metabolic Networks, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Hannes Link
- Dynamic Control of Metabolic Networks, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| |
Collapse
|
30
|
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front Microbiol 2019; 10:876. [PMID: 31114552 PMCID: PMC6503107 DOI: 10.3389/fmicb.2019.00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Lactic Acid Bacteria (LAB) are extensively employed in the production of various fermented foods, due to their safe status, ability to affect texture and flavor and finally due to the beneficial effect they have on shelf-life. More recently, LAB have also gained interest as production hosts for various useful compounds, particularly compounds with sensitive applications, such as food ingredients and therapeutics. As for all industrial microorganisms, it is important to have a good understanding of the physiology and metabolism of LAB in order to fully exploit their potential, and for this purpose, many systems biology approaches are available. Systems metabolic engineering, an approach that combines optimization of metabolic enzymes/pathways at the systems level, synthetic biology as well as in silico model simulation, has been used to build microbial cell factories for production of biofuels, food ingredients and biochemicals. When developing LAB for use in foods, genetic engineering is in general not an accepted approach. An alternative is to screen mutant libraries for candidates with desirable traits using high-throughput screening technologies or to use adaptive laboratory evolution to select for mutants with special properties. In both cases, by using omics data and data-driven technologies to scrutinize these, it is possible to find the underlying cause for the desired attributes of such mutants. This review aims to describe how systems biology tools can be used for obtaining both engineered as well as non-engineered LAB with novel and desired properties.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
31
|
Xin Y, Guo T, Mu Y, Kong J. A Single-Plasmid Genome Editing System for Metabolic Engineering of Lactobacillus casei. Front Microbiol 2018; 9:3024. [PMID: 30568651 PMCID: PMC6289983 DOI: 10.3389/fmicb.2018.03024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Genome engineering of Lactobacillus casei, an important industrial microorganism for dairy fermented product, currently relies on inefficient and time-consuming double crossover events. In this study, we developed an easy-to-use genome engineering strategy for metabolic engineering of L. casei for acetoin production. Plasmid pMSP456-Cre, that contains prophage recombinase operon LCABL_13040-50-60 driven by the nisin-controlled inducible expression (NICE) system and the site-specific recombinase gene cre under the control of the promoter of the lactose operon from L. casei, was constructed. Using this plasmid, integration of a hicD3 gene linear donor cassette (up-lox66-cat-lox71-down) was catalyzed by the LCABL_13040-50-60 recombinase and the cat gene was excised by the Cre/lox system with an efficiency of 60%. To demonstrate this system for sequential and iterative knocking out genes in L. casei, another three genes (pflB, ldh and pdhC) related to acetoin production were deleted with the efficiencies of 60, 40, and 60%, respectively. The yielding quadruple mutant could produce a ∼18-fold higher amount of acetoin than the wild-type and converted 59.8% of glucose to acetoin in aerobic. Therefore, these results proved this simple genome engineering strategy have potential in metabolic engineering of L. casei for production of high value-added metabolites.
Collapse
Affiliation(s)
- Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingli Mu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
32
|
Klamt S, Mahadevan R, Hädicke O. When Do Two-Stage Processes Outperform One-Stage Processes? Biotechnol J 2017; 13. [PMID: 29131522 DOI: 10.1002/biot.201700539] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Indexed: 12/30/2022]
Abstract
Apart from product yield and titer, volumetric productivity is a key performance indicator for many biotechnological processes. Due to the inherent trade-off between the production of biomass as catalyst and of the actual target product, yield and volumetric productivity cannot be optimized simultaneously. Therefore, in combination with genetic techniques for dynamic regulation of metabolic fluxes, two-stage fermentations (TSFs) with separated growth and production phase have recently gained much interest because of their potential to improve the productivity of bioprocesses while still allowing high product yields. However, despite some successful case studies, so far it has not been discussed and analyzed systematically whether or under which conditions a TSF guarantees superior productivity compared to one-stage fermentation (OSF). In this study, we use mathematical models to demonstrate that the volumetric productivity of a TSF is not automatically better than of a corresponding OSF. Our analysis reveals that the sharp decrease of the specific substrate uptake rate usually observed in (non-growth) production phases severely impacts the volumetric productivity and thus raises a big challenge for designing competitive TSF processes. We discuss possible approaches such as enforced ATP wasting to improve substrate utilization rates in the production phase by which TSF processes can become superior to OSF. We also analyze additional factors influencing the relative performance of OSF and TSF and show that OSF processes can be more appropriate if a high product yield is an economic constraint. In conclusion, a careful assessment of the trade-offs between substrate uptake rates, yields, and productivity is necessary when deciding for OSF vs. TSF processes.
Collapse
Affiliation(s)
- Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering & Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Hädicke
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| |
Collapse
|
33
|
Liu J, Wang Z, Kandasamy V, Lee SY, Solem C, Jensen PR. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metab Eng 2017; 44:22-29. [DOI: 10.1016/j.ymben.2017.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/14/2017] [Accepted: 09/02/2017] [Indexed: 01/25/2023]
|
34
|
Harder BJ, Bettenbrock K, Klamt S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng 2017; 115:156-164. [PMID: 28865130 PMCID: PMC5725713 DOI: 10.1002/bit.26446] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/01/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023]
Abstract
Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two‐stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr−1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (pR) and its expression was controlled by the temperature‐sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one‐stage and two‐stage bioreactor cultivations. The two‐stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one‐stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature‐dependent activation of gene expression by the Lambda promoters (pR/pL) has been frequently used to improve protein or, in a few cases, metabolite production in two‐stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock‐down an essential gene (icd) in E. coli to design a two‐stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the potential to be generally used to improve cell factory performance.
Collapse
Affiliation(s)
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
35
|
Roncal T, Caballero S, Díaz de Guereñu MDM, Rincón I, Prieto-Fernández S, Ochoa-Gómez JR. Efficient production of acetoin by fermentation using the newly isolated mutant strain Lactococcus lactis subsp. lactis CML B4. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Petersen KV, Liu J, Chen J, Martinussen J, Jensen PR, Solem C. Metabolic characterization and transformation of the non-dairyLactococcus lactisstrain KF147, for production of ethanol from xylose. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Kia Vest Petersen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jianming Liu
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jun Chen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jan Martinussen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Peter Ruhdal Jensen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Christian Solem
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| |
Collapse
|
37
|
Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep 2016; 6:36769. [PMID: 27857195 PMCID: PMC5114678 DOI: 10.1038/srep36769] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
The potential that lies in harnessing the chemical synthesis capabilities inherent in living organisms is immense. Here we demonstrate how the biosynthetic machinery of Lactococcus lactis, can be diverted to make (3R)-acetoin and the derived 2,3-butanediol isomers meso-(2,3)-butanediol (m-BDO) and (2R,3R)-butanediol (R-BDO). Efficient production of (3R)-acetoin was accomplished using a strain where the competing lactate, acetate and ethanol forming pathways had been blocked. By introducing different alcohol dehydrogenases into this strain, either EcBDH from Enterobacter cloacae or SadB from Achromobacter xylosooxidans, it was possible to achieve high-yield production of m-BDO or R-BDO respectively. To achieve biosustainable production of these chemicals from dairy waste, we transformed the above strains with the lactose plasmid pLP712. This enabled efficient production of (3R)-acetoin, m-BDO and R-BDO from processed whey waste, with titers of 27, 51, and 32 g/L respectively. The corresponding yields obtained were 0.42, 0.47 and 0.40 g/g lactose, which is 82%, 89%, and 76% of maximum theoretical yield respectively. These results clearly demonstrate that L. lactis is an excellent choice as a cell factory for transforming lactose containing dairy waste into value added chemicals.
Collapse
Affiliation(s)
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shruti Harnal Dantoft
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|