1
|
Kinose K, Shinoda K, Kawasaki H. Impact of exporter proteins and their engineering on the productivity of Corynebacterium. Appl Microbiol Biotechnol 2025; 109:98. [PMID: 40261395 PMCID: PMC12014714 DOI: 10.1007/s00253-025-13479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Enhancing product efflux is crucial in improving fermentative bioproduction. Despite advancements in metabolic engineering guided by the design-build-test-learn cycle, membrane transport engineering of product efflux remains underdeveloped, limiting the efficient production of target chemicals. This review explores the historical findings on product efflux, regardless of passive or active transport, in fermentation engineering, focusing on Corynebacterium species, and highlights the potential of multidrug transporters as valuable screening sources for efflux improvement. Furthermore, the review emphasizes the importance of understanding the machinery of efflux transporters to optimize their functionality. Molecular dynamics simulations are a promising tool for exploring novel strategies to advance fermentation-related processes. These insights provide a framework for overcoming current challenges in membrane transport engineering of product efflux and improving industrial-scale bioproduction. KEY POINTS: • Review of strategies to enhance product efflux in Corynebacterium species. • Multidrug transporters are key tools for optimizing metabolite efflux. • Efflux transporter mechanisms analyzed to improve microbial productivity. • Molecular dynamics simulations employed for understanding transporter mechanisms.
Collapse
Affiliation(s)
- Keita Kinose
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., 50 Kano-Cho, Nagahama, Shiga, 526 - 0804, Japan
| | - Keiko Shinoda
- The Institute of Statistical Mathematics, Research Organization of Information and Systems, 10 - 3 Midori-Cho, Tachikawa, Tokyo, 190 - 8562, Japan
| | - Hisashi Kawasaki
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113 - 8657, Japan.
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda City, Chiba, 278 - 0037, Japan.
| |
Collapse
|
2
|
Zheng S, Zhao C, Chen Y, Zhang Z, He Y, Wang J, He H, Chen GQ. Engineered Vibrio natriegens with a Toxin-Antitoxin System for High-Productivity Biotransformation of l-Lysine to Cadaverine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6113-6123. [PMID: 39985470 DOI: 10.1021/acs.jafc.4c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Vibrio natriegens, a fast-growing bacterium, is an emerging chassis of next-generation industrial biotechnology capable of thriving under open and continuous culture conditions. Cadaverine, a valuable industrial C5 platform chemical, has various chemical and biological activities. This study found that V. natriegens exhibited superior tolerance to lysine, the substrate of cadaverine production. For the first time, a cadaverine synthesis pathway was introduced into V. natriegens for whole-cell catalysis of cadaverine from lysine. A high-efficiency cadaverine-producing strain harboring a toxin-antitoxin system, V. natriegens (pSEVA341-pTac-ldcC-pHbpBC-hbpBC) with lysE (PN96_RS17440) inactivation, was constructed. In 7 L bioreactors, the cadaverine titer increased from 115 g/L in the original strain to 158 g/L within 11 h of biotransformation, exhibiting a 37% increase in production. Its productivity reached 14.4 g/L/h with a conversion rate as high as 90%. These results confirm V. natriegens as an exceptional chassis for effective cadaverine bioproduction.
Collapse
Affiliation(s)
- Shuang Zheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuemeng Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zonghao Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810000, China
| | - Yuhan He
- Key Lab of Industrial Biocatalysts of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiale Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Lab of Industrial Biocatalysts of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2025; 45:373-392. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Gao Y, Zhang X, Xu G, Zhang X, Li H, Shi J, Xu Z. Enhanced L-serine production by Corynebacterium glutamicum based on novel insights into L-serine exporters. Biotechnol J 2024; 19:e2300136. [PMID: 37971189 DOI: 10.1002/biot.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The L-serine exporters ThrE and SerE play important roles in L-serine production by Corynebacterium glutamicum. Deletion of both thrE and serE decreased L-serine titer by 60%, suggesting the existence of other L-serine exporters. A comparative transcriptomics identified NCgl0254 and NCgl0255 as novel L-serine exporters. Further analysis of the contributions of ThrE, SerE, NCgl0254, and NCgl0255 found that SerE was the major L-serine exporter in C. glutamicum and these four L-serine exporters were responsible for 79.7% of L-serine export. Deletion of one L-serine exporter upregulated the transcription levels of the other three, which might be coursed by increased intracellular concentrations of L-serine. Overexpression of NCgl0254 and NCgl0255 increased L-serine titer by 20.8% in C. glutamicum A36, while overexpression of the four L-serine exporters increased L-serine production by 31.9% (41.1 g·L-1 ) in C. glutamicum A36. The identification of novel L-serine exporters in C. glutamicum will help to improve industrial production of L-serine.
Collapse
Affiliation(s)
- Yujie Gao
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Nanatani K, Ishii T, Masuda A, Katsube S, Ando T, Yoneyama H, Abe K. Novel transporter screening technology for chemical production by microbial fermentation. J GEN APPL MICROBIOL 2023; 69:142-149. [PMID: 36567121 DOI: 10.2323/jgam.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the fermentative production of compounds by using microorganisms, control of the transporter activity responsible for substrate uptake and product efflux, in addition to intracellular metabolic modification, is important from a productivity perspective. However, there has been little progress in analyses of the functions of microbial membrane transporters, and because of the difficulty in finding transporters that transport target compounds, only a few transporters have been put to practical use. Here, we constructed a Corynebacterium glutamicum-derived transporter expression library (CgTP-Express library) with the fusion partner gene mstX and used a peptide-feeding method with the dipeptide L-Ala-L-Ala to search for alanine exporters in the library. Among 39 genes in the library, five candidate alanine exporters (NCgl2533, NCgl2683, NCgl0986, NCgl0453, and NCgl0929) were found; expression of NCgl2533 increased the alanine concentration in cell culture. The CgTP-Express library was thus effective for finding a new transporter candidate.
Collapse
Affiliation(s)
- Kei Nanatani
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Tomoko Ishii
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Ayumu Masuda
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Satoshi Katsube
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University
| |
Collapse
|
6
|
Zhao Z, Cai M, Liu Y, Hu M, Yang F, Zhu R, Xu M, Rao Z. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for l-arginine production. BIORESOURCE TECHNOLOGY 2022; 364:128054. [PMID: 36184013 DOI: 10.1016/j.biortech.2022.128054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
l-arginine is a semi-essential amino acid that is broadly used as food additives and pharmaceutical intermediates. The synthesis of l-arginine is restricted by complex metabolic mechanisms and suboptimal fermentation conditions. Initially, a mutant strain that accumulated 19.4 g/L l-arginine was generated by random mutagenesis. Subsequently, a mutation of the repressor protein (argRG159D) in the l-arginine operon and glutamate synthase (gltD) with 532-fold upregulation were identified to be vital for l-arginine production by multi-omic analysis. Systematic metabolic engineering was used to modify the strain, which included interfering with α-ketoglutarate dehydrogenase complex (ODHC) activity by knocking out serine/threonine-protein kinase (pknG), enhancing the expression of multiple key enzymes in the l-arginine synthesis pathway, and increasing the availability of intracellular cofactor (NADPH) and energy (ATP). Finally, C. glutamicum ARG12 produced 71.3 g/L l-arginine, with a yield of 0.43 g/g glucose by fermentation optimization. This study provides new ideas to boost l-arginine production.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yunran Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fengyu Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Rongshuai Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Ghiffary MR, Prabowo CPS, Adidjaja JJ, Lee SY, Kim HU. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of β-alanine. Metab Eng 2022; 74:121-129. [DOI: 10.1016/j.ymben.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
8
|
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing Microbial Cell Factories for the Production of Chemicals. JACS AU 2022; 2:1781-1799. [PMID: 36032533 PMCID: PMC9400054 DOI: 10.1021/jacsau.2c00344] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
The sustainable production of chemicals from renewable, nonedible biomass has emerged as an essential alternative to address pressing environmental issues arising from our heavy dependence on fossil resources. Microbial cell factories are engineered microorganisms harboring biosynthetic pathways streamlined to produce chemicals of interests from renewable carbon sources. The biosynthetic pathways for the production of chemicals can be defined into three categories with reference to the microbial host selected for engineering: native-existing pathways, nonnative-existing pathways, and nonnative-created pathways. Recent trends in leveraging native-existing pathways, discovering nonnative-existing pathways, and designing de novo pathways (as nonnative-created pathways) are discussed in this Perspective. We highlight key approaches and successful case studies that exemplify these concepts. Once these pathways are designed and constructed in the microbial cell factory, systems metabolic engineering strategies can be used to improve the performance of the strain to meet industrial production standards. In the second part of the Perspective, current trends in design tools and strategies for systems metabolic engineering are discussed with an eye toward the future. Finally, we survey current and future challenges that need to be addressed to advance microbial cell factories for the sustainable production of chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyunmin Eun
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Schito S, Zuchowski R, Bergen D, Strohmeier D, Wollenhaupt B, Menke P, Seiffarth J, Nöh K, Kohlheyer D, Bott M, Wiechert W, Baumgart M, Noack S. Communities of Niche-optimized Strains (CoNoS) - Design and creation of stable, genome-reduced co-cultures. Metab Eng 2022; 73:91-103. [PMID: 35750243 DOI: 10.1016/j.ymben.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
Current bioprocesses for production of value-added compounds are mainly based on pure cultures that are composed of rationally engineered strains of model organisms with versatile metabolic capacities. However, in the comparably well-defined environment of a bioreactor, metabolic flexibility provided by various highly abundant biosynthetic enzymes is much less required and results in suboptimal use of carbon and energy sources for compound production. In nature, non-model organisms have frequently evolved in communities where genome-reduced, auxotrophic strains cross-feed each other, suggesting that there must be a significant advantage compared to growth without cooperation. To prove this, we started to create and study synthetic communities of niche-optimized strains (CoNoS) that consists of two strains of the same species Corynebacterium glutamicum that are mutually dependent on one amino acid. We used both the wild-type and the genome-reduced C1* chassis for introducing selected amino acid auxotrophies, each based on complete deletion of all required biosynthetic genes. The best candidate strains were used to establish several stably growing CoNoS that were further characterized and optimized by metabolic modelling, microfluidic experiments and rational metabolic engineering to improve amino acid production and exchange. Finally, the engineered CoNoS consisting of an l-leucine and l-arginine auxotroph showed a specific growth rate equivalent to 83% of the wild type in monoculture, making it the fastest co-culture of two auxotrophic C. glutamicum strains to date. Overall, our results are a first promising step towards establishing improved biobased production of value-added compounds using the CoNoS approach.
Collapse
Affiliation(s)
- Simone Schito
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Rico Zuchowski
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Bergen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Strohmeier
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Bastian Wollenhaupt
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Menke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Seiffarth
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Nöh
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Dietrich Kohlheyer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Wolfgang Wiechert
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany; Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, D-52074, Aachen, Germany
| | - Meike Baumgart
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Xu KX, Xue MG, Li Z, Ye BC, Zhang B. Recent Progress on Feasible Strategies for Arbutin Production. Front Bioeng Biotechnol 2022; 10:914280. [PMID: 35615473 PMCID: PMC9125391 DOI: 10.3389/fbioe.2022.914280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Arbutin is a hydroquinone glucoside and a natural product present in various plants. Arbutin potently inhibits melanin formation. This property has been exploited in whitening cosmetics and pharmaceuticals. Arbutin production relies mainly on chemical synthesis. The multi-step and complicated process can compromise product purity. With the increasing awareness of sustainable development, the current research direction prioritizes environment-friendly, biobased arbutin production. In this review, current strategies for arbutin production are critically reviewed, with a focus on plant extraction, chemical synthesis, biotransformation, and microbial fermentation. Furthermore, the bottlenecks and perspectives for future direction on arbutin biosynthesis are discussed.
Collapse
Affiliation(s)
- Ke-Xin Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Meng-Ge Xue
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- College of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
12
|
Wendisch VF, Nampoothiri KM, Lee JH. Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Front Microbiol 2022; 13:835131. [PMID: 35211108 PMCID: PMC8861201 DOI: 10.3389/fmicb.2022.835131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of amino acids. Valorization of sidestreams from agri- and aqua-culture has focused on the production of biofuels and carboxylic acids. Nitrogen present in various amounts in sidestreams may be valuable for the production of amines, amino acids and other nitrogenous compounds. Metabolic engineering of C. glutamicum for valorization of agri- and aqua-culture sidestreams addresses to bridge this gap. The product portfolio accessible via C. glutamicum fermentation primarily features amino acids and diamines for large-volume markets in addition to various specialty amines. On the one hand, this review covers metabolic engineering of C. glutamicum to efficiently utilize components of various sidestreams. On the other hand, examples of the design and implementation of synthetic pathways not present in native metabolism to produce sought after nitrogenous compounds will be provided. Perspectives and challenges of this concept will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| |
Collapse
|
13
|
Metabolic engineering of Corynebacterium glutamicum for de novo production of 3-hydroxycadaverine. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Hai-De W, Shuai L, Bing-Bing W, Jie L, Jian-Zhong X, Wei-Guo Z. Metabolic engineering of Escherichia coli for efficient production of l-arginine. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:127-150. [PMID: 37085192 DOI: 10.1016/bs.aambs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
Collapse
|
15
|
Wendisch VF, Kosec G, Heux S, Brautaset T. Aerobic Utilization of Methanol for Microbial Growth and Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:169-212. [PMID: 34761324 DOI: 10.1007/10_2021_177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methanol is a reduced one-carbon (C1) compound. It supports growth of aerobic methylotrophs that gain ATP from reduced redox equivalents by respiratory phosphorylation in their electron transport chains. Notably, linear oxidation of methanol to carbon dioxide may yield three reduced redox equivalents if methanol oxidation is NAD-dependent as, e.g., in Bacillus methanolicus. Methanol has a higher degree of reduction per carbon than glucose (6 vs. 4), and thus, lends itself as an ideal carbon source for microbial production of reduced target compounds. However, C-C bond formation in the RuMP or serine cycle, a prerequisite for production of larger molecules, requires ATP and/or reduced redox equivalents. Moreover, heat dissipation and a high demand for oxygen during catabolic oxidation of methanol may pose challenges for fermentation processes. In this chapter, we summarize metabolic pathways for aerobic methanol utilization, aerobic methylotrophs as industrial production hosts, strain engineering, and methanol bioreactor processes. In addition, we provide technological and market outlooks.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| | | | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Jiang S, Wang D, Wang R, Zhao C, Ma Q, Wu H, Xie X. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline. Metab Eng 2021; 68:220-231. [PMID: 34688880 DOI: 10.1016/j.ymben.2021.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
L-citrulline is a high-value amino acid with promising application in medicinal and food industries. Construction of highly efficient microbial cell factories for L-citrulline production is still an open issue due to complex metabolic flux distribution and L-arginine auxotrophy. In this study, we constructed a nonauxotrophic cell factory in Escherichia coli for high-titer L-citrulline production by coupling modular engineering strategies with dynamic pathway regulation. First, the biosynthetic pathway of L-citrulline was enhanced after blockage of the degradation pathway and introduction of heterologous biosynthetic genes from Corynebacterium glutamicum. Specifically, a superior recycling biosynthetic pathway was designed to replace the native linear pathway by deleting native acetylornithine deacetylase. Next, the carbamoyl phosphate and L-glutamate biosynthetic modules, the NADPH generation module, and the efflux module were modified to increase L-citrulline titer further. Finally, a toggle switch that responded to cell density was designed to dynamically control the expression of the argG gene and reconstruct a nonauxotrophic pathway. Without extra supplement of L-arginine during fermentation, the final CIT24 strain produced 82.1 g/L L-citrulline in a 5-L bioreactor with a yield of 0.34 g/g glucose and a productivity of 1.71 g/(L ⋅ h), which were the highest values reported by microbial fermentation. Our study not only demonstrated the successful design of cell factory for high-level L-citrulline production but also provided references of coupling the rational module engineering strategies and dynamic regulation strategies to produce high-value intermediate metabolites.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Dehu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Ruirui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Chunguang Zhao
- Ningxia Eppen Biotech Co, Ltd, Ningxia, 750000, PR China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Heyun Wu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
17
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
18
|
Haupka C, Brito LF, Busche T, Wibberg D, Wendisch VF. Genomic and Transcriptomic Investigation of the Physiological Response of the Methylotroph Bacillus methanolicus to 5-Aminovalerate. Front Microbiol 2021; 12:664598. [PMID: 33995329 PMCID: PMC8119775 DOI: 10.3389/fmicb.2021.664598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The methylotrophic thermophile Bacillus methanolicus can utilize the non-food substrate methanol as its sole carbon and energy source. Metabolism of L-lysine, in particular its biosynthesis, has been studied to some detail, and methanol-based L-lysine production has been achieved. However, little is known about L-lysine degradation, which may proceed via 5-aminovalerate (5AVA), a non-proteinogenic ω-amino acid with applications in bioplastics. The physiological role of 5AVA and related compounds in the native methylotroph was unknown. Here, we showed that B. methanolicus exhibits low tolerance to 5AVA, but not to related short-chain (C4–C6) amino acids, diamines, and dicarboxylic acids. In order to gain insight into the physiological response of B. methanolicus to 5AVA, transcriptomic analyses by differential RNA-Seq in the presence and absence of 5AVA were performed. Besides genes of the general stress response, RNA levels of genes of histidine biosynthesis, and iron acquisition were increased in the presence of 5AVA, while an Rrf2 family transcriptional regulator gene showed reduced RNA levels. In order to test if mutations can overcome growth inhibition by 5AVA, adaptive laboratory evolution (ALE) was performed and two mutants—AVA6 and AVA10—with higher tolerance to 5AVA were selected. Genome sequencing revealed mutations in genes related to iron homeostasis, including the gene for an iron siderophore-binding protein. Overexpression of this mutant gene in the wild-type (WT) strain MGA3 improved 5AVA tolerance significantly at high Fe2+ supplementation. The combined ALE, omics, and genetics approach helped elucidate the physiological response of thermophilic B. methanolicus to 5AVA and will guide future strain development for 5AVA production from methanol.
Collapse
Affiliation(s)
- Carsten Haupka
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luciana F Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Freudenberg RA, Baier T, Einhaus A, Wobbe L, Kruse O. High cell density cultivation enables efficient and sustainable recombinant polyamine production in the microalga Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2021; 323:124542. [PMID: 33385626 DOI: 10.1016/j.biortech.2020.124542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/27/2023]
Abstract
Modern chemical industry calls for new resource-efficient and sustainable value chains for production of key base chemicals such as polyamines. The green microalga Chlamydomonas reinhardtii offers great potential as an innovative green-cell factory by combining fast and inexpensive, phototrophic growth with mature genetic engineering. Here, overexpression of recombinant lysine decarboxylases in C. reinhardtii enabled the robust accumulation of the non-native polyamine cadaverine, which serves as building block for bio-polyamides. The issue of low cell densities, limiting most microalgal cultivation processes was resolved by systematically optimizing cultivation parameters. A new, easy-to-apply and fully phototrophic medium enables high cell density cultivations of C. reinhardtii with a 6-fold increase in biomass and cell count (20 g/L biomass dry weight, ~2·108 cells/mL). Application of high cell density cultivations in established photobioreactors resulted in a 10-fold increase of cadaverine yields, with up to 0.24 g/L after 9 days and maximal productivity of 0.1 g/L/d.
Collapse
Affiliation(s)
- Robert A Freudenberg
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| |
Collapse
|
20
|
Physiological Response of Corynebacterium glutamicum to Indole. Microorganisms 2020; 8:microorganisms8121945. [PMID: 33302489 PMCID: PMC7764795 DOI: 10.3390/microorganisms8121945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
The aromatic heterocyclic compound indole is widely spread in nature. Due to its floral odor indole finds application in dairy, flavor, and fragrance products. Indole is an inter- and intracellular signaling molecule influencing cell division, sporulation, or virulence in some bacteria that synthesize it from tryptophan by tryptophanase. Corynebacterium glutamicum that is used for the industrial production of amino acids including tryptophan lacks tryptophanase. To test if indole is metabolized by C. glutamicum or has a regulatory role, the physiological response to indole by this bacterium was studied. As shown by RNAseq analysis, indole, which inhibited growth at low concentrations, increased expression of genes involved in the metabolism of iron, copper, and aromatic compounds. In part, this may be due to iron reduction as indole was shown to reduce Fe3+ to Fe2+ in the culture medium. Mutants with improved tolerance to indole were selected by adaptive laboratory evolution. Among the mutations identified by genome sequencing, mutations in three transcriptional regulator genes were demonstrated to be causal for increased indole tolerance. These code for the regulator of iron homeostasis DtxR, the regulator of oxidative stress response RosR, and the hitherto uncharacterized Cg3388. Gel mobility shift analysis revealed that Cg3388 binds to the intergenic region between its own gene and the iolT2-rhcM2D2 operon encoding inositol uptake system IolT2, maleylacetate reductase, and catechol 1,2-dioxygenase. Increased RNA levels of rhcM2 in a cg3388 deletion strain indicated that Cg3388 acts as repressor. Indole, hydroquinone, and 1,2,4-trihydroxybenzene may function as inducers of the iolT2-rhcM2D2 operon in vivo as they interfered with DNA binding of Cg3388 at physiological concentrations in vitro. Cg3388 was named IhtR.
Collapse
|
21
|
Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum. Proc Natl Acad Sci U S A 2020; 117:30328-30334. [PMID: 33199604 DOI: 10.1073/pnas.2017483117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising Pseudomonas putida l-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) genes and C. glutamicum 4-aminobutyrate aminotransferase (gabT) and succinate-semialdehyde dehydrogenase (gabD) genes, was introduced into the C. glutamicum BE strain. Through system-wide analyses including genome-scale metabolic simulation, comparative transcriptome analysis, and flux response analysis, 11 target genes to be manipulated were identified and expressed at desired levels to increase the supply of direct precursor l-lysine and reduce precursor loss. A glutaric acid exporter encoded by ynfM was discovered and overexpressed to further enhance glutaric acid production. Fermentation conditions, including oxygen transfer rate, batch-phase glucose level, and nutrient feeding strategy, were optimized for the efficient production of glutaric acid. Fed-batch culture of the final engineered strain produced 105.3 g/L of glutaric acid in 69 h without any byproduct. The strategies of metabolic engineering and fermentation optimization described here will be useful for developing engineered microorganisms for the high-level bio-based production of other chemicals of interest to industry.
Collapse
|
22
|
Jiang Y, Sheng Q, Wu XY, Ye BC, Zhang B. l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 2020; 41:172-185. [PMID: 33153325 DOI: 10.1080/07388551.2020.1844625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an important semi-essential amino acid, l-arginine is extensively used in the food and pharmaceutical fields. At present, l-arginine production depends on cost-effective, green, and sustainable microbial fermentation by using a renewable carbon source. To enhance its fermentative production, various metabolic engineering strategies have been employed, which provide valid paths for reducing the cost of l-arginine production. This review summarizes recent advances in molecular biology strategies for the optimization of l-arginine-producing strains, including manipulating the principal metabolic pathway, modulating the carbon metabolic pathway, improving the intracellular biosynthesis of cofactors and energy usage, manipulating the assimilation of ammonia, improving the transportation and membrane permeability, and performing biosensor-assisted high throughput screening, providing useful insight into the current state of l-arginine production.
Collapse
Affiliation(s)
- Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
23
|
Flux Enforcement for Fermentative Production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts 2020. [DOI: 10.3390/catal10091065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bio-based plastics represent an increasing percentage of the plastics economy. The fermentative production of bioplastic monomer 5-aminovalerate (5AVA), which can be converted to polyamide 5 (PA 5), has been established in Corynebacterium glutamicum via two metabolic pathways. l-lysine can be converted to 5AVA by either oxidative decarboxylation and subsequent oxidative deamination or by decarboxylation to cadaverine followed by transamination and oxidation. Here, a new three-step pathway was established by using the monooxygenase putrescine oxidase (Puo), which catalyzes the oxidative deamination of cadaverine, instead of cadaverine transaminase. When the conversion of 5AVA to glutarate was eliminated and oxygen supply improved, a 5AVA titer of 3.7 ± 0.4 g/L was reached in microcultivation that was lower than when cadaverine transaminase was used. The elongation of the new pathway by 5AVA transamination by GABA/5AVA aminotransferase (GabT) and oxidation by succinate/glutarate semialdehyde dehydrogenase (GabD) allowed for glutarate production. Flux enforcement by the disruption of the l-glutamic acid dehydrogenase-encoding gene gdh rendered a single transaminase (GabT) in glutarate production via the new pathway responsible for nitrogen assimilation, which increased the glutarate titer to 7.7 ± 0.7 g/L, i.e., 40% higher than with two transaminases operating in glutarate biosynthesis. Flux enforcement was more effective with one coupling site, thus highlighting requirements regarding the modularity and stoichiometry of pathway-specific flux enforcement for microbial production.
Collapse
|
24
|
Wu H, Tian D, Fan X, Fan W, Zhang Y, Jiang S, Wen C, Ma Q, Chen N, Xie X. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Escherichia coli. ACS Synth Biol 2020; 9:1813-1822. [PMID: 32470291 DOI: 10.1021/acssynbio.0c00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-Histidine is a functional amino acid with numerous therapeutic and ergogenic properties. It is one of the few amino acids that is not produced on a large scale by microbial fermentation due to the lack of an efficient microbial cell factory. In this study, we demonstrated the engineering of wild-type Escherichia coli to overproduce histidine from glucose. First, removal of transcription attenuation and histidine-mediated feedback inhibition resulted in 0.8 g/L histidine accumulation. Second, chromosome-based optimization of the expression levels of histidine biosynthesis genes led to a 4.75-fold increase in histidine titer. Third, strengthening phosphoribosyl pyrophosphate supply and rerouting the purine nucleotide biosynthetic pathway improved the histidine production to 8.2 g/L. Fourth, introduction of the NADH-dependent glutamate dehydrogenase from Bacillus subtilis and the lysine exporter from Corynebacterium glutamicum enabled the final strain HW6-3 to produce 11.8 g/L histidine. Finally, 66.5 g/L histidine was produced under fed-batch fermentation, with a yield of 0.23 g/g glucose and a productivity of 1.5 g/L/h. This is the highest titer and productivity of histidine ever reported from an engineered strain. Additionally, the metabolic strategies utilized here can be applied to engineering other microorganisms for the industrial production of histidine and related bioproducts.
Collapse
Affiliation(s)
- Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Daoguang Tian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xiaoguang Fan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Weiming Fan
- Zhejiang Zhenyuan Pharmaceutial Co., Ltd, Shaoxing, 312071, P. R. China
| | - Yue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Chenhui Wen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
25
|
High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:115. [PMID: 32471433 PMCID: PMC7260847 DOI: 10.1186/s12934-020-01374-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Background l-Serine has wide and increasing applications in industries with fast-growing market demand. Although strategies for achieving and improving l-serine production in Corynebacterium glutamicum (C. glutamicum) have focused on inhibiting its degradation and enhancing its biosynthetic pathway, l-serine yield has remained relatively low. Exporters play an essential role in the fermentative production of amino acids. To achieve higher l-serine yield, l-serine export from the cell should be improved. In C. glutamicum, ThrE, which can export l-threonine and l-serine, is the only identified l-serine exporter so far. Results In this study, a novel l-serine exporter NCgl0580 was identified and characterized in C. glutamicum ΔSSAAI (SSAAI), and named as SerE (encoded by serE). Deletion of serE in SSAAI led to a 56.5% decrease in l-serine titer, whereas overexpression of serE compensated for the lack of serE with respect to l-serine titer. A fusion protein with SerE and enhanced green fluorescent protein (EGFP) was constructed to confirm that SerE localized at the plasma membrane. The function of SerE was studied by peptide feeding approaches, and the results showed that SerE is a novel exporter for l-serine and l-threonine in C. glutamicum. Subsequently, the interaction of a known l-serine exporter ThrE and SerE was studied, and the results suggested that SerE is more important than ThrE in l-serine export in SSAAI. In addition, probe plasmid and electrophoretic mobility shift assays (EMSA) revealed NCgl0581 as the transcriptional regulator of SerE. Comparative transcriptomics between SSAAI and the NCgl0581 deletion strain showed that NCgl0581 is a positive regulator of NCgl0580. Finally, by overexpressing the novel exporter SerE, combined with l-serine synthetic pathway key enzyme serAΔ197, serC, and serB, the resulting strain presented an l-serine titer of 43.9 g/L with a yield of 0.44 g/g sucrose, which is the highest l-serine titer and yield reported so far in C. glutamicum. Conclusions This study provides a novel target for l-serine and l-threonine export engineering as well as a new global transcriptional regulator NCgl0581 in C. glutamicum.
Collapse
|
26
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
27
|
Huang M, Zhao Y, Li R, Huang W, Chen X. Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering. 3 Biotech 2020; 10:126. [PMID: 32140378 DOI: 10.1007/s13205-020-2114-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-scale metabolic network model (GSMM) is an important in silico tool that can efficiently predict the target genes to be modulated. A Corynebacterium crenatum argB-M4 Cc_iKK446_arginine model was constructed on the basis of the GSMM of Corynebacterium glutamicum ATCC 13032 Cg_iKK446. Sixty-four gene deletion sites, twenty-four gene enhancement sites, and seven gene attenuation sites were determined for the improvement of l-arginine production in engineered C. crenatum. Among these sites, the effects of disrupting putP, cgl2310, pta, and Ncgl1221 and overexpressing lysE on l-arginine production were investigated. Moreover, the strain CCM007 with deleted putP, cgl2310, pta, and Ncgl1221 and overexpressed lysE produced 24.85 g/L l-arginine. This finding indicated a 106.8% improvement in l-arginine production compared with that in CCM01. GSMM is an excellent tool for identifying target genes to promote l-arginine accumulation in engineered C. crenatum.
Collapse
Affiliation(s)
- Mingzhu Huang
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
- 2School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096 People's Republic of China
| | - Yue Zhao
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Rong Li
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Weihua Huang
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Xuelan Chen
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
- 2School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096 People's Republic of China
| |
Collapse
|
28
|
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R. Identifying the Growth Modulon of Corynebacterium glutamicum. Front Microbiol 2019; 10:974. [PMID: 31134020 PMCID: PMC6517550 DOI: 10.3389/fmicb.2019.00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
The growth rate (μ) of industrially relevant microbes, such as Corynebacterium glutamicum, is a fundamental property that indicates its production capacity. Therefore, understanding the mechanism underlying the growth rate is imperative for improving productivity and performance through metabolic engineering. Despite recent progress in the understanding of global regulatory interactions, knowledge of mechanisms directing cell growth remains fragmented and incomplete. The current study investigated RNA-Seq data of three growth rate transitions, induced by different pre-culture conditions, in order to identify transcriptomic changes corresponding to increasing growth rates. These transitions took place in minimal medium and ranged from 0.02 to 0.4 h-1 μ. This study enabled the identification of 447 genes as components of the growth modulon. Enrichment of genes within the growth modulon revealed 10 regulons exhibiting a significant effect over growth rate transition. In summary, central metabolism was observed to be regulated by a combination of metabolic and transcriptional activities orchestrating control over glycolysis, pentose phosphate pathway, and the tricarboxylic acid cycle. Additionally, major responses to changes in the growth rate were linked to iron uptake and carbon metabolism. In particular, genes encoding glycolytic enzymes and the glucose uptake system showed a positive correlation with the growth rate.
Collapse
Affiliation(s)
- Thorsten Haas
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Alexander Nieß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.,Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
29
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
30
|
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF. Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway. Front Microbiol 2018; 9:2589. [PMID: 30425699 PMCID: PMC6218589 DOI: 10.3389/fmicb.2018.02589] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 12/04/2022] Open
Abstract
The dicarboxylic acid glutarate is an important building-block gaining interest in the chemical and pharmaceutical industry. Here, a synthetic pathway for fermentative production of glutarate by the actinobacterium Corynebacterium glutamicum has been developed. The pathway does not require molecular oxygen and operates via lysine decarboyxylase followed by two transamination and two NAD-dependent oxidation reactions. Using a genome-streamlined L-lysine producing strain as basis, metabolic engineering was performed to enable conversion of L-lysine to glutarate in a five-step synthetic pathway comprising lysine decarboxylase, putrescine transaminase and γ-aminobutyraldehyde dehydrogenase from Escherichia coli and GABA/5AVA amino transferase and succinate/glutarate semialdehyde dehydrogenase either from C. glutamicum or from three Pseudomonas species. Loss of carbon via formation of the by-products cadaverine and N-acetylcadaverine was avoided by deletion of the respective acetylase and export genes. As the two transamination reactions in the synthetic glutarate biosynthesis pathway yield L-glutamate, biosynthesis of L-glutamate by glutamate dehydrogenase was expected to be obsolete and, indeed, deletion of its gene gdh increased glutarate titers by 10%. Glutarate production by the final strain was tested in bioreactors (n = 2) in order to investigate stability and reliability of the process. The most efficient glutarate production from glucose was achieved by fed-batch fermentation (n = 1) with a volumetric productivity of 0.32 g L-1 h-1, an overall yield of 0.17 g g-1 and a titer of 25 g L-1.
Collapse
Affiliation(s)
- Fernando Pérez-García
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - João M P Jorge
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Annika Dreyszas
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
31
|
Tsuge Y, Kawaguchi H, Yamamoto S, Nishigami Y, Sota M, Ogino C, Kondo A. Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine. Biosci Biotechnol Biochem 2018; 82:1252-1259. [DOI: 10.1080/09168451.2018.1452602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate.
Collapse
Affiliation(s)
- Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University , Kanazawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University , Kanazawa, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University , Kobe, Japan
| | | | | | | | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University , Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University , Kobe, Japan
| |
Collapse
|
32
|
Pérez-García F, Wendisch VF. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 2018; 365:5047308. [DOI: 10.1093/femsle/fny166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
33
|
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5901-5910. [DOI: 10.1007/s00253-018-9085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
34
|
Zhang B, Ye BC. Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production. 3 Biotech 2018; 8:247. [PMID: 29744279 DOI: 10.1007/s13205-018-1267-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
Abstract
5-Aminolevulinic acid (ALA) is a non-protein amino acid with a significant potential for cancer treatment and plant stress resistance. Microbial fermentation has gradually replaced the traditional chemical-based method for ALA production, thus increasing the need for high-ALA-producing strains. In this study, we engineered the glutamate producing strain, Corynebacterium glutamicum S9114, for ALA production. To efficiently convert l-glutamate to ALA, hemA and hemL from Salmonella typhimurium and Escherichia coli were tandemly overexpressed. In addition, ncgl1221 encoding a glutamate transporter was deleted to block glutamate secretion and thus improve ALA production. Furthermore, the intrinsic ribosome-binding site (RBS) of hemB was replaced by a relatively weak RBS to reduce the conversion of ALA to porphyrin. Transcriptional and fermentation data confirmed that inactivation of lysE and putP reduced the conversion of glutamate to arginine and proline, which also contribute to ALA production. The final SA14 strain produced 895 mg/L concentration of ALA after 72 h incubation in a shake flask. This amount was 58-fold higher than that obtained by the parent strain C. glutamicum S9114. The results demonstrate the potential of C. glutamicum S9114 for efficient ALA production and provide new targets for the development of ALA-producing strains.
Collapse
Affiliation(s)
- Bin Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
35
|
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8890-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Xu JZ, Yang HK, Zhang WG. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit Rev Biotechnol 2018; 38:1061-1076. [PMID: 29480038 DOI: 10.1080/07388551.2018.1437387] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reduced nicotinamide adenine nucleotide phosphate (NADPH), which is one of the key cofactors in the metabolic network, plays an important role in the biochemical reactions, and physiological function of amino acid-producing strains. The manipulation of NADPH availability and form is an efficient and easy method of redirecting the carbon flux to the amino acid biosynthesis in industrial strains. In this review, we survey the metabolic mode of NADPH. Furthermore, we summarize the research developments in the understanding of the relationship between NADPH metabolism and amino acid biosynthesis. Detailed strategies to manipulate NADPH availability are addressed based on this knowledge. Finally, the uses of NADPH manipulation strategies to enhance the metabolic function of amino acid-producing strains are discussed.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| | - Han-Kun Yang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , PR China
| |
Collapse
|
37
|
Hyperthermophilic Carbamate Kinase Stability and Anabolic In Vitro Activity at Alkaline pH. Appl Environ Microbiol 2018; 84:AEM.02250-17. [PMID: 29150502 DOI: 10.1128/aem.02250-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
Abstract
Carbamate kinases catalyze the conversion of carbamate to carbamoyl phosphate, which is readily transformed into other compounds. Carbamate forms spontaneously from ammonia and carbon dioxide in aqueous solutions, so the kinases have potential for sequestrative utilization of the latter compounds. Here, we compare seven carbamate kinases from mesophilic, thermophilic, and hyperthermophilic sources. In addition to the known enzymes from Enterococcus faecalis and Pyrococcus furiosus, the previously unreported enzymes from the hyperthermophiles Thermococcus sibiricus and Thermococcus barophilus, the thermophiles Fervidobacterium nodosum and Thermosipho melanesiensis, and the mesophile Clostridium tetani were all expressed recombinantly, each in high yield. Only the clostridial enzyme did not show catalysis. In direct assays of carbamate kinase activity, the three hyperthermophilic enzymes display higher specific activities at elevated temperatures, greater stability, and remarkable substrate turnover at alkaline pH (9.9 to 11.4). Thermococcus barophilus and Thermococcus sibiricus carbamate kinases were found to be the most active when the enzymes were tested at 80°C, and maintained activity over broad temperature and pH ranges. These robust thermococcal enzymes therefore represent ideal candidates for biotechnological applications involving aqueous ammonia solutions, since nonbuffered 0.0001 to 1.0 M solutions have pH values of approximately 9.8 to 11.8. As proof of concept, here we also show that carbamoyl phosphate produced by the Thermococcus barophilus kinase is efficiently converted in situ to carbamoyl aspartate by aspartate transcarbamoylase from the same source organism. Using acetyl phosphate to simultaneously recycle the kinase cofactor ATP, at pH 9.9 carbamoyl aspartate is produced in high yield and directly from solutions of ammonia, carbon dioxide, and aspartate.IMPORTANCE Much of the nitrogen in animal wastes and used in fertilizers is commonly lost as ammonia in water runoff, from which it must be removed to prevent downstream pollution and evolution of nitrogenous greenhouse gases. Since carbamate kinases transform ammonia and carbon dioxide to carbamoyl phosphate via carbamate, and carbamoyl phosphate may be converted into other valuable compounds, the kinases provide a route for useful sequestration of ammonia, as well as of carbon dioxide, another greenhouse gas. At the same time, recycling the ammonia in chemical synthesis reduces the need for its energy-intensive production. However, robust catalysts are required for such biotransformations. Here we show that carbamate kinases from hyperthermophilic archaea display remarkable stability and high catalytic activity across broad ranges of pH and temperature, making them promising candidates for biotechnological applications. We also show that carbamoyl phosphate produced by the kinases may be efficiently used to produce carbamoyl aspartate.
Collapse
|
38
|
Lee JH, Wendisch VF. Production of amino acids - Genetic and metabolic engineering approaches. BIORESOURCE TECHNOLOGY 2017; 245:1575-1587. [PMID: 28552565 DOI: 10.1016/j.biortech.2017.05.065] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/22/2023]
Abstract
The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Major in Food Science & Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Republic of Korea
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
39
|
Jorge JMP, Pérez-García F, Wendisch VF. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. BIORESOURCE TECHNOLOGY 2017; 245:1701-1709. [PMID: 28522202 DOI: 10.1016/j.biortech.2017.04.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Here, a new metabolic pathway for the production of 5-aminovalerate (5AVA) from l-lysine via cadaverine as intermediate was established and this three-step-pathway comprises l-lysine decarboxylase (LdcC), putrescine transaminase (PatA) and γ-aminobutyraldehyde dehydrogenase (PatD). Since Corynebacterium glutamicum is used for industrial l-lysine production, the pathway was established in this bacterium. Upon expression of ldcC, patA and patD from Escherichia coli in C. glutamicum wild type, production 5AVA was achieved. Enzyme assays revealed that PatA and PatD also converted cadaverine to 5AVA. Eliminating the by-products cadaverine, N-acetylcadaverine and glutarate in a genome-streamlined l-lysine producing strain expressing ldcC, patA and patD improved 5AVA production to a titer of 5.1gL-1, a yield of 0.13gg-1 and a volumetric productivity of 0.12gL-1h-1. Moreover, 5AVA production from the alternative feedstocks starch, glucosamine, xylose and arabinose was established.
Collapse
Affiliation(s)
- João M P Jorge
- Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Fernando Pérez-García
- Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
40
|
Zhang B, Yu M, Zhou Y, Li Y, Ye BC. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Microb Cell Fact 2017; 16:158. [PMID: 28938890 PMCID: PMC5610420 DOI: 10.1186/s12934-017-0776-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
Background l-Ornithine is a non-protein amino acid with extensive applications in medicine and the food industry. Currently, l-ornithine production is based on microbial fermentation, and few microbes are used for producing l-ornithine owing to unsatisfactory production titer. Results In this study, Corynebacterium glutamicum S9114, a high glutamate-producing strain, was developed for l-ornithine production by pathway engineering. First, argF was deleted to block l-ornithine to citrulline conversion. To improve l-ornithine production, ncgl1221 encoding glutamate transporter, argR encoding arginine repressor, and putP encoding proline transporter were disrupted. This base strain was further engineered by attenuating oxoglutarate dehydrogenase to increase l-ornithine production. Plasmid-based overexpression of argCJBD operon and lysine/arginine transport protein LysE was tested to strengthen l-ornithine synthesis and transportation. This resulted in efficient l-ornithine production at a titer of 18.4 g/L. Conclusion These results demonstrate the potential of Corynebacterium glutamicum S9114 for efficient l-ornithine production and provide new targets for strain development. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0776-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miao Yu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yixue Li
- Key Laboratory of Systems Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
41
|
Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol 2017; 258:59-68. [DOI: 10.1016/j.jbiotec.2017.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
|
42
|
Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2017; 2:87-96. [PMID: 29062965 PMCID: PMC5637227 DOI: 10.1016/j.synbio.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Collapse
|
43
|
Pérez-García F, Max Risse J, Friehs K, Wendisch VF. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600646] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Joe Max Risse
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
44
|
Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering. J Biotechnol 2017; 244:25-33. [PMID: 28163092 DOI: 10.1016/j.jbiotec.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysEMGA3. Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysEPB1 and lysE2PB1. The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysECg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysECg while overexpression of lysEMGA3, lysEPB1 and lysE2PB1 had no measurable effect.
Collapse
Affiliation(s)
- Ingemar Nærdal
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Roman Netzer
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Marta Irla
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Anne Krog
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Trygve Brautaset
- NTNU, Norwegian University of Science and Technology, Department of Biotechnology, Trondheim, Norway.
| |
Collapse
|
45
|
Jorge JMP, Nguyen AQD, Pérez-García F, Kind S, Wendisch VF. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng 2016; 114:862-873. [PMID: 27800627 DOI: 10.1002/bit.26211] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/04/2016] [Accepted: 10/28/2016] [Indexed: 11/07/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid widespread in Nature. Among the various uses of GABA, its lactam form 2-pyrrolidone can be chemically converted to the biodegradable plastic polyamide-4. In metabolism, GABA can be synthesized either by decarboxylation of l-glutamate or by a pathway that starts with the transamination of putrescine. Fermentative production of GABA from glucose by recombinant Corynebacterium glutamicum has been described via both routes. Putrescine-based GABA production was characterized by accumulation of by-products such as N-acetyl-putrescine. Their formation was abolished by deletion of the spermi(di)ne N-acetyl-transferase gene snaA. To improve provision of l-glutamate as precursor 2-oxoglutarate dehydrogenase activity was reduced by changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and by maintaining the inhibitory protein OdhI in its inhibitory form by changing amino acid residue 15 from threonine to alanine. Putrescine-based GABA production by the strains described here led to GABA titers up to 63.2 g L-1 in fed-batch cultivation at maximum volumetric productivities up to 1.34 g L-1 h-1 , the highest volumetric productivity for fermentative GABA production reported to date. Moreover, GABA production from the carbon sources xylose, glucosamine, and N-acetyl-glucosamine that do not have competing uses in the food or feed industries was established. Biotechnol. Bioeng. 2017;114: 862-873. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- João M P Jorge
- Faculty of Biology and CeBiTec, Genetics of Prokaryotes, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany
| | - Anh Q D Nguyen
- Faculty of Biology and CeBiTec, Genetics of Prokaryotes, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany.,evocatal GmbH, Monheim, Germany
| | - Fernando Pérez-García
- Faculty of Biology and CeBiTec, Genetics of Prokaryotes, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany
| | | | - Volker F Wendisch
- Faculty of Biology and CeBiTec, Genetics of Prokaryotes, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany
| |
Collapse
|
46
|
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb Cell Fact 2016; 15:154. [PMID: 27618862 PMCID: PMC5020477 DOI: 10.1186/s12934-016-0553-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022] Open
Abstract
Background The steadily growing world population and our ever luxurious life style, along with the simultaneously decreasing fossil resources has confronted modern society with the issue and need of finding renewable routes to accommodate for our demands. Shifting the production pipeline from raw oil to biomass requires efficient processes for numerous platform chemicals being produced with high yield, high titer and high productivity. Results In the present work, we established a de novo bio-based production process for the two carbon-5 platform chemicals 5-aminovalerate and glutarate on basis of the lysine-hyperproducing strain Corynebacterium glutamicum LYS-12. Upon heterologous implementation of the Pseudomonas putida genes davA, encoding 5-aminovaleramidase and davB, encoding lysine monooxygenase, 5-aminovalerate production was established. Related to the presence of endogenous genes coding for 5-aminovalerate transaminase (gabT) and glutarate semialdehyde dehydrogenase, 5-aminovalerate was partially converted to glutarate. Moreover, residual l-lysine was secreted as by-product. The issue of by-product formation was then addressed by deletion of the lysE gene, encoding the l-lysine exporter. Additionally, a putative gabT gene was deleted to enhance 5-aminovalerate production. To fully exploit the performance of the optimized strain, fed-batch fermentation was carried out producing 28 g L−1 5-aminovalerate with a maximal space–time yield of 0.9 g L−1 h−1. Conclusions The present study describes the construction of a recombinant microbial cell factory for the production of carbon-5 platform chemicals. Beyond a basic proof-of-concept, we were able to specifically increase the production flux of 5-aminovalerate thereby generating a strain with excellent production performance. Additional improvement can be expected by removal of remaining by-product formation and bottlenecks, associated to the terminal pathway, to generate a strain being applicable as centerpiece for a bio-based production of 5-aminovalerate.
Collapse
Affiliation(s)
| | - Gideon Gießelmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|