1
|
Wang X, Yi F, Zou C, Yan Q, Bashir MH, Ahmed W, Mahmood SU, Wu J, Ali S. Exposure to spaceflight enhances the virulence of Purpureocillium lilacinum against Tetranychus cinnabarinus: modulation of the host's enzyme activities and microbiome. Arch Microbiol 2025; 207:43. [PMID: 39853408 DOI: 10.1007/s00203-024-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
Multiple studies have been conducted to investigate the impact of space conditions on human, plant, and microbial life. This research investigated the virulence of spaceflight mutants of the entomopathogenic fungus Purpureocillium lilacinum (HP7, HP36, HP52) and its original strain (SP535) against Tetranychus cinnabarinus as well as examination of the T. cinnabarinus immune response, including alterations in enzyme profiles and microbiome composition post fungal application. Our observations revealed contrasting, time-specific differences in pathogenicity and tissue infection between the ground-based isolate and spaceflight mutant isolates. Analysis of detoxifying and antioxidant enzymes showed a significant reduction in enzyme activities T. cinnabarinus infected with the most virulent spaceflight mutants at 36 h post-fungal infection, compared to ground-based isolates. Additionally, the microbiota was reduced due to a fungal infection, partly due to decreased antioxidant enzyme activities. Our findings indicate that changes in the microbiota of T. cinnabarinus following infection with P. lilacinum (both ground-based and spaceflight mutant isolates) resulted in variations in metabolism and genetic information-related KEGG pathways. This data can help identify potential changes in the host immune system that drive increased virulence after spaceflight mutation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Fangzhao Yi
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Chengli Zou
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Yan
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | | | - Waqar Ahmed
- Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Syed Usman Mahmood
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, Guangdong, China
| | - Jianhui Wu
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaukat Ali
- Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Corval ARDC, de Carvalho LAL, Mesquita E, Fiorotti J, Corrêa TA, Bório VS, Carneiro ADS, Pinheiro DG, Coelho IDS, Santos HA, Fernandes EKK, Angelo IDC, Bittencourt VREP, Golo PS. Transcriptional responses of Metarhizium pingshaense blastospores after UV-B irradiation. Front Microbiol 2024; 15:1507931. [PMID: 39703704 PMCID: PMC11656200 DOI: 10.3389/fmicb.2024.1507931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Metarhizium is widely known for its role as an arthropod biocontrol agent and plant bioinoculant. By using mass-production industrial methods, it is possible to produce large amounts of fungal single-celled propagules (including blastospores) to be applied in the field. However, in the environment, the solar ultraviolet components (particularly UV-B) can harm the fungus, negatively impacting its pathogenicity toward the arthropod pest. The present study is the first to use comparative genome-wide transcriptome analyses to unveil changes in gene expression between Metarhizium pingshaense blastospores exposed or not to UV-B. Relative blastospores culturability was calculated 72 h after UV-B exposure and exhibited 100% culturability. In total, 6.57% (n = 728) out of 11,076 predicted genes in M. pingshaense were differentially expressed after UV-B exposure: 320 genes (44%; 320/728) were upregulated and 408 (56%; 408/720) were downregulated in the UV-B exposed blastospores. Results unveiled differentially expressed gene sets related to fungal virulence, production of secondary metabolites, and DNA repair associated with UV damage; genes related to virulence factors were downregulated, and genes associated with nucleotide excision repair were upregulated. These findings illustrate critical aspects of Metarhizium blastospores strategies to overcome UV-B damage and survive solar radiation exposures in insulated fields.
Collapse
Affiliation(s)
- Amanda Rocha da Costa Corval
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Emily Mesquita
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jéssica Fiorotti
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís Almeida Corrêa
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victória Silvestre Bório
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriani da Silva Carneiro
- Postgraduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Guariz Pinheiro
- Laboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Irene da Silva Coelho
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vânia R. E. P. Bittencourt
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Silva Golo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Zhang BX, Liu FF, Liu F, Qi WX, Si YQ, Ren HY, Zhang CQ, Rao XJ. The fungal protease BbAorsin contributes to growth, conidiation, germination, virulence, and antiphytopathogenic activities in Beauveria bassiana (Hypocreales: Cordycipitaceae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105936. [PMID: 38879328 DOI: 10.1016/j.pestbp.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 07/02/2024]
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China; Department of Scientific Research, Chuzhou University, Chuzhou 239000, China
| | - Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Feng Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Wen-Xuan Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Yan-Qin Si
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Hai-Yan Ren
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Cheng-Qi Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China.
| |
Collapse
|
4
|
Zhang BX, Liu FF, Liu F, Qi WX, Si YQ, Ren HY, Rao XJ. SfMBP: A novel microbial binding protein and pattern recognition receptor in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105142. [PMID: 38309673 DOI: 10.1016/j.dci.2024.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
The fall armyworm, Spodoptera frugiperda, poses a significant threat as a highly destructive agricultural pest in many countries. Understanding the complex interplay between the insect immune system and entomopathogens is critical for optimizing biopesticide efficacy. In this study, we identified a novel microbial binding protein, SfMBP, in S. frugiperda. However, the specific role of SfMBP in the immune response of S. frugiperda remains elusive. Encoded by the LOC118269163 gene, SfMBP shows significant induction in S. frugiperda larvae infected with the entomopathogen Beauveria bassiana. Consisting of 115 amino acids with a signal peptide, an N-terminal flexible region and a C-terminal β-sheet, SfMBP lacks any known functional domains. It is expressed predominantly during early larval stages and in the larval epidermis. Notably, SfMBP is significantly induced in larvae infected with bacteria and fungi and in SF9 cells stimulated by peptidoglycan. While recombinant SfMBP (rSfMBP) does not inhibit bacterial growth, it demonstrates binding capabilities to bacteria, fungal spores, peptidoglycan, lipopolysaccharides, and polysaccharides. This binding is inhibited by monosaccharides and EDTA. Molecular docking reveals potential Zn2+-interacting residues and three cavities. Furthermore, rSfMBP induces bacterial agglutination in the presence of Zn2+. It also binds to insect hemocytes and SF9 cells, enhancing phagocytosis and agglutination responses. Injection of rSfMBP increased the survival of S. frugiperda larvae infected with B. bassiana, whereas blocking SfMBP with the antibody decreased survival. These results suggest that SfMBP acts as a pattern recognition receptor that enhances pathogen recognition and cellular immune responses. Consequently, this study provides valuable insights for the development of pest control measures.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China; School of Biological Science and Food Engineering, Chuzhou, 239000, China
| | - Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Feng Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Wen-Xuan Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Yan-Qin Si
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Hai-Yan Ren
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China.
| |
Collapse
|
5
|
Liang C, Meng S, Wang Y, Xie X, Zhang Z, Cheng D. Preparation and activity of sodium carboxymethyl cellulose (CMC-Na) and Metarhizium rileyi ZHKUMR1 composite membrane. Int J Biol Macromol 2023; 253:126858. [PMID: 37703964 DOI: 10.1016/j.ijbiomac.2023.126858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Improving the adhesion capability of Metarhizium rileyi ZHKUMR1 on leaves enabled by the combination with Carboxymethyl Cellulose (CMCNa) materials is feasible to improve the utilization rate of Metarhizium rileyi. Herein, the CMC-Na-ZHKUMR1 membrane was prepared by simply mixing Carboxymethyl Cellulose (CMCNa) with Metarhizium rileyi. Through compatibility test, it was found that the inhibition rates of spore germination and mycelial growth of ZHKUMR1 were only 1.51 % and 3.13 % when the concentration of Carboxymethyl Cellulose (CMCNa) was 0.5 %. By adding 2 % of Carboxymethyl Cellulose (CMCNa) under UV irradiation for 30 min, the protective rate of spore germination of ZHKUMR1 was up to ~12.44 %, where the wettability on corn leaves was achieved and the retention of ZHKUMR1 spores on corn leaves was increased. After indoor activity determination, it was found that after 3 min of simulated rain washing, the lethal rate of corn leaves pretreated with CMC-Na-ZHKUMR1 on the 2nd instar larvae of Spodoptera frugiperda was 46.67 %, which was much higher than that of ZHKUMR1 spore suspension alone. This work clearly showed that Carboxymethyl Cellulose (CMCNa) effectively improved the field application effect of Metarhizium rileyi ZHKUMR1, and this strategy provided guidance for improving the field efficacy of Metarhizium rileyi ZHKUMR1.
Collapse
Affiliation(s)
- Chaopeng Liang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shaoke Meng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongqing Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Xie
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
6
|
Zhang BX, Liu FF, Liu F, Sun YX, Rao XJ. Dual RNA Sequencing of Beauveria bassiana-Infected Spodoptera frugiperda Reveals a Fungal Protease with Entomopathogenic and Antiphytopathogenic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12757-12774. [PMID: 37602431 DOI: 10.1021/acs.jafc.3c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Insect pests and phytopathogens significantly impact crop yield and quality. The fall armyworm (FAW) Spodoptera frugiperda and the phytopathogen Fusarium graminearum cause substantial economic losses in crops like barley and wheat. However, the entomopathogen Beauveria bassiana shows limited efficacy against FAW, and its antiphytopathogenic activities against F. graminearum remain unclear. Here, dual RNA sequencing was performed to identify differentially expressed genes in B. bassiana-infected FAW larvae. We found that the BbAorsin gene was significantly upregulated at 36 and 48 h post-infection. BbAorsin encodes a serine-carboxyl protease and is mainly expressed in blastospores and hyphae. Overexpression of BbAorsin in B. bassiana ARSEF2860 enhanced virulence against Galleria mellonella and FAW larvae and inhibited F. graminearum growth. The recombinant BbAorsin protein induced apoptosis and necrosis in FAW hemocytes and inhibited F. graminearum spore germination. These findings shed light on transcriptomic mechanisms governing insect-pathogen interactions, which could aid in developing dual-functional entomopathogens and anti-phytopathogens.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
- Department of Scientific Research, Chuzhou University, Chuzhou 239000, China
| | - Fang-Fang Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Feng Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| |
Collapse
|
7
|
Yin F, Hu L, Li Z, Yang X, Kendra PE, Hu Q. Effects of destruxin A on hemocytes of the domestic silkworm, Bombyx mori. Front Microbiol 2023; 14:1210647. [PMID: 37333627 PMCID: PMC10272401 DOI: 10.3389/fmicb.2023.1210647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Destruxin A (DA) is a mycotoxin isolated from the entomopathogenic fungus Metarhizium anisopliae which has demonstrated inhibitory activity against various insect species. However, the mechanism of inhibition on target sites in insects remains unknown. Methods In this research, the dose-response relationship between DA and morphological changes in body tissues and organs of domestic silkworm, Bombyx mori, were investigated by histopathological methods to identify the target sites that responded to DA. Results and Discussion The results showed that responses of individual tissues and organs varied with DA dosage and treatment time. At low doses (i.e., 0.01μg/g), the hemocytes were the most sensitive to DA with morphological changes apparent at 6 h after treatment. However, the muscle cells, fat body, and Malpighian tubules were unaltered. At higher doses (i.e., > 0.1μg/g), morphological changes were observed in muscle cells, fat body, and Malpighian tubules at 24 h after treatment. The results indicated that DA can be an immunosuppressant by damaging host cells like hemocytes, and at higher doses may potentially impact other physiological processes, including muscle function, metabolism, and excretion. The information presented in the current study will facilitate development of mycopesticides and novel immunosuppressants.
Collapse
Affiliation(s)
- Fei Yin
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lina Hu
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhenyu Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangbing Yang
- Subtropical Horticulture Research Station, USDA-Agricultural Research Service, Miami, FL, United States
| | - Paul E Kendra
- Subtropical Horticulture Research Station, USDA-Agricultural Research Service, Miami, FL, United States
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Sun YX, Zhang BX, Zhang WT, Wang Q, Toufeeq S, Rao XJ. UV-induced mutagenesis of Beauveria bassiana (Hypocreales: Clavicipitaceae) yields two hypervirulent isolates with different transcriptomic profiles. PEST MANAGEMENT SCIENCE 2023. [PMID: 36914429 DOI: 10.1002/ps.7452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) can infest over 300 plant species and cause huge economic losses. Beauveria bassiana (Hypocreales: Clavicipitaceae) is one of the most widely used entomopathogenic fungi (EPF). Unfortunately, the efficacy of B. bassiana against S. frugiperda is quite low. Hypervirulent EPF isolates can be obtained by ultraviolet (UV)-irradiation. Here we report on the UV-induced mutagenesis and transcriptomic analysis of B. bassiana. RESULTS The wild-type (WT) B. bassiana (ARSEF2860) was exposed to UV light to induce mutagenesis. Two mutants (named 6M and 8M) showed higher growth rates, conidial yields, and germination rates compared to the WT strain. The mutants showed higher levels of tolerance to osmotic, oxidative, and UV stresses. The mutants showed higher protease, chitinase, cellulose, and chitinase activities than WT. Both WT and mutants were compatible with the insecticides matrine, spinetoram, and chlorantraniliprole, but incompatible with emamectin benzoate. Insect bioassays showed that both mutants were more virulent against S. frugiperda and the greater wax moth Galleria mellonella. Transcriptomic profiles of the WT and mutants were determined by RNA-sequencing. The differentially expressed genes (DEGs) were identified. The gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, and hub gene analysis revealed virulence-related genes. CONCLUSION Our data demonstrate that UV-irradiation is a very efficient and economical technique to improve the virulence and stress resistance of B. bassiana. Comparative transcriptomic profiles of the mutants provide insights into virulence genes. These results provide new ideas for improving the genetic engineering and field efficacy of EPF. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Department of Science and Technology, Chuzhou University, Chuzhou, China
| | - Wen-Ting Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Qian Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Development and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| |
Collapse
|
9
|
Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Microbiol Spectr 2022; 10:e0076022. [PMID: 36314906 PMCID: PMC9769655 DOI: 10.1128/spectrum.00760-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metarhizium anisopliae is a commercialized entomopathogenic fungus widely used for the control of insect pests. Significant efforts have been expended to screen and/or select for isolates that display increased virulence toward target insect hosts. UV-induced mutagenesis has resulted in the isolation of a number of hypervirulent M. anisopliae mutants; however, the underlying mechanisms that have led to the desired phenotype have yet to be characterized. Here, we performed a comparative proteomic analysis of an M. anisopliae UV-induced hypervirulent mutant (MaUV-HV) and its wild-type parent using tandem mass tag (TMT)-based quantitative proteomics. A total of 842 differentially abundant proteins were identified, with 360 being more abundant in the hypervirulent mutant and 482 in the wild-type parent. In terms of differential abundance, the critical pathways affected included those involved in secondary metabolite production, virulence, and stress response. In addition, a number of genes involved in terpenoid biosynthesis pathways were identified as significantly mutated in the MaUV-HV strain. In particular, mutations in the farnesyl pyrophosphate synthase (FPPS1) and geranylgeranyl diphosphate synthase (GGPPS5) genes were seen. The effects of the FPPS1 mutation were confirmed via the construction and characterization of a targeted gene knockout strain (ΔMaFPPS1). The overall effects of the mutations were increased resistance to UV stress, faster growth, and increased virulence. These results provide mechanistic insights and new avenues for modulating fungal virulence in efforts to increase the biological control potential of insect-pathogenic fungi. IMPORTANCE The mechanisms that underlie and contribute to microbial (fungal) virulence are known to be varied; however, the identification of contributing pathways beyond known virulence factors remains difficult. Using TMT-based proteomic analyses, changes in the proteomes of an M. anisopliae hypervirulent mutant and its wild-type parent were determined. These data revealed alterations in pathogenicity, stress, and growth/developmental pathways, as well as pathways not previously known to affect virulence. These include terpenoid pathways that can be manipulated to increase the efficacy of fungal insect biological control agents for increased sustainable pest control.
Collapse
|
10
|
Spaceflight Changes the Production and Bioactivity of Secondary Metabolites in Beauveria bassiana. Toxins (Basel) 2022; 14:toxins14080555. [PMID: 36006216 PMCID: PMC9416017 DOI: 10.3390/toxins14080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on microorganism response spaceflight date back to 1960. However, nothing conclusive is known concerning the effects of spaceflight on virulence and environmental tolerance of entomopathogenic fungi; thus, this area of research remains open to further exploration. In this study, the entomopathogenic fungus Beauveria bassiana (strain SB010) was exposed to spaceflight (ChangZheng 5 space shuttle during 5 May 2020 to 8 May 2020) as a part of the Key Research and Development Program of Guangdong Province, China, in collaboration with the China Space Program. The study revealed significant differences between the secondary metabolite profiles of the wild isolate (SB010) and the spaceflight-exposed isolate (BHT021, BH030, BHT098) of B. bassiana. Some of the secondary metabolites/toxins, including enniatin A2, brevianamide F, macrosporin, aphidicolin, and diacetoxyscirpenol, were only produced by the spaceflight-exposed isolate (BHT021, BHT030). The study revealed increased insecticidal activities for of crude protein extracts of B. bassiana spaceflight mutants (BHT021 and BH030, respectively) against Megalurothrips usitatus 5 days post application when compared crude protein extracts of the wild isolate (SB010). The data obtained support the idea of using space mutation as a tool for development/screening of fungal strains producing higher quantities of secondary metabolites, ultimately leading to increased toxicity/virulence against the target insect host.
Collapse
|
11
|
Li C, Huang W, Zhou T, Zhao Q, Huang P, Qi P, Huang S, Huang S, Keyhani NO, Huang Z. Mutation of a prenyltransferase results in accumulation of subglutinols and destruxins and enhanced virulence in the insect pathogen, Metarhizium anisopliae. Environ Microbiol 2021; 24:1362-1379. [PMID: 34863012 DOI: 10.1111/1462-2920.15859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
The insect pathogenic fungus, Metarhizium anisopliae is a commercialized microbial agent used in biological control efforts targeting a diverse range of agricultural and other insect pests. The second step in the synthesis of a group of M. anisopliae α-pyrone diterpenoids (termed subglutinols) involves the activity of a prenyltransferase family geranylgeranyl diphosphate synthase (product of the subD/MaGGPPS5 gene). Here, we show that targeted gene disruption of MaGGPPS5 results in earlier conidial germination and faster greater vegetative growth compared to the wild type (WT) parent and complemented strains. In addition, insect bioassays revealed that the ΔMaGGPPS5 mutant strain displayed significantly increased virulence, with a ~50% decrease in the mean lethal time (LT50 , from 6 to 3 days) to kill (50% of) target insects, and an ~15-40-fold decrease in the mean lethal dose (LC50 ). Metabolite profiling indicated increased accumulation in the ΔMaGGPPS5 mutant of select subglutinols (A, B and C) and destruxins (A, A2, B and B2), the latter a set of fungal secondary metabolites that act as insect toxins, with a concomitant loss of production of subglutinol 'analogue 45'. These data suggest that the increased virulence phenotype seen for the ΔMaGGPPS5 strain can, at least in part, be attributed to a combination of faster growth and increased insect toxin production, linking the production of two different secondary metabolite pathways, and represent a novel approach for the screening of isolates with enhanced virulence via modulation of terpenoid secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Chengzhou Li
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Wenyou Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Tingting Zhou
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Qian Zhao
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Peiquan Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Ping Qi
- Guangzhou Institute for Food Inspection, Guangzhou, China
| | - Song Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China.,Guangzhou Institute for Food Inspection, Guangzhou, China
| | - Shuaishuai Huang
- Biotechnology Research Center, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Road, Gainesville, FL, 32611, USA
| | - Zhen Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| |
Collapse
|
12
|
White RL, Geden CJ, Kaufman PE, Johnson D. Comparative Virulence of Metarhizium anisopliae and Four Strains of Beauveria bassiana Against House Fly (Diptera: Muscidae) Adults With Attempted Selection for Faster Mortality. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1771-1778. [PMID: 33704481 DOI: 10.1093/jme/tjab027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Entomopathogenic fungi such as Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae/brunneum (Metchnikoff)/Petch have shown promising results for managing the house fly, Musca domestica L. A primary challenge of using these biological control agents (BCAs) in field situations is the time required to induce high adult house fly mortality, typically 6-7 d post-exposure. In this study, virulence of M. anisopliae (strain F52) and four B. bassiana strains were compared. The B. bassiana strains GHA and HF23 are used in commercial products and those were compared with two strains that were isolated from house flies on dairy farms (NFH10 and L90). Assays were conducted by exposing adult house flies to fungal-treated filter paper disks for 2 h. The lethal time to 50% mortality (LT50) at the high concentration of 1 × 109 conidia ranged from 3.8 to 5.2 d for all five strains. GHA, NFH10, and L90 killed flies faster than M. anisopliae strain F52; HF23 did not differ from either the M. anisopliae or the other B. bassiana strains. Attempts with the NFH10 strain to induce faster fly mortality through selection across 10 fungal to fly passages did not result in shorter time to fly death of the selected strain compared with the unselected strain.
Collapse
Affiliation(s)
- Roxie L White
- USDA-ARS, Center for Medical, Agriculture, and Veterinary Entomology, Gainesville, FL, USA
| | - Christopher J Geden
- USDA-ARS, Center for Medical, Agriculture, and Veterinary Entomology, Gainesville, FL, USA
| | - Phillip E Kaufman
- Department of Entomology, Texas A&M University, TAMU, College Station, TX, USA
| | - Dana Johnson
- USDA-ARS, Center for Medical, Agriculture, and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
13
|
Qiu L, Nie SX, Hu SJ, Wang SJ, Wang JJ, Guo K. Screening of Beauveria bassiana with high biocontrol potential based on ARTP mutagenesis and high-throughput FACS. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104732. [PMID: 33357554 DOI: 10.1016/j.pestbp.2020.104732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Beauveria bassiana is a promising biocontrol agent due to its entomopathogenic activities and residue-free characteristics. However, its susceptibility to abiotic stresses and naturally low virulence limit the effective application of this fungus. To effectively obtain fungal strains with high biocontrol potential, fluorescence-activated cell sorting (FACS) was used to screen mutant libraries generated by atmospheric and room temperature plasma (ARTP). Among about 8000 mutants obtained by ARTP mutagenesis, six candidate mutants were selected according to the forward scatter (FSC) signal readings of FACS. B6, with a 37.4% higher FSC reading than wild-type (WT), showed a 32.6% increase in virulence. It also presented a 13.5% decrease in median germinating time (GT50) and a 12.1% increase in blastospore production. Comparative analysis between insect transcriptional responses to B6 and WT infection showed that the immune response coupled with protein digestion and absorption progress was highly activated in B6-infected Galleria mellonella larvae, while fatty acid synthesis was suppressed after 3 days of infection. Our results confirmed the feasibility of sorting B. bassiana with high biocontrol potential via the combination of ARTP and FACS and facilitated the understanding of insect-pathogen interactions, highlighting a new strategy for modifying entomopathogenic fungi to improve the efficiency of biological control.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Sheng-Xin Nie
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shou-Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Kai Guo
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
14
|
Lovett B, St Leger RJ. Genetically engineering better fungal biopesticides. PEST MANAGEMENT SCIENCE 2018; 74:781-789. [PMID: 28905488 DOI: 10.1002/ps.4734] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Microbial insect pathogens offer an alternative means of pest control with the potential to wean us off our heavy reliance on chemical pesticides. Insect pathogenic fungi play an important natural role in controlling disease vectors and agricultural pests. Most commercial products employ Ascomycetes in the genera Metarhizium and Beauveria. However, their utilization has been limited by inconsistent field results as a consequence of sensitivity to abiotic stresses and naturally low virulence. Other naturally occurring biocontrol agents also face these hurdles to successful application, but the availability of complete genomes and recombinant DNA technologies have facilitated design of multiple fungal pathogens with enhanced virulence and stress resistance. Many natural and synthetic genes have been inserted into entomopathogen genomes. Some of the biggest gains in virulence have been obtained using genes encoding neurotoxic peptides, peptides that manipulate host physiology and proteases and chitinases that degrade the insect cuticle. Prokaryotes, particularly extremophiles, are useful sources of genes for improving entomopathogen resistance to ultraviolet (UV) radiation. These biological insecticides are environmentally friendly and cost-effective insect pest control options. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
15
|
Gao T, Wang Z, Huang Y, Keyhani NO, Huang Z. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Sci Rep 2017; 7:42727. [PMID: 28230074 PMCID: PMC5322360 DOI: 10.1038/srep42727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023] Open
Abstract
The emergence of insecticide resistant insect pests is of significant concern worldwide. The whitefly, Bemisia tabaci, is an important agricultural pest and has shown incredible resilience developing resistance to a number of chemical pesticides. Entomopathogenic fungi such as Isaria fumosorosea offer an attractive alternative to chemical pesticides for insect control, and this fungus has been shown to be an effective pathogen of B. tabaci. Little is known concerning the potential for the development of resistance to I. fumosorosea by B. tabaci. Five generations of successive survivors of B. tabaci infected by I. fumosorosea were assayed with I. fumosorosea. No significant differences in susceptibility to I. fumosorosea, number of ovarioles, or ovipostioning were seen between any of the generations tested. Effects of I. fumosorosea and cell-free ethyl acetate fractions derived from the fungus on the B. tabaci fat body, ovary, and vitellogenin were also investigated. These data revealed significant deformation and degradation of ovary tissues and associated vitellogenin by the fungal mycelium as well as by cell-free ethyl acetate fungal extracts. These data indicate the lack of the emergence of resistance to I. fumosorosea under the conditions tested and demonstrate invasion of the insect reproductive tissues during fungal infection.
Collapse
Affiliation(s)
- Tianni Gao
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaolei Wang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yü Huang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL32611, USA
| | - Zhen Huang
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL32611, USA
| |
Collapse
|