1
|
Wang Z, Li X, Liu H, Zhou T, Li J, Siddiqui MA, Lin CSK, Rafe Hatshan M, Huang S, Cairney JM, Wang Q. Enhancing methane production from anaerobic digestion of secondary sludge through lignosulfonate addition: Feasibility, mechanisms, and implications. BIORESOURCE TECHNOLOGY 2023; 390:129868. [PMID: 37844805 DOI: 10.1016/j.biortech.2023.129868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
This study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control. One substrate model demonstrated that 60 mg/g VS lignosulfonate boosted the hydrolysis rate, biochemical methane potential, and degradation extent of secondary sludge by 19.12 %, 21.87 %, and 21.11 %, respectively, compared to the control. Mechanisms unveiled that lignosulfonate destroyed sludge stability, promoted organic matter release, and enhanced subsequent hydrolysis, acidification, and methanogenesis by up to 31.30 %, 74.42 % and 28.16 %, respectively. Phytotoxicity assays confirmed that lignosulfonate promoted seed germination and root development of lettuce and Chinese cabbage, with seed germination index reaching 170 ± 10 % and 220 ± 22 %, respectively. The findings suggest that lignosulfonate addition offers a sustainable approach to sludge treatment, guiding effective management practices.
Collapse
Affiliation(s)
- Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Siyu Huang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
2
|
Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162772. [PMID: 36933744 DOI: 10.1016/j.scitotenv.2023.162772] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Ni Z, Zhou L, Lin Z, Kuang B, Zhu G, Jia J, Wang T. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131314. [PMID: 37030222 DOI: 10.1016/j.jhazmat.2023.131314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/26/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L-1 to 291.5 mg L-1. Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m-3. These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.
Collapse
Affiliation(s)
- Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ziyang Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China; Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
4
|
Yun H, Liang B, He Z, Li M, Zong S, Wang Z, Ge B, Zhang P, Li X, Wang A. Insights into methanogenesis of mesophilic-psychrophilic varied anaerobic digestion of municipal sludge with antibiotic stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117278. [PMID: 36634423 DOI: 10.1016/j.jenvman.2023.117278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Methane production through anaerobic digestion (AD) of municipal sludge is economic and eco-friendly, which is commonly affected by temperature and pollutants residues. However, little is known about methanogenesis in psychrophilic AD (PAD) with temperature variations that simulating seasonal variations and with antibiotic stress. Here, two groups of AD systems with oxytetracycline (OTC) were operated with temperature maintained at 35 °C and 15 °C or variation to explore the influence to methanogenesis. The acetic acid was noticeably accumulated in OTC groups initially (P < 0.001). Methane production was noticeably inhibited initially in PAD with OTC, but had been stimulated later at 35 °C. The dominant acetoclastic methanogens Methanosaeta gradually decreased to 15.48% and was replaced by methylotrophic Methanomethylovorans (73.43%) in PAD with OTC. Correspondingly, the abundances of functional genes related to methylotrophic methanogenesis were also higher in these groups. Besides, genes involving in methane oxidation had over 50 times higher abundances in PAD with OTC groups in the second phase. Further investigation is essential to understand the main dynamics of methanogenesis in PAD and to clear the related molecular mechanism for future methane production regulation in sludge systems.
Collapse
Affiliation(s)
- Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhangwei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bin Ge
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
5
|
Wu Q, Zou D, Zheng X, Liu F, Li L, Xiao Z. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157384. [PMID: 35843318 DOI: 10.1016/j.scitotenv.2022.157384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
As a common biological engineering technology, anaerobic digestion can stabilize sewage sludge and convert the carbon compounds into renewable energy (i.e., methane). However, anaerobic digestion of sewage sludge is severely affected by antibiotics. This review summarizes the effects of different antibiotics on anaerobic digestion of sewage sludge, including production of methane and volatile fatty acids (VFAs), and discusses the impact of antibiotics on biotransformation processes (solubilization, hydrolysis, acidification, acetogenesis and methanogenesis). Moreover, the effects of different antibiotics on microbial community structure (bacteria and archaea) were determined. Most of the research results showed that antibiotics at environmentally relevant concentrations can reduce biogas production mainly by inhibiting methanogenic processes, that is, methanogenic archaea activity, while a few antibiotics can improve biogas production. Moreover, the combination of multiple environmental concentrations of antibiotics inhibited the efficiency of methane production from sludge anaerobic digestion. In addition, some lab-scale pretreatment methods (e.g., ozone, ultrasonic combined ozone, zero-valent iron, Fe3+ and magnetite) can promote the performance of anaerobic digestion of sewage sludge inhibited by antibiotics.
Collapse
Affiliation(s)
- Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, Hunan 410128, China.
| |
Collapse
|
6
|
Rani J, Pandey KP, Kushwaha J, Priyadarsini M, Dhoble AS. Antibiotics in anaerobic digestion: Investigative studies on digester performance and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 361:127662. [PMID: 35872275 DOI: 10.1016/j.biortech.2022.127662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing consumption of antibiotics in both humans and animals has increased their load in municipal and pharmaceutical industry waste and may cause serious damage to the environment. Impact of antibiotics on the performance of commercially used anaerobic digesters in terms of bioenergy output, antibiotics' removal and COD removal have been compared critically with a few studies indicating >90% removal of antibiotics. AnMBR performed the best in terms of antibiotic removal, COD removal and methane yield. Most of the antibiotics investigated have adverse effects on microbiome associated with different stages and methane generation pathways of AD which has been assessed using high throughput technologies like metatranscriptomics, metaproteomics and flow cytometry. Perspectives have been given for understanding the fate and elimination of antibiotics from AD. The challenge of optimization and process improvement needs to be addressed to increase efficiency of the anaerobic digesters.
Collapse
Affiliation(s)
- Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
7
|
Feng L, Yuan F, Xie J, Duan X, Zhou Q, Chen Y, Wang Y, Fei Z, Yan Y, Wang F. Sulfadiazine inhibits hydrogen production during sludge anaerobic fermentation by affecting pyruvate decarboxylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156415. [PMID: 35660434 DOI: 10.1016/j.scitotenv.2022.156415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The overuse and random discharge of antibiotics can cause serious environmental pollution. Sludge acts as a repository for antibiotics, its anaerobic fermentation process will inevitably be affected. This study investigated the effects of a typical antibiotic contaminant, sulfadiazine (SDZ), on the anaerobic fermentation of sludge for hydrogen production. Results demonstrated that the production of hydrogen was significantly inhibited by SDZ, and the inhibition was enhanced with increasing SDZ content. Within 5 days, the cumulative amount of hydrogen with 500 mg SDZ/kg dry sludge was 8.5 mL, which was only 32.2% of that in the control (26.4 mL). Mechanistic investigation showed that the reduced hydrogen production when SDZ existed was mainly attributed to the suppression of pyruvate decarboxylation during the hydrogen production stage, and the diversity of microorganisms, especially the abundance of microorganisms and the activities of key enzymes closely related to hydrogen production were inhibited with SDZ, resulting in less hydrogen accumulation.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jing Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yanqing Wang
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China
| | - Zhenghao Fei
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China.
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
8
|
Xiao D, He H, Yan X, Díaz ND, Chen D, Ma J, Zhang Y, Li J, Keita M, Julien EO, Yan X. The response regularity of biohydrogen production by anthracite H 2-producing bacteria consortium to six conventional veterinary antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115088. [PMID: 35483251 DOI: 10.1016/j.jenvman.2022.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The impact of antibiotics on H2-producing bacteria must be considered in the industrialization of biological H2 production using livestock manure as raw resources. However, whether antibiotics that may be contained in excreta will threaten the safety of biohydrogen production needs to be researched. This study explored the impact characteristics and mechanism of six single antibiotics and three groups of compound antibiotics on H2 production. Experiments confirmed that most antibiotics have different degrees of H2 production inhibition, while some antibiotics, which like Penicillin G, Streptomycin Sulfate, and their compound antibiotics, could promote the growth of Ethanoligenens sp. and improve H2 yield on the contrary. Comprehensive analysis shows that the main inhibitory mechanisms were: (1) board-spectrum inhibition, (2) partial inhibition, (3) H2 consumption enhancement; and the enhancement mechanisms were: (1) enhance the growth of H2-producing bacteria, (2) enhanced starch hydrolysis, (3) inhibitory H2 consumption or release of acid inhibition. Meanwhile, experiment found that the effect of antibiotics on H2 producing was not only related to type, but also to dosage. Even one kind of antibiotic may have completely opposite effects on H2-producing bacteria under different dosage conditions. Inhibition of H2 yield was highest with Levofloxacin at 6.15 mg/L, gas production was reduced by 88.77%; and enhancement of H2 yield was highest with Penicillin G at 7.20 mg/L, the gas production increased by 72.90%. In the selection of raw material, the type and content of antibiotics demand a detailed investigation and analysis to ensure that the sustainability of H2 yield.
Collapse
Affiliation(s)
- Dong Xiao
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Hailun He
- School of Life Science, Central South University, Changsha, Hunan, 410083, China.
| | - Xiaoxin Yan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, China.
| | - Norberto Daniel Díaz
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, Universidad Católica de Salta, Salta, A4400EDD, Argentina.
| | - Dayong Chen
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Jing Ma
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Yidong Zhang
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Jin Li
- Xuzhou No.1 Peoples Hospital, Xuzhou, Jiangsu province, 221116, China.
| | - Mohamed Keita
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Essono Oyono Julien
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Xiaotao Yan
- School of Life Science, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
9
|
Hoshiko Y, Hirano R, Mustapha NA, Nguyen PDT, Fujie S, Sanchez-Torres V, Maeda T. Impact of 5-fluorouracil on anaerobic digestion using sewage sludge. CHEMOSPHERE 2022; 298:134253. [PMID: 35292276 DOI: 10.1016/j.chemosphere.2022.134253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The role of bacterial interaction is vital to control bacterial functions; however, it has not been fully understood in microbial consortia (including anaerobic digestion). In this study, fluorouracil (FU), which is an anticancer agent and a quorum sensing (QS) inhibitor to some of the Gram-negative bacteria was found to inhibit methane production from sewage sludge under anaerobic conditions, as shown in a result where methane production in the presence of FU was eight times lower than the control (sewage sludge without FU). Whereas FU did not influence the hydrolysis process, in the acidogenesis/acetogenesis process, butyrate, and acetate accumulated in samples with FU. Also, in the methanogenesis process, FU remarkably inhibited methane production by acetoclastic methanogens rather than by the hydrogenotrophic ones. This result agreed with the result that growth and methane production of Methanosarcina acetivorans C2A was inhibited in the presence of FU. However, the inhibitory effect of FU was high in the condition that both bacteria and archaea were active. It indicates that FU influences methanogens and bacteria in the process of methane fermentation. The analyses of microbial communities (bacteria and archaea) showed that the abundance ratio of the Firmicutes phyla is high, and hydrogenotrophic methanogens become dominant in the presence of FU. Conversely, the abundance of Spirochaetes significantly decreased under FU. The inhibition of methane production by FU was due to the growth inhibition of methanogenic archaea and the changes in the composition of the bacterial population.
Collapse
Affiliation(s)
- Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Ryutaro Hirano
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Nurul Asyifah Mustapha
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Phuong Dong Thi Nguyen
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan; Department of Chemical Engineering, The University of Danang, University of Science and Technology, Danang, Viet Nam
| | - Shuto Fujie
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Viviana Sanchez-Torres
- Escuela de Ingenieria Quimica, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Santander, Colombia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
10
|
Long-Term, Simultaneous Impact of Antimicrobials on the Efficiency of Anaerobic Digestion of Sewage Sludge and Changes in the Microbial Community. ENERGIES 2022. [DOI: 10.3390/en15051826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to evaluate the influence of simultaneous, long-term exposure to increasing concentrations of three classes of antimicrobials (β-lactams, fluoroquinolones and nitroimidazoles) on: (1) the efficiency of anaerobic digestion of sewage sludge, (2) qualitative and quantitative changes in microbial consortia that participate in methane fermentation, and (3) fate of antibiotic resistance genes (ARGs). Long-term supplementation of sewage sludge with a combination of metronidazole, amoxicillin and ciprofloxacin applied at different doses did not induce significant changes in process parameters, including the concentrations of volatile fatty acids (VFAs), or the total abundance of ARGs. Exposure to antibiotics significantly decreased methane production and modified microbial composition. The sequencing analysis revealed that the abundance of OTUs characteristic of Archaea was not correlated with the biogas production efficiency. The study also demonstrated that the hydrogen-dependent pathway of methylotrophic methanogenesis could significantly contribute to the stability of anaerobic digestion in the presence of antimicrobials. The greatest changes in microbial biodiversity were noted in substrate samples exposed to the highest dose of the tested antibiotics, relative to control. The widespread use of antimicrobials increases antibiotic concentrations in sewage sludge, which may decrease the efficiency of anaerobic digestion, and contribute to the spread of antibiotic resistance (AR).
Collapse
|
11
|
Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150647. [PMID: 34597560 DOI: 10.1016/j.scitotenv.2021.150647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 101407, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yuwei An
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yu Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Liyan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; School of resources and environmental engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Maeda T, Sabidi S, Sanchez-Torres V, Hoshiko Y, Toya S. Engineering anaerobic digestion via optimizing microbial community: effects of bactericidal agents, quorum sensing inhibitors, and inorganic materials. Appl Microbiol Biotechnol 2021; 105:7607-7618. [PMID: 34542684 DOI: 10.1007/s00253-021-11536-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Anaerobic digestion of sewage sludge (SS) is one of the effective ways to reduce the waste generated from human life activities. To date, there are many reports to improve or repress methane production during the anaerobic digestion of SS. In the anaerobic digestion process, many microorganisms work positively or negatively, and as a result of their microbe-to-microbe interaction and regulation, methane production increases or decreases. In other words, understanding the complex control mechanism among the microorganisms and identifying the strains that are key to increase or decrease methane production are important for promoting the advanced production of bioenergy and beneficial compounds. In this mini-review, the literature on methane production in anaerobic digestion has been summarized based on the results of antibiotic addition, quorum sensing control, and inorganic substance addition. By optimizing the activity of microbial groups in SS, methane or acetate can be highly produced. KEY POINTS: • Bactericidal agents such as an antibiotic alter microbial community for enhanced CH4 production. • Bacterial interaction via quorum sensing is one of the key points for biofilm and methane production. • Anaerobic digestion can be altered in the presence of several inorganic materials.
Collapse
Affiliation(s)
- Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan.
| | - Sarah Sabidi
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Santander, Colombia
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Shotaro Toya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| |
Collapse
|
13
|
Cai Y, Zheng Z, Wang X. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123938. [PMID: 33264986 DOI: 10.1016/j.jhazmat.2020.123938] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is used to treat waste and produce bioenergy. However, toxicants, which originate from the substrate, can inhibit or damage the digestion process. Methanogenic archaea (MA), which are the executor in the methanogenesis stage, are more sensitive than bacteria to these toxicants. This review discusses the effects of substrate-driven toxicants, namely, antibiotics, H2S and sulfate, heavy metals (HMs), long-chain fatty acids (LCFAs), and ammonia nitrogen, on the activity of MAs, methanogenic pathways, and the inter-genus succession of MAs. The adverse effects of these five toxicants on MA include effects on pH, damages to cell membranes, the prevention of protein synthesis, changes in hydrogen partial pressure, a reduction in the bioavailability of trace elements, and hindrance of mass transfer. These effects cause a reduction in MA activity and the succession of MAs and methanogenic pathways, which affect AD performance. Under the stress of these toxicants, succession occurs among HA (hydrogenotrophic methanogen), AA (acetoclastic methanogen), and MM (methylotrophic methanogen), especially HA gradually replaces AA as the dominant MA. Simultaneously, the dominant methanogenic pathway also changes from the aceticlastic pathway to other methanogenic pathways. A comprehensive understanding of the impact of toxicants on MA permits more specific targeting when developing strategies to mitigate or eliminate the effects of these toxicants.
Collapse
Affiliation(s)
- Yafan Cai
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China; Department of Biochemical conversion, Deutsches Biomassforschungszentrum gemeinnütziges GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Xiao L, Wang Y, Lichtfouse E, Li Z, Kumar PS, Liu J, Feng D, Yang Q, Liu F. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Digestion of Wastewater: A Review. Front Microbiol 2021; 11:611613. [PMID: 33584577 PMCID: PMC7875893 DOI: 10.3389/fmicb.2020.611613] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recycling waste into new materials and energy is becoming a major challenge in the context of the future circular economy, calling for advanced methods of waste treatment. For instance, microbially-mediated anaerobic digestion is widely used for conversion of sewage sludge into biomethane, fertilizers and other products, yet the efficiency of microbial digestion is limited by the occurrence of antibiotics in sludges, originating from drug consumption for human and animal health. Here we present antibiotic levels in Chinese wastewater, then we review the effects of antibiotics on hydrolysis, acidogenesis and methanogenesis, with focus on macrolides, tetracyclines, β-lactams and antibiotic mixtures. We detail effects of antibiotics on fermentative bacteria and methanogenic archaea. Most results display adverse effects of antibiotics on anaerobic digestion, yet some antibiotics promote hydrolysis, acidogenesis and methanogenesis.
Collapse
Affiliation(s)
- Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Yiping Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France.,State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenkai Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Dawei Feng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| |
Collapse
|
15
|
Swine manure valorization in fabrication of nutrition and energy. Appl Microbiol Biotechnol 2020; 104:9921-9933. [PMID: 33074416 DOI: 10.1007/s00253-020-10963-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Renewable energy can boost the growing population's need and rapid budgetary development. To reduce fossil fuel consumption is the initial purpose of renewable and sustainable energy, producing valuable bio-based products. The fermenters, using for pretreatment of swine manure, and involvement of swine carcasses are reported to enhance organic loading rate followed by improved biogas yield on household digesters. The compositions such as animal residues, pathogenic microbes, pharmaceutical residues and nutrient compositions including undigested feed are still confused. Therefore, it is mandatory to optimize and stabilize anaerobic practice and digestate filtration purification for consequential fertilizer consumption. The effective bio-methane recovery from energy-rich compounds is challenging due to slow degradation procedures. The pretreatment procedure could enhance lipid depolymerization and improve anaerobic fermentation. This article deeply focuses on biodegradation of swine manure. The components of this manure were evaluated and established several approaches to improve biogas production. Furthermore, recycling of co-digestates was discussed in detail as fertilizer consumption including hygienic aspects of manure and pretreatment strategies of biomass residues. KEY POINTS: • Co-digestion of manure and carcasses enhance bio-methane production. • Removel of ammonia from biogas digester may improve bio-methane gas. • A strong antimicrobial influence has been reported on biogas production.
Collapse
|
16
|
Schwan B, Abendroth C, Latorre-Pérez A, Porcar M, Vilanova C, Dornack C. Chemically Stressed Bacterial Communities in Anaerobic Digesters Exhibit Resilience and Ecological Flexibility. Front Microbiol 2020; 11:867. [PMID: 32477297 PMCID: PMC7235767 DOI: 10.3389/fmicb.2020.00867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/14/2020] [Indexed: 12/02/2022] Open
Abstract
Anaerobic digestion is a technology known for its potential in terms of methane production. During the digestion process, multiple metabolites of high value are synthesized. However, recent works have demonstrated the high robustness and resilience of the involved microbiomes; these attributes make it difficult to manipulate them in such a way that a specific metabolite is predominantly produced. Therefore, an exact understanding of the manipulability of anaerobic microbiomes may open up a treasure box for bio-based industries. In the present work, the effect of nalidixic acid, γ-aminobutyric acid (GABA), and sodium phosphate on the microbiome of digested sewage sludge from a water treatment plant fed with glucose was investigated. Despite of the induced process perturbations, high stability was observed at the phylum level. However, strong variations were observed at the genus level, especially for the genera Trichococcus, Candidatus Caldatribacterium, and Phascolarctobacterium. Ecological interactions were analyzed based on the Lotka–Volterra model for Trichococcus, Rikenellaceae DMER64, Sedimentibacter, Candidatus Cloacimonas, Smithella, Cloacimonadaceae W5 and Longilinea. These genera dynamically shifted among positive, negative or no correlation, depending on the applied stressor, which indicates a surprisingly dynamic behavior. Globally, the presented work suggests a massive resilience and stability of the methanogenic communities coupled with a surprising flexibility of the particular microbial key players involved in the process.
Collapse
Affiliation(s)
- Benjamin Schwan
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany
| | - Christian Abendroth
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany.,Robert Boyle Institut e.V., Jena, Germany
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de València, Paterna, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de València, Paterna, Spain.,Institute for Integrative Systems Biology, University of Valencia-CSIC, Paterna, Spain
| | - Cristina Vilanova
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de València, Paterna, Spain
| | - Christina Dornack
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany
| |
Collapse
|
17
|
Tápparo DC, Rogovski P, Cadamuro RD, Marques Souza DS, Bonatto C, Frumi Camargo A, Scapini T, Stefanski F, Amaral A, Kunz A, Hernández M, Treichel H, Rodríguez-Lázaro D, Fongaro G. Nutritional, Energy and Sanitary Aspects of Swine Manure and Carcass Co-digestion. Front Bioeng Biotechnol 2020; 8:333. [PMID: 32411682 PMCID: PMC7200981 DOI: 10.3389/fbioe.2020.00333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/25/2020] [Indexed: 01/28/2023] Open
Abstract
Renewable energy can assist the management of the effects of population growth and rapid economic development on the sustainability of animal husbandry. The primary aim of renewable energy is to minimize the use of fossil fuels via the creation of environmentally friendly energy products from depleted fossil fuels. Digesters that treat swine manure are extensively used in treatment systems; and inclusion of swine carcasses can increase the organic loading rate (OLR) thereby improving biogas yield and productivity on farms. However, the characteristics of the components including animal residues, proteins, lipids, remains of undigested feed items, antimicrobial drug residues, pathogenic microorganisms and nutrient contents, are complex and diverse. It is therefore necessary to manage the anaerobic process stability and digestate purification for subsequent use as fertilizer. Efficient methane recovery from residues rich in lipids is difficult because such residues are only slowly biodegradable. Pretreatment can promote solubilization of lipids and accelerate anaerobic digestion, and pretreatments can process the swine carcass before its introduction onto biodigesters. This review presents an overview of the anaerobic digestion of swine manure and carcasses. We analyze the characteristics of these residues, and we identify strategies to enhance biogas yield and process stability. We consider energy potential, co-digestion of swine manure and carcasses, physical, chemical, and biological pretreatment of biomass, sanitary aspects of swine manure and co-digestates and their recycling as fertilizers.
Collapse
Affiliation(s)
- Deisi Cristina Tápparo
- Western Paraná State University - UNIOESTE/CCET/PGEAGRI, Cascavel, Brazil
- Embrapa Suínos e Aves, Concórdia, Brazil
| | - Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Doris Sobral Marques Souza
- Laboratory of Applied Virology, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Fábio Stefanski
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - André Amaral
- Western Paraná State University - UNIOESTE/CCET/PGEAGRI, Cascavel, Brazil
| | | | - Marta Hernández
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
18
|
Mustapha NA, Toya S, Maeda T. Effect of Aso limonite on anaerobic digestion of waste sewage sludge. AMB Express 2020; 10:74. [PMID: 32300904 PMCID: PMC7162999 DOI: 10.1186/s13568-020-01010-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
The effect of Aso volcanic limonite was explored in anaerobic digestion using waste sewage sludge (WSS). In this study, methane and hydrogen sulfide were remarkably inhibited when Aso limonite was mixed with WSS as well as a significant reduction of ammonia. Although pH was lowered after adding Aso limonite, methane was still inhibited in neutralized pH condition at 7.0. Hydrolysis stage was not influenced by Aso limonite as supported by the result that a high protease activity was still detected in the presence of the material. However, acidogenesis stage was affected by Aso limonite as indicated by the different productions of organic acids. Acetic acid, was accumulated in the presence of Aso limonite due to the inhibition of methane production, except in the highest concentration of Aso limonite which the production of acetate may be inhibited. Besides, the production of propionate and butyrate reduced in accordance to the increased concentration of Aso limonite. In addition, Archaeal activity (methanogens) in WSS with Aso limonite was low in agreement with the low methane production. Thus, these results indicate that Aso limonite influences the acidogenesis and methanogenesis processes, by which the productions of methane and ammonia were inhibited. On the other hand, in the contactless of Aso limonite during the anaerobic digestion of WSS (Aso limonite was placed in the area of headspace in the vial), Aso limonite had the adsorptive ability for hydrogen sulfide from WSS, but not for methane. This contactless system of Aso limonite may be a practical means to remove hydrogen sulfide without inhibiting methane production as an important bioenergy source.
Collapse
|
19
|
Ni BJ, Zeng S, Wei W, Dai X, Sun J. Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134899. [PMID: 31757536 DOI: 10.1016/j.scitotenv.2019.134899] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
The macrolide antibiotic roxithromycin is widely detected in varying aquatic environments, especially in the wastewater systems, as an emerging contaminant and leads to significant impacts on the microorganisms involved. In this study, the impact of a shock load of roxithromycin on waste activated sludge (WAS) anaerobic digestion was comprehensively investigated. The biochemical methane potential tests showed that the methane production from WAS anaerobic digestion was significantly inhibited by roxithromycin. With the dosage of roxithromycin increasing from 0 to 1000 μg/L, the maximum cumulative methane production decreased from 163.5 ± 2.6 mL/g VS to 150.9 ± 4.5 mL/g VS. In particular, roxithromycin inhibited the acidogenesis and methanogenesis in WAS anaerobic digestion, leading to the decreased methane production. The methanogenic archaea in the studied system mainly belonged to the genera of Methanoseata, Candidatus Methanofastidiosum and Methanolinea and their relative abundances also decreased with roxithromycin addition. The analysis of antibiotic resistance genes (ARGs) in the digested sludge indicated that the abundances of most ARGs detected in this study were increased with roxithromycin exposure, suggesting the potential of growing antibiotic resistance, which was probably caused by enhancing the effect of esterases, methylases and phosphorylases. This work reveals how roxithromycin affects the WAS anaerobic digestion and the change of ARGs in the anaerobic digestion with roxithromycin exposure, and provides useful information for practical operation.
Collapse
Affiliation(s)
- Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuting Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
20
|
Nguyen PDT, Mustapha NA, Kadokami K, Garcia-Contreras R, Wood TK, Maeda T. Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium. Appl Microbiol Biotechnol 2018; 103:1485-1495. [PMID: 30554390 DOI: 10.1007/s00253-018-9553-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
Quorum sensing (QS) plays a key role in activating bacterial functions through small molecules called autoinducers. In this study, the QS of Gram-negative bacteria in waste sewage sludge (WSS) was downregulated by adding the quorum quenching enzyme, AiiM lactonase, which cleaved the acyl-homoserine lactone (AHL) autoinducer signals from Gram-negative bacteria, and subsequently methane production was inhibited by over 400%. The pH was lowered after 2 days in the anaerobic fermentation whereas protease activity at the hydrolysis step was almost the same with or without AiiM. The production of acetic acid significantly increased during the fermentation in the presence of AiiM. The bacterial community at day 2 indicated that the population of Gram-positive bacteria increased in the presence of AiiM, and the percentage of Gram-negative bacteria decreased in the WSS containing AiiM. The change in the bacterial community in the presence of AiiM may be due to the different antimicrobial agents produced in the WSS because some of the Gram-positive bacteria were killed by adding the solid-phase extraction (SPE) fraction from the WSS without AiiM. In contrast, the SPE fraction with AiiM had reduced bactericidal activity against Gram-negative bacteria. Thus, bacterial signaling between Gram-negative bacteria is critical for methane production by the microbial consortia.
Collapse
Affiliation(s)
- Phuong Dong Thi Nguyen
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan.,Department of Chemical Engineering, The University of Danang, University of Science and Technology, Danang, Vietnam
| | - Nurul Asyifah Mustapha
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan
| | - Kiwao Kadokami
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
| | | | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
21
|
Ye T, Li X, Zhang T, Su Y, Zhang W, Li J, Gan Y, Zhang A, Liu Y, Xue G. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:414-422. [PMID: 29571568 DOI: 10.1016/j.wasman.2018.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/04/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu2+/g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu2+/g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge.
Collapse
Affiliation(s)
- Tingting Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Ting Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinglong Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wenjuan Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanfei Gan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
22
|
Mustapha NA, Hu A, Yu CP, Sharuddin SS, Ramli N, Shirai Y, Maeda T. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge. Appl Microbiol Biotechnol 2018; 102:5323-5334. [DOI: 10.1007/s00253-018-9003-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 11/24/2022]
|
23
|
Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin. Appl Environ Microbiol 2018; 84:AEM.02692-17. [PMID: 29500266 PMCID: PMC5930344 DOI: 10.1128/aem.02692-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
The antibiotic monensin is fed to dairy cows to increase milk production efficiency. A fraction of this monensin is excreted into the cow manure. Previous studies have found that cow manure containing monensin can negatively impact the performance of anaerobic digesters, especially upon first introduction. Few studies have examined whether the anaerobic digester microbiome can adapt to monensin during the operating time. Here, we conducted a long-term time series study of four lab-scale anaerobic digesters fed with cow manure. We examined changes in both the microbiome composition and function of the anaerobic digesters when subjected to the dairy antibiotic monensin. In our digesters, monensin was not rapidly degraded under anaerobic conditions. The two anaerobic digesters that were subjected to manure from monensin feed-dosed cows exhibited relatively small changes in microbiome composition and function due to relatively low monensin concentrations. At higher concentrations of monensin, which we dosed directly to control manure (from dairy cows without monensin), we observed major changes in the microbiome composition and function of two anaerobic digesters. A rapid introduction of monensin to one of these anaerobic digesters led to the impairment of methane production. Conversely, more gradual additions of the same concentrations of monensin to the other anaerobic digester led to the adaptation of the anaerobic digester microbiomes to the relatively high monensin concentrations. A member of the candidate OP11 (Microgenomates) phylum arose in this anaerobic digester and appeared to be redundant with certain Bacteroidetes phylum members, which previously were dominating.IMPORTANCE Monensin is a common antibiotic given to dairy cows in the United States and is partly excreted with dairy manure. An improved understanding of how monensin affects the anaerobic digester microbiome composition and function is important to prevent process failure for farm-based anaerobic digesters. This time series study demonstrates how anaerobic digester microbiomes are inert to low monensin concentrations and can adapt to relatively high monensin concentrations by redundancy in an already existing population. Therefore, our work provides further insight into the importance of microbiome redundancy in maintaining the stability of anaerobic digesters.
Collapse
|
24
|
Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Appl Environ Microbiol 2018; 84:AEM.02632-17. [PMID: 29330191 DOI: 10.1128/aem.02632-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/07/2018] [Indexed: 11/20/2022] Open
Abstract
Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion (TM) for hydrogen and methane production from waste-activated sludge (WAS) was investigated. The TM process was also compared to a process with mesophilic alkaline fermentation followed by a mesophilic anaerobic digestion (MM) and one-stage mesophilic anaerobic digestion (M) process. The results showed that both hydrogen yield (74.5 ml H2/g volatile solids [VS]) and methane yield (150.7 ml CH4/g VS) in the TM process were higher than those (6.7 ml H2/g VS and 127.8 ml CH4/g VS, respectively) in the MM process. The lowest methane yield (101.2 ml CH4/g VS) was obtained with the M process. Taxonomic results obtained from metagenomic analysis showed that different microbial community compositions were established in the hydrogen reactors of the TM and MM processes, which also significantly changed the microbial community compositions in the following methane reactors compared to that with the M process. The dynamics of bacterial pathogens were also evaluated. For the TM process, the reduced diversity and total abundance of bacterial pathogens in WAS were observed in the hydrogen reactor and were further reduced in the methane reactor, as revealed by metagenomic analysis. The results also showed not all bacterial pathogens were reduced in the reactors. For example, Collinsella aerofaciens was enriched in the hydrogen reactor, which was also confirmed by quantitative PCR (qPCR) analysis. The study further showed that qPCR was more sensitive for detecting bacterial pathogens than metagenomic analysis. Although there were some differences in the relative abundances of bacterial pathogens calculated by metagenomic and qPCR approaches, both approaches demonstrated that the TM process was more efficient for the removal of bacterial pathogens than the MM and M processes.IMPORTANCE This study developed an efficient process for bioenergy (H2 and CH4) production from WAS and elucidates the dynamics of bacterial pathogens in the process, which is important for the utilization and safe application of WAS. The study also made an attempt to combine metagenomic and qPCR analyses to reveal the dynamics of bacterial pathogens in anaerobic processes, which could overcome the limitations of each method and provide new insights regarding bacterial pathogens in environmental samples.
Collapse
|
25
|
Hirano SI, Matsumoto N. Electrochemically applied potentials induce growth and metabolic shift changes in the hyperthermophilic bacterium Thermotoga maritima MSB8. Biosci Biotechnol Biochem 2017; 81:1619-1626. [DOI: 10.1080/09168451.2017.1329618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Bioelectrochemical systems are an attractive technology for regulating microbial activity. The effect of an applied potential on hydrolysis of starch in Thermotoga maritima as a model bacterium was investigated in this study. A cathodic potential (−0.6 and −0.8 V) induced 5-h earlier growth initiation of T. maritima with starch as the polymeric substrate than that without electrochemical regulation. Moreover, metabolic patterns of starch consumption were altered by the cathodic potential. While acetate, H2, and CO2 were the major products of starch consumption in the control experiment without electrolysis, lactate accumulation was detected rather than decreased acetate and H2 levels in the bioelectrochemical system experiments with the cathodic potential. These results indicate that the applied potential could control microbial activities related to the hydrolysis of polymeric organic substances and shift carbon and electron flux to a lactate-producing reaction in T. maritima.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko-shi, Japan
| | - Norio Matsumoto
- Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko-shi, Japan
| |
Collapse
|