1
|
Zhao Y, Zhang Q, Wang M, Wu B, Zhao S, Wei X, Diao Y, Tang Y, Hu J. Integrated analysis of miRNA and mRNA expression profiles in the bursa of Fabricius of specific pathogen-free chickens infected with avian reticuloendotheliosis virus strain SNV. Poult Sci 2025; 104:104847. [PMID: 39874788 PMCID: PMC11810829 DOI: 10.1016/j.psj.2025.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Reticuloendotheliosis virus (REV) is a gamma retrovirus that can cause immunosuppression, dwarf syndrome and acute reticulocytoma in poultry. The molecular mechanism by which REV infection leads to immunosuppression and tumorigenesis is poorly understood. In this study, we elucidated the regulatory network of miRNA-mRNA and the major signaling pathways involved in REV-SNV infection. Therefore, we used the spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens and then performed global miRNA and mRNA expression profiling by conducting high-throughput sequencing of 18 bursa of Fabricius samples collected at 7, 14, and 21 dpi. In total, 213 differentially expressed miRNAs (DEMs) and 3311 differentially expressed genes (DEGs) were identified. In the miRNA-mRNA network constructed based on the association analysis of these DEMs and DEGs, 1376 negatively correlated miRNA-mRNA pairs were identified; among them, 82 pairs were identified at 7 dpi, 203 pairs were identified at 14 dpi, and 873 pairs were identified at 21 dpi. Moreover, the results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the mRNAs in the network revealed greater enrichment of immune-related pathways, such as the immune system, signal transduction, cell growth and death, and signaling molecules and interactions. We confirmed the selected immune-related DEMs and their DEGs by conducting quantitative RT-PCR (qRT-PCR) analysis. These findings increased our understanding of the interactions of miRNAs and their target genes during infection with REV-SNV, and contributed to the understanding of host-virus interactions.
Collapse
Affiliation(s)
- Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Qing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Meng Wang
- College of Animal Science and Technology, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Saisai Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Xinhui Wei
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yi Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, China.
| | - Jingdong Hu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| |
Collapse
|
2
|
Zhao Y, Zhang Q, Wu B, Zhu Y, Ren H, Diao Y, Tang Y, Hu J. Expression characteristics of miR-222b-5p/MAPK10 in major immune organs of SPF chickens infected with avian reticuloendotheliosis virus strain SNV (REV-SNV). Comp Immunol Microbiol Infect Dis 2025; 116:102290. [PMID: 39675224 DOI: 10.1016/j.cimid.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Reticuloendotheliosis virus (REV) is a retrovirus in poultry that can atrophy immune organs and cause immunosuppression and tumor diseases. Our previous results revealed that, in the spleen of SPF chickens infected with REV-SNV, gga-miR-222b-5p expression was upregulated at 7, 14 and 21 dpi, and MAPK10 expression was downregulated, both of which were negatively correlated, with a targeted relationship between the two at 28, 35 and 42 dpi. To understand and analyze the expression patterns of MAPK10 and gga-miR-222b-5p in infected chickens at different times and in different immune organs, qRT-PCR was used to analyze the spleen, bursa of Fabricius and thymus samples of SPF chickens at 7, 14, 21, 28, 35 and 42 dpi. The results revealed that, in the spleen, MAPK10 gene expression was highly significantly downregulated at 7, 14, 21, 35 and 42 dpi, and gga-miR-222b-5p expression was significantly upregulated at six-time points. In the bursa of Fabricius, MAPK10 expression was significantly downregulated at six-time points, and gga-miR-222b-5p expression was upregulated at 7, 21, 28, 35 and 42 dpi. In the thymus, MAPK10 and gga-miR-222b-5p expression was upregulated at six-time points. A negative regulatory relationship was evident in the spleen and bursa of Fabricius but not in the thymus. This study suggested that gga-miR-222b-5p may induce the downregulation of MAPK10 in the spleen and bursa of Fabricius and promote tumor formation.
Collapse
Affiliation(s)
- Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Qing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yudong Zhu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Hui Ren
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yi Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, China.
| | - Jingdong Hu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| |
Collapse
|
3
|
Hong Y, Truong AD, Vu TH, Lee S, Heo J, Kang S, Lillehoj HS, Hong YH. Profiling and analysis of exosomal miRNAs derived from highly pathogenic avian influenza virus H5N1-infected White Leghorn chickens. Poult Sci 2022; 101:102123. [PMID: 36087445 PMCID: PMC9468452 DOI: 10.1016/j.psj.2022.102123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are small cell membrane-derived vesicles; they play important roles as mediators of cell-to-cell communication via delivery of their contents, such as proteins and microRNAs (miRNAs). In particular, exosomal miRNAs regulate the gene expression of recipient cells by inhibiting the expression of target mRNAs. In this study, we investigated the miRNA expression profiles of highly pathogenic avian influenza virus (HPAIV) H5N1-infected White Leghorn chickens and analyzed the functions of their target genes. After 3 d of infection with A/chicken/Vietnam/NA-01/2019 (H5N1), exosomes were isolated from the blood serum of White Leghorn chickens for small RNA sequencing. We accordingly identified 10 differentially expressed miRNAs (DE miRNAs; 5 upregulated and 5 downregulated) by comparing the exosomes derived from infected and noninfected chickens. The target genes of DE miRNAs were predicted using miRDB and TargetScan for Gene Ontology and KEGG pathway enrichment analyses. A majority of the target genes was found to be associated with the MAPK signaling pathway; several immune-related genes were identified as being regulated by these DE miRNAs. Moreover, we predicted DE miRNA binding sites in HPAIV RNA segments using the RNAhybrid algorithm. The findings of this study provide a theoretical basis for gaining insights into the regulatory mechanisms of exosomal miRNAs in response to HPAIV H5N1 infection and the identification of novel vaccine candidates.
Collapse
Affiliation(s)
- Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, Dong Da, Hanoi 100000, Vietnam
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Suyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
4
|
Nie F, Zhang J, Li M, Chang X, Duan H, Li H, Zhou J, Ji Y, Guo L. Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing. Bioengineered 2022; 13:9131-9144. [PMID: 35403571 PMCID: PMC9161911 DOI: 10.1080/21655979.2021.2008737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Furong Nie
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingfeng Zhang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Mengyun Li
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xuanniu Chang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haitao Duan
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haoyan Li
- Henan Chenxia Biomedical Co., Ltd, Zhengzhou, China
| | - Jia Zhou
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yudan Ji
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liangxing Guo
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
5
|
Yang J, Zhuang P, Cheng Z, Wang G. Comparative analysis of the exosomal contents of DF-1 cells infected by ALV-J. VET MED-CZECH 2022; 67:87-98. [PMID: 39171213 PMCID: PMC11334967 DOI: 10.17221/141/2020-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/16/2021] [Indexed: 08/23/2024] Open
Abstract
Exploration of the abnormal expression of exosomal molecules during the infection of avian leukosis virus subgroup J (ALV-J) is essential to provide a deeper understanding of the exosome's role in the viral pathogenesis involved. The study aimed to investigate the differentially expressed proteins and miRNAs of the exosomes derived from DF-1 cells infected by ALV-J, their gene function and involved signal pathways. We isolated exosomes from DF-1 cells infected by ALV-J. The differentially expressed proteins and miRNAs of the exosomes were determined by proteomics and transcription detection technology. A Gene Ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis identified the miRNAs target genes and the signal pathways regulated by the different proteins or/and miRNAs. A total of 116 proteins (58 upregulated and 58 downregulated) and 3 miRNAs (all upregulated) were determined. These proteins were involved in 155 signal pathways, in which the highest number of proteins involved in the cancer pathway was (up to) seven. The target genes of the miRNAs were involved in 3 signal pathways. Both the proteins and target genes of the miRNAs were involved in the Ribosome pathway and ECM-receptor interaction pathway. The results suggested that the ALV-J infection changed the proteins and miRNAs of the exosomes significantly.
Collapse
Affiliation(s)
- Jie Yang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Pingping Zhuang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ziqiang Cheng
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Guihua Wang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
6
|
Nosema bombycis microRNA-like RNA 8 (Nb-milR8) Increases Fungal Pathogenicity by Modulating BmPEX16 Gene Expression in Its Host, Bombyx mori. Microbiol Spectr 2021; 9:e0104821. [PMID: 34704799 PMCID: PMC8549759 DOI: 10.1128/spectrum.01048-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The fungus Nosema bombycis causes significant economic losses via parasitism of an economically important insect. MicroRNAs (miRNAs) play important roles in regulating host and parasite gene expression via mRNA degradation or by inhibiting protein translation. To investigate whether microRNA-like RNAs (milRNAs) regulate N. bombycis pathogenesis and to better understand the regulatory mechanisms underlying infection, we constructed small RNA libraries from N. bombycis hyphae during the schizont proliferation period. Eleven novel milRNAs were determined by RNA sequencing and stem-loop reverse transcriptase PCR (RT-PCR) assays. Moreover, a virulence-associated milRNA, Nb-milR8, was identified as critical for N. bombycis proliferation by binding and downregulating expression of its target gene, BmPEX16, in the host during infection. Silencing of Nb-milR8 or overexpression of the target BmPEX16 gene resulted in increased susceptibility of Bombyx mori to N. bombycis infection. Taken together, these results suggest that Nb-milR8 is an important virulence factor that acts as an effector to suppress host peroxidase metabolism, thereby facilitating N. bombycis proliferation. These results provide important novel insights into interactions between pathogenic fungi and their hosts. IMPORTANCE A thorough understanding of fungal pathogen adaptations is essential for treating fungal infections. Recent studies have suggested that the role of small RNAs expressed in fungal microsporidia genomes are important for elucidating the mechanisms of fungal infections. Here, we report 11 novel microRNA-like RNAs (milRNAs) from the fungal microsporidium Nosema bombycis and identified NB-milRNAs that adaptively regulate N. bombycis proliferation. In addition, we demonstrate that N. bombycis modulates small RNA (sRNA)-mediated infection by encoding an Nb-miR8 that downregulates the expression of the host peroxidase metabolism protein BmPEX16, which is essential for peroxisome membrane biogenesis and peroxisome assembly. These results significantly contribute to our understanding of the pathogenic mechanisms of fungi, and especially microsporidia, while providing important targets for genetical engineering-based treatment of microsporidia.
Collapse
|
7
|
Bai Y, Cui X, Gao X, Liu C, Lv X, Zheng S. Poly (I: C) inhibits reticuloendothelial virus replication in chicken macrophage-like cells through the activation of toll-like receptor-3 signaling. Mol Immunol 2021; 136:110-117. [PMID: 34098343 DOI: 10.1016/j.molimm.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Reticuloendothelial virus (REV) is widely found in many domestic poultry areas and results in severe immunosuppression of infected chickens. This increases the susceptibility to other pathogens, which causes economic losses to the poultry industry. The aim of our study was to determine whether polyinosinic-polycytidylic acid [Poly (I: C)] treatment could inhibit REV replication in chicken macrophage-like cell line, HD11. We found that Poly (I: C) treatment could markedly inhibit REV replication in HD11 from 24 to 48 h post infection (hpi). Additionally, Poly (I: C) treatment could switch HD11 from an inactive type into M1-like polarization from 24 to 48 hpi. Furthermore, Poly (I: C) treatment promoted interferon-β secretion from HD11 post REV infection. Moreover, Toll-like receptor-3 (TLR-3) mRNA and protein levels in HD11 treated with Poly (I: C) were markedly increased compared to those of HD11 not treated with Poly (I: C). The above results suggested that Poly (I: C) treatment switches HD11 into M1-like polarization to secret more interferon-β and activate TLR-3 signaling, which contributes to block REV replication. Our findings provide a theoretical reference for further studying the underlying pathogenic mechanism of REV and Poly (I: C) as a potential therapeutic intervention against REV infection.
Collapse
Affiliation(s)
- Yu Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Veterinary Pathophysiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinhua Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xueli Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chaonan Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoping Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shimin Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Yang D, Lv X, Zhang S, Zheng S. Tandem Mass Tag-Based Quantitative Proteomic Analysis of Chicken Bursa of Fabricius Infected With Reticuloendotheliosis Virus. Front Vet Sci 2021; 8:666512. [PMID: 34113672 PMCID: PMC8186552 DOI: 10.3389/fvets.2021.666512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 12/03/2022] Open
Abstract
Reticuloendotheliosis virus (REV) is a type C avian retrovirus that causes immunosuppression, dwarf syndrome, and lymphoma in infected hosts. In this study, we used tandem mass tag (TMT) labeling and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to characterize protein alterations in chicken bursa of Fabricius, before and after REV infection at 7, 14, 21, and 28 days. Our data showed that 1,127, 999, 910, and 1,138 differentially expressed proteins were significantly altered at 7, 14, 21, and 28 days after REV infection, respectively. Morphological analysis showed that REV infection reduced in cortical lymphocytes, bursal follicle atrophy, and nuclear damage. Bioinformatics analysis indicated these proteins were mainly involved with immune responses, energy metabolism, cellular processes, biological regulation, metabolic processes, response to stimuli, and multicellular organismal process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis showed that post-infection, proteins were enriched in the cell cycle, Wnt signaling, antigen processing and presentation, cytokine receptor interaction, adenosine 3′,5′-cyclic monophosphate signaling pathway, and NF-κB signaling. In addition, we observed that peroxiredoxin 4 (PRDX4), peroxiredoxin 6 (PRDX6), glutathione peroxidase 3 (GPX3), catalase (CAT), and peroxidasin (PXDN) were involved in oxidative stress. Some heat shock protein (HSP) family members such as HSPH1, DNAJA4, HSPA8, and HSPA4L also changed significantly after REV infection. These findings help clarify interactions between REV and the host and provides mechanistic insights on REV-induced host immunosuppression.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin, China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin, China
| | - Shujun Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
9
|
Hong Y, Truong AD, Lee J, Vu TH, Lee S, Song KD, Lillehoj HS, Hong YH. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Vet Res 2021; 52:36. [PMID: 33658079 PMCID: PMC7931527 DOI: 10.1186/s13567-021-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/02/2021] [Indexed: 12/31/2022] Open
Abstract
Exosomes are membrane vesicles containing proteins, lipids, DNA, mRNA, and micro RNA (miRNA). Exosomal miRNA from donor cells can regulate the gene expression of recipient cells. Here, Ri chickens were divided into resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) trait by genotyping of Mx and BF2 genes. Then, Ri chickens were infected with H5N1, a highly pathogenic avian influenza virus (HPAIV). Exosomes were purified from blood serum of resistant chickens for small RNA sequencing. Sequencing data were analysed using FastQCv0.11.7, Cutadapt 1.16, miRBase v21, non-coding RNA database, RNAcentral 10.0, and miRDeep2. Differentially expressed miRNAs were determined using statistical methods, including fold-change, exactTest using edgeR, and hierarchical clustering. Target genes were predicted using miRDB. Gene ontology analysis was performed using gProfiler. Twenty miRNAs showed significantly different expression patterns between resistant control and infected chickens. Nine miRNAs were up-regulated and 11 miRNAs were down-regulated in the infected chickens compared with that in the control chickens. In target gene analysis, various immune-related genes, such as cytokines, chemokines, and signalling molecules, were detected. In particular, mitogen-activated protein kinase (MAPK) pathway molecules were highly controlled by differentially expressed miRNAs. The result of qRT-PCR for miRNAs was identical with sequencing data and miRNA expression level was higher in resistant than susceptible chickens. This study will help to better understand the host immune response, particularly exosomal miRNA expression against HPAIV H5N1 and could help to determine biomarkers for disease resistance.
Collapse
Affiliation(s)
- Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
11
|
Gao C, Dang S, Zhai J, Zheng S. Regulatory mechanism of microRNA-155 in chicken embryo fibroblasts in response to reticuloendotheliosis virus infection. Vet Microbiol 2020; 242:108610. [PMID: 32122614 DOI: 10.1016/j.vetmic.2020.108610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 01/17/2023]
Abstract
Reticuloendotheliosis virus (REV) infection of multiple avian species can lead to a number of diseases such as runting syndrome, immunosuppression and oncogenesis, causing major economic losses. MicroRNAs play important roles in post-transcriptional regulation, effectively inhibiting protein synthesis, and participating in many biological processes in cells, including proliferation, differentiation, apoptosis, lipometabolism, virus infection and replication, and tumorigenesis. Based on our previous high-throughput sequencing results, we explore the regulatory mechanisms of microRNA-155(miR-155) in chicken embryo fibroblasts (CEFs) in response to REV infection. Our results revealed expression of miR-155 in CEFs after REV infection upregulated in a time- and dose-dependent manner, indicating miR-155 plays a role in REV infection in CEFs indeed. After transfected with miR-155-mimic and miR-155-inhibitor, we found overexpression of miR-155 targeted caspase-6 and FOXO3a to inhibit apoptosis and accelerate cell cycle, thus improving viability of REV-infected CEFs. This result also verified the protective role of miR-155 in the viability of CEFs in the presence of REV. Knockdown of miR-155 also supported these above conclusions. Our findings uncover a new mechanism of REV pathogenesis in CEFs, and also provide a theoretical basis for uncovering new effective treatment and prevention methods for RE based on miR-155.
Collapse
Affiliation(s)
- Chang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, People's Republic of China.
| | - Shengyuan Dang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, People's Republic of China.
| | - Jie Zhai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, People's Republic of China.
| | - Shimin Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, People's Republic of China.
| |
Collapse
|
12
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
13
|
Yakovlev AF. The Role of miRNA in Differentiation, Cell Proliferation, and Pathogenesis of Poultry Diseases. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus. Mol Immunol 2019; 111:87-94. [PMID: 31048099 DOI: 10.1016/j.molimm.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
Abstract
Reticuloendotheliosis virus (REV), an avian retrovirus is able to infect a variety of birds and can cause immunosuppression. The aim of this study was to investigate the relationship of thymic lymphocytes apoptosis, proliferation and T cell subtype with immunosuppression. In this study, a hundred and twenty one-day old SPF chickens were randomly divided into control groups (group C) and a REV infection groups (group I). The chickens of group I received intraperitoneal injections of REV with 104.62/0.1 ml TCID50. On day 14, 21, 28 and 35 post-inoculation, the chickens of C group and I group were sacrificed by cardiac puncture blood collection, and the thymic lymphocytes was sterile collected. The proliferation ability of lymphocytes was tested by Cell Counting Kit-8. Flow cytometry was performed to detect apoptosis, cell cycle stage and the change in T cell subtype. The RNA genome copy numbers of REV virus were detected using real-time PCR. Real-time PCR and western blotting were performed to analyze the expression of CyclinD1 and Bcl-2. Our results showed that REV genome copy number steadily declined, the proliferation potential of thymic lymphocytes was inhibited, lymphocytes apoptosed, the ratio of CD4+/CD8+ decreased and the expression of CyclinD1 and Bcl-2 were firstly inhibited, then rapidly recovered. Thus, immunosuppression lead by REV is closely related to the change of T cell subtype, apoptosis, and proliferation of thymic lymphocytes.
Collapse
|
15
|
Gao S, Jiang H, Sun J, Diao Y, Tang Y, Hu J. Integrated Analysis of miRNA and mRNA Expression Profiles in Spleen of Specific Pathogen-Free Chicken Infected with Avian Reticuloendotheliosis Virus Strain SNV. Int J Mol Sci 2019; 20:ijms20051041. [PMID: 30818863 PMCID: PMC6429403 DOI: 10.3390/ijms20051041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The Reticuloendotheliosis virus (REV) primarily causes avian severe immunosuppression, in addition to other symptoms, which include avian dwarfing syndrome and chronic tumors in lymphoid and other tissue. To date, REV’s molecular mechanisms leading to immunosuppression have not been fully elucidated. In the current study, we aimed to elucidate the role of microRNAs (miRNA) in regulating gene expression during REV infections. Therefore, we used a high-dose spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens, thereby inducing congenital infections. We analyzed miRNA and mRNA expression profiles using Next Generation Sequencing (NGS) in a total of 19 spleen samples that were collected at 7, 14, and 21 days post infection (dpi). The results showed that 63 differentially expressed miRNAs (DEmiRNAs) (30 known miRNAs and 33 novel miRNAs) and 482 differentially expressed target genes (DETGs) were identified. Integration analysis identified 886 known miRNA–mRNA and 580 novel miRNA–mRNA interaction pairs, which involved miRNAs that were inversely correlated with the above DETGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DETGs were considerably enriched in the immune-relevant pathways category, such as immune system, cell growth and death, signaling molecules and interaction, signal transduction, etc. We further verified selected immune-relevant miRNA and their DETGs while using quantitative RT-PCR (qRT-PCR). Overall, our data revealed valuable immune-related miRNA–mRNA interaction information that occurred during REV infections, thereby broadening our understanding of the REV-induced immunosuppression.
Collapse
Affiliation(s)
- Shuo Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Hao Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Jie Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Correspondence: (Y.T.); (J.H.); Tel.: +86-13127277623 (Y.T.); +86-15949803926 (J.H.)
| | - Jingdong Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Correspondence: (Y.T.); (J.H.); Tel.: +86-13127277623 (Y.T.); +86-15949803926 (J.H.)
| |
Collapse
|
16
|
Wang X, Jia Y, Wang X, Wang C, Lv C, Li X, Chu Z, Han Q, Xiao S, Zhang S, Yang Z. MiR-375 Has Contrasting Effects on Newcastle Disease Virus Growth Depending on the Target Gene. Int J Biol Sci 2019; 15:44-57. [PMID: 30662346 PMCID: PMC6329920 DOI: 10.7150/ijbs.25106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs regulate post-transcriptional gene expression via either translational repression or mRNA degradation. They have important roles in both viral infection and host anti-infection processes. We discovered that the miR-375 is significantly upregulated in Newcastle disease virus (NDV)-infected chicken embryonic visceral tissues using a small RNA sequencing approach. Further research revealed that the overexpression of miR-375 markedly decreases the replication of the velogenic NDV F48E9 and the lentogenic NDV La Sota by targeting the M gene of NDV in DF-1 cells. Interestingly, miR-375 has another target, ELAVL4, which regulates chicken fibrocyte cell cycle progression and decreases NDV proliferation. In addition, miR-375 can influence bystander cells by its secretion in culture medium. Our results indicated that miR-375 is an inhibitor of NDV, but can also enhance NDV growth by reducing the expression of its target ELAVL4. These results emphasize the complex roles of microRNAs in the regulation of viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|
17
|
Gao C, Zhai J, Dang S, Zheng S. Analysis of alternative splicing in chicken embryo fibroblasts in response to reticuloendotheliosis virus infection. Avian Pathol 2018; 47:585-594. [DOI: 10.1080/03079457.2018.1511047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chang Gao
- Laboratory Pathological Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Jie Zhai
- Laboratory Pathological Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shengyuan Dang
- Laboratory Pathological Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shimin Zheng
- Laboratory Pathological Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
18
|
Zhai J, Gao C, Fu L, Jing L, Dang S, Zheng S. Integrative Analyses of Transcriptome Sequencing Identify Functional miRNAs in the Chicken Embryo Fibroblasts Cells Infected With Reticuloendotheliosis Virus. Front Genet 2018; 9:340. [PMID: 30233638 PMCID: PMC6128223 DOI: 10.3389/fgene.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, we found a much higher proportion of reticuloendotheliosis virus (REV) infected chicken embryo fibroblasts (CEF) were in active cell division phase than that of control cells which indicated that REV can affect the fate of CEF. So, we performed high-throughput sequencing and transcriptomic analysis to identify functional miRNAs, in order to figure out the possible mechanism in the interaction of REV with CEF. In total, 50 differentially expressed miRNAs (DEmiRNAs) were identified. Then target genes of DEmiRNAs were predicted and identified by transcriptome profile results. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified target genes of miRNAs which showed that metabolism, cell cycle, and apoptosis were the most related pathways involved in infection of REV. We analyzed the genes related to cell cycle which indicated that CyclinD1-CDK6 complex played an important role in regulating the transition of the cell cycle from G1 phase to S phase during REV infection. Fluorescence microscope identification showed that REV inhibited the apoptosis of CEF which was in accordance with transcriptome results. A novel miRNA, named novel-72 was found, KEGG analysis was conducted to predict the biological function of its target genes which showed that those target genes were significantly enriched in mTOR signaling pathway and functioned to promote cell cycle and cell growth during the REV infection. In conclusion, REV could induce the up-regulation of cell metabolism, cell cycle and mTOR signaling pathway while inhibit apoptosis of the cell.
Collapse
Affiliation(s)
- Jie Zhai
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Gao
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lisheng Fu
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Long Jing
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shengyuan Dang
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shimin Zheng
- Department of Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Yang X, Gao W, Liu H, Li J, Chen D, Yuan F, Zhang Z, Wang H. MicroRNA transcriptome analysis in chicken kidneys in response to differing virulent infectious bronchitis virus infections. Arch Virol 2017; 162:3397-3405. [PMID: 28779232 DOI: 10.1007/s00705-017-3502-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Infectious bronchitis virus (IBV) can cause a highly contagious and acute respiratory disease in poultry. MicroRNAs (miRNAs) have emerged as a class of crucial regulators for gene expression and are involved in the regulation of virus defence and immunological processes. To understand miRNA regulation in chickens in response to IBV infection, high-throughput sequencing was performed to compare the small RNA libraries from the kidneys of chicken infected with SCK2, SCDY2 and LDT3-A. By comparing these data to healthy chickens, a total of 58 differentially expressed (DE) miRNAs were identified. The DE miRNAs were further classified into five miRNA expression patterns (up or down regulation compared to control). Using Gene Ontology (GO) enrichment prediction, the DE miRNAs were shown to be mostly associated with metabolic processes, catalytic activities, gene expression, binding activities and immune responses. Seven highly expressed miRNAs (gga-miR-30d, gga-miR-1454, gga-miR-7b, gga-miR-215-5p, gga-miR-1a-3p, gga-miR-3538 and gga-miR-2954) were selected for miRNA-mRNA conjoint analysis. Furthermore, the miRNAs inversely correlated with the corresponding target gene mRNAs. These seven miRNAs were considered to play an important role in IBV-host interactions and the differing virulence of IBV strains. This is the first demonstration that infection with different virulent IBVs elicits different expression of miRNAs in chicken kidneys; this expression also seems to be associated with the virulence of IBV. These results are significant for the study of immune responses to infection with different virulent IBVs mediated by miRNAs as well as the interaction between the chicken host and IBV.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Wenqian Gao
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Hui Liu
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Jianan Li
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Danyu Chen
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Feng Yuan
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Zhikun Zhang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, 610065, Sichuan, China.
| |
Collapse
|