1
|
Isaac SL, Mohd Hashim A, Faizal Wong FW, Mohamed Akbar MA, Wan Ahmad Kamil WNI. A Review on Bacteriocin Extraction Techniques from Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2025; 17:937-962. [PMID: 39432230 DOI: 10.1007/s12602-024-10384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Lactic acid bacteria (LAB) are widely known for the production of secondary metabolites such as organic acids and other bioactive compounds such as bacteriocins. Finding a broad application in food and healthcare, bacteriocins have received increased attention due to their inherent antimicrobial properties. However, the extraction of bacteriocins is often plagued with low yields due to the complexity of the extraction processes and the diversity of bacteriocins themselves. Here, we review the current knowledge related to bacteriocin extraction on the different extraction techniques for isolating bacteriocins from LAB. The advantages and disadvantages of each technique will also be critically appraised, taking into account factors such as extraction efficiency, scalability and cost-effectiveness. This review aims to guide researchers and professionals in selecting the most suitable approach for bacteriocin extraction from LAB by illuminating the respective advantages and limitations of various extraction techniques.
Collapse
Affiliation(s)
- Sharleen Livina Isaac
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Muhamad Afiq Mohamed Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Edet P, Ekpenyong M, Asitok A, Ubi D, Echa C, Edeghor U, Antai S. Bio-induced overproduction of heterocycloanthracin-like bacteriocin in Lysinibacillus macroides by Aspergillus austroafricanus: optimization of medium conditions and evaluation of potential applications. BMC Biotechnol 2025; 25:41. [PMID: 40405132 PMCID: PMC12101020 DOI: 10.1186/s12896-025-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Plants and microorganisms are at the forefront of natural exploitable bioresources for the discovery of novel bioactive compounds (BACs) to provide solutions to food and agricultural challenges. The present study aimed to produce a novel biotechnologically-relevant BAC from a mangrove sediment bacterium under optimized bioprocess medium conditions. The BAC-producing bacteria were isolated via the crowded plate technique, and medium optimization was performed via sequential statistics of response surface methodology (RSM). The RSM model predictions were optimized, validated, and scaled up in a 5-L bioreactor via submerged batch fermentation. The BAC was extracted with ethyl acetate, purified via silica gel column chromatography, and identified via semipreparative high-performance liquid chromatography using bioactive standards with known retention times. The biocontrol, antioxidant and biopreservation potential of the BAC were evaluated via standard methods. RESULTS The results revealed that strain GKRMS-A9 produced the largest inhibition zone diameter (ZND) of 17 mm against the susceptible mould. The bacterium and its susceptible mould were identified as Lysinibacillus macroides and Aspergillus austroafricanus strains, respectively. Bioprocess medium optimization produced 9.6 g L- 1 of the BAC with a ZND of 47.1 mm using 44.84% [v v- 1] rice processing effluent, 8.58 gL- 1 casamino acid, 1.39 g L- 1 MgSO4.7H2O, 2.78 g L- 1 CaCl2.2H2O, 16.94% [v v- 1] inoculum volume, and 10.45 g L- 1 Na2HPO4/NaH2PO4. The BAC concentration increased 48.7-fold in response to biological induction with susceptible mould. Silica gel chromatography revealed 9 bioactive fractions in the ethyl acetate extract, with fraction C (retention time of 9.02 min) eliciting the largest mean ZND of 38.1 ± 1.7 mm against Aspergillus austroafricanus. Fraction C was identified as a heterocycloanthracin-like class II bacteriocin with a molecular weight of 10.5 kDa. CONCLUSION The bacteriocin 'macroidin' is stable over a wide range of pH values and temperatures and has significant antimicrobial activity against Gram-positive food-borne and phytopathogenic strains of bacteria and moulds. Its antioxidant activities against DPPH and ABTS*+ radicals are comparable to those of ascorbic acid, making this biomolecule a promising agent for biopreservation and phytopathogen control applications in the food and agricultural sectors.
Collapse
Affiliation(s)
- Philomena Edet
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
- University of Calabar Collection of Microorganisms, University of Calabar, Calabar, Nigeria.
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms, University of Calabar, Calabar, Nigeria
| | - David Ubi
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Cecilia Echa
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Uwamere Edeghor
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.
- University of Calabar Collection of Microorganisms, University of Calabar, Calabar, Nigeria.
| |
Collapse
|
3
|
Tu Z, Choi D, Chen Y, Yu JH, Huynh TN. The food fermentation fungus Aspergillus oryzae is a source of natural antimicrobials against Listeria monocytogenes. J Dairy Sci 2025; 108:3444-3454. [PMID: 39947601 DOI: 10.3168/jds.2024-25719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/13/2025] [Indexed: 04/20/2025]
Abstract
Listeria monocytogenes is a highly adaptable foodborne pathogen that causes multiple foodborne illness outbreaks annually despite stringent food safety measures. The ubiquitous presence of L. monocytogenes in agricultural production environments provides easy routes of contamination to the human food production chain. The remarkable resilience of L. monocytogenes in harsh food processing and preservation conditions presents further challenges to controlling this pathogen in food and food processing plants. Furthermore, there is an increasing consumer demand for natural antimicrobials in food. Aspergillus oryzae is a food fermentation fungus with a generally recognized as safe status and is a workhorse in biotechnology applications. In this study, we examined the antimicrobial activity of Aspergillus oryzae fermentates and extracts toward L. monocytogenes, both in laboratory cultures and contaminated milk. Aspergillus oryzae-derived antimicrobials can be obtained in 2 culture conditions, which we term natural products 1 and 2 (NP1 and NP2). Laboratory cultures of L. monocytogenes were effectively and rapidly killed by both NP1 and NP2 extracts. In contaminated milk, the NP1 extract was bactericidal, whereas the NP2 extract was bacteriostatic. Nevertheless, the NP2 extract was heat stable, retaining antimicrobial activity even after boiling. Profiling L. monocytogenes transcriptional response to a subinhibitory level of NP2 fermentate, we observed significant shifts in amino acid metabolism and iron uptake, suggesting that these pathways can be tackled to increase the efficacy of NP2. Taken together, A. oryzae fermentates and extracts are promising candidates for natural antimicrobial treatments in food and food processing environments.
Collapse
Affiliation(s)
- Zepeng Tu
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Dasol Choi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yuxing Chen
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - TuAnh N Huynh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
4
|
Huang T, Li Z, Qu X, Yao G, Kwok LY, He Q, Zhang H. Preliminary Purification and Partial Characterization of a Functional Bacteriocin of Lacticaseibacillus paracasei Zhang and Mining for its Gene Cluster. Probiotics Antimicrob Proteins 2025; 17:487-499. [PMID: 38748307 PMCID: PMC11926035 DOI: 10.1007/s12602-024-10249-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 03/21/2025]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) have good potential for use as food biopreservatives. Lacticaseibacillus paracasei Zhang (L. paracasei Zhang) is both a food use and a probiotic bacterium. This study aimed to purify and preliminary characterize the active antibacterial metabolite of L. paracasei Zhang. The cell-free supernatant of L. paracasei Zhang was collected and purified by ultrafiltration and gel filtration chromatography. The 1-3 kDa active fraction could inhibit the growth of Staphylococcus aureus but not Escherichia coli. Further antibacterial activity assays revealed its capacity to suppress various foodborne and human opportunistic pathogens (including Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Listeria monocytogenes, and Bacillus cereus), but not fungi. The antibacterial activity showed good tolerance to heat (40 to 100 °C), acid-base (pH 2-3 and pH 6-10), and digestions by a number of industrial and animal/human enzymes (such as trypsin, pepsin, α-amylase, and protease K, except papain); these desired properties make it a suitable biopreservative to be used in harsh and complex industrial production processes. The high papain sensitivity suggested a proteinaceous/peptide nature of the bioactivity. Moreover, our genomic data mining for bacteriocin through BAGEL4 revealed an area of interest encoding a complete set of putative genes required for bacteriocin production. In conclusion, our study showed that L. paracasei Zhang can produce extracellular functional antibacterial metabolite, likely a class II bacteriocin. Our preliminary extraction and characterization of the active metabolite demonstrated that it has good potential to be used as a biopreservative or an agent for suppressing gastrointestinal infections.
Collapse
Affiliation(s)
- Tian Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhaojie Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- Qingdao Special Food Research Institute, QingdaoShandong, 266109, China
| | - Xinan Qu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- Qingdao Special Food Research Institute, QingdaoShandong, 266109, China
| | - Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
5
|
Wang C, Wambui J, Fernandez-Cantos MV, Jurt S, Broos J, Stephan R, Kuipers OP. Heterologous Expression and Characterization of Estercin A, a Class II Lanthipeptide Derived from Clostridium estertheticum CF016, with Antimicrobial Activity against Clinically Relevant Pathogens. JOURNAL OF NATURAL PRODUCTS 2025; 88:262-273. [PMID: 39814593 DOI: 10.1021/acs.jnatprod.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine. In this study, we heterologously expressed and structurally characterized estercin A, an unprecedented class II lanthipeptide derived from Clostridium estertheticum CF016 in Escherichia coli. Comprising 27 amino acids, estercin A features three overlapping (methyl-)lanthionine rings, with a shorter C-terminal part compared to most reported class II lanthipeptides. Estercin A exhibited selective antimicrobial properties against methicillin-resistant Staphylococcus aureus, bowel infection-associated Clostridium perfringens and Clostridium tetani. The mode of action of estercin A was determined as binding to lipid II on the cell membrane. Estercin A exhibited stability across a range of pH values and temperatures and showed resistance to degradation by trypsin. Our findings highlight estercin A as a novel and stable antimicrobial peptide with significant potential in combating clinically relevant pathogens.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
6
|
Li Y, Ma H, Pan R, Long Y, Zhao Y, Yu M, Peng J, Ma Y. Optimisation of cultivation conditions for Bacillus velezensis G7 from mangrove plants and exploration of potential bacteriocins. Front Pharmacol 2025; 16:1530043. [PMID: 40078294 PMCID: PMC11897483 DOI: 10.3389/fphar.2025.1530043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Bacteriocin P7 was extracted from the cell-free supernatant (CFS) of Bacillus velezensis G7, which is a strain isolated from mangrove plants. Methods In this study, the culture conditions of B. velezensis G7 were optimised using an orthogonal test. The (CFS) was subsequently purified by using TA-GF75 gel chromatography, Tiderose Q HP anion chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). Finally, the bacteriocin was identified by using LC-MS/MS. Results and discussion The optimal culture conditions for B. velezensis G7 are 4.5 g/100 mL glucose, 1.5 g/100 mL yeast, and 1.2 g/100 mL MgSO4·7H2O. The stability of the CFS is affected by several factors, including heat, UV treatment and different storage conditions. High temperatures and long UV irradiation treatments significantly reduce the stability of CFS, which is more sensitive to strong acids, bases and enzymatic degradation. The minimum inhibitory concentration (MIC) of purified bacteriocin P7 against S. aureus was determined to be 30.352 μg/mL. On the basis of the results of the haemolytic activity assay, it was concluded that the use of bacteriocin P7 at concentrations equal to or below the 2 × MIC is safe. The addition of organic solvents and inorganic salts did not affect the bacteriocin P7, while the incorporation of SDS could enhance its antimicrobial efficacy. The bacteriocin was subjected to analysis by LC-MS/MS, which revealed that it was similar to the class I bacteriocin amyloliquecidin GF610. The findings of the present study indicate that the endophytic B. velezensis G7 from mangrove plant can produce bacteriocins, thereby providing a reference point for the expansion of novel bacteriocin sources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Damulienė V, Kaškonienė V, Kaškonas P, Mickienė R, Maruška A. Improved Antibacterial Properties of Fermented and Enzymatically Hydrolyzed Bee Pollen and Its Combined Effect with Antibiotics. Pharmaceuticals (Basel) 2024; 18:15. [PMID: 39861078 PMCID: PMC11768341 DOI: 10.3390/ph18010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods. Methods: Bee pollen's bacterial fermentation using a Lacticaseibacillus rhamnosus culture and spontaneous fermentation were performed. Bee pollen hydrolysis was performed using commercial enzymes, including enzyme mixtures as well as pure enzymes. The agar well diffusion assay was employed to assess the antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica serovars Enteritidis and Typhimurium, as well as their interaction with antibiotics (ceftazidime, ciprofloxacin, oxytetracycline dihydrate, and erythromycin). Results: This study showed an enhancement in bee pollen's antibacterial activity after both fermentation and enzymatic hydrolysis. The increase varied with the pollen's origin, treatment type, and culture used for antimicrobial tests. More than 77% of bee pollen extracts demonstrated a synergistic effect with antibiotics across all tested bacterial strains, while antagonistic interactions were comparatively rare. Conclusions: The applied treatment methods can improve the antibacterial properties of bee pollen. Bee pollen extracts, in combination with antibiotics, can enhance their effectiveness. These findings provide new insights into the potential use of bee pollen in combating bacterial infections.
Collapse
Affiliation(s)
- Vaida Damulienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, LT-44404 Kaunas, Lithuania; (V.D.); (R.M.); (A.M.)
| | - Vilma Kaškonienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, LT-44404 Kaunas, Lithuania; (V.D.); (R.M.); (A.M.)
| | - Paulius Kaškonas
- Institute of Metrology, Kaunas University of Technology, LT-51368 Kaunas, Lithuania;
| | - Rūta Mickienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, LT-44404 Kaunas, Lithuania; (V.D.); (R.M.); (A.M.)
| | - Audrius Maruška
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, LT-44404 Kaunas, Lithuania; (V.D.); (R.M.); (A.M.)
| |
Collapse
|
8
|
Haryani Y, Abdul Halid N, Goh SG, Nor-Khaizura MAR, Md Hatta MA, Sabri S, Radu S, Hasan H. Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds. J Biotechnol 2024; 395:53-63. [PMID: 39245212 DOI: 10.1016/j.jbiotec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.
Collapse
Affiliation(s)
- Yuli Haryani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru, Riau 28293, Indonesia
| | - Nadrah Abdul Halid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Sur Guat Goh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Halal Science Research, Halal Research Product Institute, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
9
|
Li H, Yang Y, Li L, Zheng H, Xiong Z, Hou J, Wang L. Genome-Based Identification and Characterization of Bacteriocins Selectively Inhibiting Staphylococcus aureus in Fermented Sausages. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10240-4. [PMID: 38451405 DOI: 10.1007/s12602-024-10240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The bacteriocin-producing Lactiplantibacillus plantarum SL47 was isolated from conventional fermented sausages, and the bacteriocin SL47 was purified using ethyl acetate, Sephadex G-25 gel chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Bacteriocin SL47 was identified by HPLC-MS/MS combined with whole-genome sequencing, and the results showed it consisted of plantaricin A, J, K, and N. Further characterization analysis showed that the bacteriocin SL47 was highly thermostable (30 min, 121 °C), pH stable (2-10), sensitive to protease and exhibited broad-spectrum antibacterial ability against Gram-positive and Gram-negative bacteria. The mechanism of action showed that the bacteriocin SL47 increased cell membrane permeability, and 2 × minimum inhibitory concentration (MIC) treatment for 40 min caused apoptosis of Staphylococcus aureus F2. The count of S. aureus in the sausage that was inoculated with L. plantarum SL47 and bacteriocin SL47 decreased by about 64% and 53% of that in the initial stage, respectively. These results indicated the potential of L. plantarum SL47 and bacteriocin SL47 as a bio-preservative in meat products.
Collapse
Affiliation(s)
- Hongbiao Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongqi Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lanxin Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Huojian Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiguo Xiong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junjie Hou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Liping Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products On Storage and Preservation, Shanghai, 201306, China.
| |
Collapse
|
10
|
Steier V, Prigolovkin L, Reiter A, Neddermann T, Wiechert W, Reich SJ, Riedel CU, Oldiges M. Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microb Cell Fact 2024; 23:74. [PMID: 38433206 PMCID: PMC10910668 DOI: 10.1186/s12934-024-02349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.
Collapse
Affiliation(s)
- Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lisa Prigolovkin
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | | | | | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Silva BN, Teixeira JA, Cadavez V, Gonzales-Barron U. Mild Heat Treatment and Biopreservatives for Artisanal Raw Milk Cheeses: Reducing Microbial Spoilage and Extending Shelf-Life through Thermisation, Plant Extracts and Lactic Acid Bacteria. Foods 2023; 12:3206. [PMID: 37685139 PMCID: PMC10486694 DOI: 10.3390/foods12173206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Bunga SJ, Ahmmed MK, Lawley B, Carne A, Bekhit AEDA. Physicochemical, biochemical and microbiological changes of jeotgal-like fermented Chinook salmon (Oncorhynchus tshawytscha) roe. Food Chem 2023; 398:133880. [DOI: 10.1016/j.foodchem.2022.133880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
|
13
|
Wu D, Dai M, Shi Y, Zhou Q, Li P, Gu Q. Purification and characterization of bacteriocin produced by a strain of Lacticaseibacillus rhamnosus ZFM216. Front Microbiol 2022; 13:1050807. [PMID: 36439838 PMCID: PMC9684204 DOI: 10.3389/fmicb.2022.1050807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 12/08/2023] Open
Abstract
The recent surge in demand for natural preservatives has ushered in a new era of research into novel bacteriocins capable of effectively combating food-borne infections. In this study, the bacteriocin from Lacticaseibacillus rhamnosus ZFM216, which has a molecular mass of 11851.9 Da, was purified using macroporous resin, gel chromatography, and reversed-phase high performance liquid chromatography. This bacteriocin could inhibit both Gram-positive and Gram-negative bacteria. It had a strong inhibitory effect on Staphylococcus aureus D48 with minimum inhibitory concentration values of 1.75 μM. Bacteriocin ZFM216 was heat stable and showed pH stability under weakly acidic conditions. It was sensitive to pepsin, proteinase K and trypsin. Electron microscopy results showed that when treated with bacteriocin ZFM216, S. aureus D48 was severely deformed, the cell structure was obviously changed, and the intracellular electrolyte leaked to the outside of the cell. Bacteriocin ZFM216 caused the ATP level of the indicator to decrease, the conductivity to sharply increase, and the transmembrane potential difference (ΔΨ) to instantaneously decrease. This research formed the basis for further development and utilization of bacteriocin ZFM216 which has potential in the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
14
|
Recovery of nisin from culture supernatants of Lactococcus lactis by ultrafiltration: Flux properties and separation efficiency. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Whole-genome sequencing combined with mass spectrometry to identify bacteriocin and mine silent genes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Angelescu IR, Grosu-Tudor SS, Cojoc LR, Maria GM, Chirițoiu GN, Munteanu CVA, Zamfir M. Isolation, characterization, and mode of action of a class III bacteriocin produced by Lactobacillus helveticus 34.9. World J Microbiol Biotechnol 2022; 38:220. [PMID: 36083397 DOI: 10.1007/s11274-022-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Traditionally fermented foods and beverages are still produced and consumed at a large scale in Romania. They are rich sources for novel lactic acid bacteria with functional properties and with potential application in food industry or health. Lactobacillus helveticus 34.9, isolated from a home-made fermented milk is able to inhibit the growth of other bacteria, such as other lactic acid bacteria, but also strains of Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Halobacillus hunanensis, a halobacterium isolated from the degraded wall of a Romanian monastery. L. helveticus 34.9 produces a large bacteriocin (35 KDa), active in a wide pH range, but inactivated by heat and proteinase K treatment. It shares about 20% sequence coverage with helveticin J, as determined by LC-MS analysis. Bacteriocin production was enhanced under stress conditions, especially when combined stresses were applied. Its mode of action and degree of inhibition depended on the concentration and on the indicator strain that was used; L. delbrueckii subsp. bulgaricus LMG 6901T cells from a suspension were killed, but the viability of H. hunanensis 5Hum cells was only reduced to 60%, within 8 h. However, the bacteriocin was able to prevent the bacterial growth of both indicator strains when added to the cultivation medium prior inoculation. Scanning electron microscopy images revealed morphological changes induced by the bacteriocin treatment in both sensitive strains, but more severe in the case of L. delbrueckii subsp. bulgaricus. Due to the broad antibacterial spectrum and its production under various stress conditions, the bacteriocin or the producing strain may find application in health, food and non-food related fields, including in the restoration of historical buildings.
Collapse
Affiliation(s)
| | | | - Lucia-Roxana Cojoc
- Institute of Biology Bucharest of the Romanian Academy, Bucharest, Romania
| | | | | | | | - Medana Zamfir
- Institute of Biology Bucharest of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
17
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|
18
|
Surachat K, Kantachote D, Wonglapsuwan M, Chukamnerd A, Deachamag P, Mittraparp-arthorn P, Jeenkeawpiam K. Complete Genome Sequence of Weissella cibaria NH9449 and Comprehensive Comparative-Genomic Analysis: Genomic Diversity and Versatility Trait Revealed. Front Microbiol 2022; 13:826683. [PMID: 35663880 PMCID: PMC9161744 DOI: 10.3389/fmicb.2022.826683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications.
Collapse
Affiliation(s)
- Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- *Correspondence: Komwit Surachat,
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Panchalika Deachamag
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
19
|
Bangar SP, Chaudhary V, Singh TP, Özogul F. Retrospecting the concept and industrial significance of LAB bacteriocins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Ohnishi A, Hasegawa Y, Fujimoto N, Suzuki M. Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as Lactate-driven dark fermentation. BIORESOURCE TECHNOLOGY 2022; 343:126076. [PMID: 34601026 DOI: 10.1016/j.biortech.2021.126076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Numerous attempts have been made to upscale biohydrogen production via dark fermentation (DF); however, the Achilles' heel of DF, i.e., lactic acid bacteria (LAB) contamination and overgrowth, hinders such upscaling. Key microbes are needed to develop a lactate-driven DF system that can serve as a lactate fermentation platform. In this study, the utility of Megasphaera elsdenii and LAB co-culturing in lactate-driven DF was evaluated. When inoculated simultaneously with LAB or after LAB culture, M. elsdenii achieved a stable hydrogen yield of 0.95-1.49 H2-mol/mol-glucose, approximately half that obtained in pure M. elsdenii cultures. Hydrogen production was maintained even at an initial M. elsdenii-to-LAB cell ratio of one-millionth or less. Moreover, M. elsdenii produced hydrogen via lactate-driven DF from unusable sugars such as xylose or cellobiose. Thus, M. elsdenii could be a Game changer instrumental in unlocking the full potential of DF.
Collapse
Affiliation(s)
- Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Yuji Hasegawa
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Naoshi Fujimoto
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Masaharu Suzuki
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
21
|
Characterization of dual bacteriocins producing Bacillus subtilis SC3.7 isolated from fermented food. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Sharma BR, Halami PM, Tamang JP. Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Sci Biotechnol 2022; 31:1-16. [PMID: 35059226 PMCID: PMC8733103 DOI: 10.1007/s10068-021-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Ethnic fermented foods are known for their unique aroma, flavour, taste, texture and other sensory properties preferred by every ethnic community in this world culturally as parts of their eatables. Some beneficial microorganisms associated with fermented foods have several functional properties and health-promoting benefits. Bacteriocins are the secondary metabolites produced by the microorganisms mostly lactic acid bacteria present in the fermented foods which can act as lantibiotics against the pathogen bacteria. Several studies have been conducted regarding the isolation and characterization of potent strains as well as their association with different types of bacteriocins. Collective information regarding the gene organizations responsible for the potent effect of bacteriocins as lantibiotics, mode of action on pathogen bacterial cells is not yet available. This review focuses on the gene organizations, pathways include for bacteriocin and their mode of action for various classes of bacteriocins produced by lactic acid bacteria in some ethnic fermented foods.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Prakash M. Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Jyoti Prakash Tamang
- DAICENTER, Department of Microbiology, Sikkim University, Science Building, Tadong, Gangtok, Sikkim 737102 India
| |
Collapse
|
23
|
Abitayeva GK, Urazova MS, Abilkhadirov AS, Sarmurzina ZS, Shaikhin SM. Characterization of a new bacteriocin-like inhibitory peptide produced by Lactobacillus sakei B-RKM 0559. Biotechnol Lett 2021; 43:2243-2257. [PMID: 34652635 DOI: 10.1007/s10529-021-03193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The biopreservation strategy allows extending the shelf life and food safety through the use of indigenous or controlled microbiota and their antimicrobial compounds. The aim of this work was to characterize an inhibitory substance with bacteriocin-like activity (Sak-59) produced by the potentially probiotic L. sakei strain from artisanal traditional Kazakh horse meat product Kazy. The maximum production of Sak-59 occurred at the stationary phase of the L. sakei growth. Sak-59 showed inhibitory activity against gram-positive meat spoilage bacteria strains of Listeria monocytogenes, Staphylococcus aureus, and pathogenic gram-negative bacteria strains of Serratia marcescens and Escherichia coli, but not against the tested Lactobacilli strains. Sak-59 activity, as measured by diffusion assay in agar wells, was completely suppressed after treatment with proteolytic enzymes and remained stable after treatment with α-amylase and lipase, indicating that Sak-59 is a peptide and most likely not glycosylated or lipidated. It was concluded that Sak-59 is a potential new bacteriocin with a characteristic activity spectrum, which can be useful in the food and feed industries.
Collapse
Affiliation(s)
- Gulyaim K Abitayeva
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Maira S Urazova
- Laboratory of Biotechnology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., Nur-Sultan, 010000, Republic of Kazakhstan
| | - Arman S Abilkhadirov
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Zinigul S Sarmurzina
- Laboratory of Microbiology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Serik M Shaikhin
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan.
| |
Collapse
|
24
|
Jatuponwiphat T, Namrak T, Nitisinprasert S, Nakphaichit M, Vongsangnak W. Integrative growth physiology and transcriptome profiling of probiotic Limosilactobacillus reuteri KUB-AC5. PeerJ 2021; 9:e12226. [PMID: 34707932 PMCID: PMC8500091 DOI: 10.7717/peerj.12226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Limosilactobacillus reuteri KUB-AC5 has been widely used as probiotic in chicken for Salmonella reduction. However, a preferable carbon source and growth phase is poorly characterized underlying metabolic responses on growth and inhibition effects of L. reuteri KUB-AC5. This study therefore aimed to investigate transcriptome profiling of L. reuteri KUB-AC5 revealing global metabolic responses when alteration of carbon sources and growth phases. Interestingly, L. reuteri KUB-AC5 grown under sucrose culture showed to be the best for fast growth and inhibition effects against Salmonella Enteritidis S003 growth. Towards the transcriptome profiling and reporter proteins/metabolites analysis, the results showed that amino acid transport via ABC systems as well as sucrose metabolism and transport are key metabolic responses at Logarithmic (L)-phase of L. reuteri KUB-AC5 growth. Considering the Stationary (S)-phase, we found the potential reporter proteins/metabolites involved in carbohydrate metabolism e.g., levansucrase and levan. Promisingly, levansucrase and levan were revealed to be candidates in relation to inhibition effects of L. reuteri KUB-AC5. Throughout this study, L. reuteri KUB-AC5 had a metabolic control in acclimatization to sucrose and energy pools through transcriptional co-regulation, which supported the cell growth and inhibition potentials. This study offers a perspective in optimizing fermentation condition through either genetic or physiological approaches for enhancing probiotic L. reuteri KUB-AC5 properties.
Collapse
Affiliation(s)
- Theeraphol Jatuponwiphat
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thanawat Namrak
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
25
|
Salehzadeh S, Tabatabaei M, Derakhshandeh A, Karbalaei-Heidari H, Kazemipour N. A novel approach of recombinant laterosporulin production using the N-SH2 domain of SHP-2. BMC Biotechnol 2021; 21:60. [PMID: 34674683 PMCID: PMC8529825 DOI: 10.1186/s12896-021-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Background The current study was aimed at evaluating the role of the N-SH2 domain of SHP-2 as a partner protein in the expression of a toxic peptide, laterosporulin (LTS). We also investigated its effects on the formation of the disulfide bond and functional folding of the peptide in vitro. The N-SH2-LTS protein was expressed as a His-tagged fusion protein, capable of undergoing enzymatic cleavage. Results Based on the data presented herein, the total yield of the folded fusion protein from inclusion bodies was found to be about 105 mg/l, demonstrating a high-level of heterologous expression. After enzymatic cleavage, 1.5 mg of the folded recombinant laterosporulin was obtained from each 10 mg of the fusion protein. The purity of the recombinant laterosporulin was analyzed by RP-HPLC, to yield peptides with suitable purity (85%). Conclusions Our findings indicated the advantages of using the N-SH2 domain of SHP-2 as a rapid and easy approach not only in producing easy target proteins but also in its function as a chaperone. N-SH2 domain of SHP-2 can influence on the purification of laterosporulin at reasonable yield and in a cost-effective fashion. The N-SH2 domain of SHP-2 as a protein chaperone may be potentially favorable to produce other proteins with disulfide bonds. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00721-7.
Collapse
Affiliation(s)
- Simin Salehzadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Nasrin Kazemipour
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
26
|
Romero-Severson J, Moran TE, Shrader DG, Fields FR, Pandey-Joshi S, Thomas CL, Palmer EC, Shrout JD, Pfrender ME, Lee SW. A Seed-Endophytic Bacillus safensis Strain With Antimicrobial Activity Has Genes for Novel Bacteriocin-Like Antimicrobial Peptides. Front Microbiol 2021; 12:734216. [PMID: 34646254 PMCID: PMC8503640 DOI: 10.3389/fmicb.2021.734216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
Bacteriocins are a highly diverse group of antimicrobial peptides that have been identified in a wide range of commensal and probiotic organisms, especially those resident in host microbiomes. Rising antibiotic resistance have fueled renewed research into new drug scaffolds such as antimicrobial peptides for use in therapeutics. In this investigation, we examined mung bean seeds for endophytes possessing activity against human and plant pathogens. We isolated a novel strain of Bacillus safensis, from the contents of surface-sterilized mung bean seed, which we termed B. safensis C3. Genome sequencing of C3 identified three distinct biosynthetic systems that produce bacteriocin-based peptides. C3 exhibited antibacterial activity against Escherichia coli, Xanthomonas axonopodis, and Pseudomonas syringae. Robust antimicrobial activity of B. safensis C3 was observed when C3 was co-cultured with Bacillus subtilis. Using the cell-free supernatant of C3 and cation exchange chromatography, we enriched a product that retained antimicrobial activity against B. subtilis. The peptide was found to be approximately 3.3 kDa in size by mass spectrometry, and resistant to proteolysis by Carboxypeptidase Y and Endoproteinase GluC, suggesting that it is a modified variant of an AS-48 like bacteriocin. Our findings open new avenues into further development of novel bacteriocin-based scaffolds for therapeutic development, as well as further investigations into how our discoveries of bacteriocin-producing plant commensal microorganisms may have the potential for an immediate impact on the safety of food supplies.
Collapse
Affiliation(s)
- Jeanne Romero-Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Donna G Shrader
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Francisco R Fields
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Susan Pandey-Joshi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Clayton L Thomas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Emily C Palmer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Department of Civil and Environmental Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joshua D Shrout
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Department of Civil and Environmental Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
27
|
Food stabilizing potential of nisin Z produced by wild Lactococcus lactis subsp. lactis from raw milk and some fermented products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Anumudu C, Hart A, Miri T, Onyeaka H. Recent Advances in the Application of the Antimicrobial Peptide Nisin in the Inactivation of Spore-Forming Bacteria in Foods. Molecules 2021; 26:5552. [PMID: 34577022 PMCID: PMC8469619 DOI: 10.3390/molecules26185552] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Conventional thermal and chemical treatments used in food preservation have come under scrutiny by consumers who demand minimally processed foods free from chemical agents but microbiologically safe. As a result, antimicrobial peptides (AMPs) such as bacteriocins and nisin that are ribosomally synthesised by bacteria, more prominently by the lactic acid bacteria (LAB) have appeared as a potent alternative due to their multiple biological activities. They represent a powerful strategy to prevent the development of spore-forming microorganisms in foods. Unlike thermal methods, they are natural without an adverse impact on food organoleptic and nutritional attributes. AMPs such as nisin and bacteriocins are generally effective in eliminating the vegetative forms of spore-forming bacteria compared to the more resilient spore forms. However, in combination with other non-thermal treatments, such as high pressure, supercritical carbon dioxide, electric pulses, a synergistic effect with AMPs such as nisin exists and has been proven to be effective in the inactivation of microbial spores through the disruption of the spore structure and prevention of spore outgrowth. The control of microbial spores in foods is essential in maintaining food safety and extension of shelf-life. Thus, exploration of the mechanisms of action of AMPs such as nisin is critical for their design and effective application in the food industry. This review harmonises information on the mechanisms of bacteria inactivation from published literature and the utilisation of AMPs in the control of microbial spores in food. It highlights future perspectives in research and application in food processing.
Collapse
Affiliation(s)
- Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.A.); (T.M.)
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK;
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.A.); (T.M.)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.A.); (T.M.)
| |
Collapse
|
29
|
Purification, molecular characterization of Lactocin 63 produced by Lactobacillus coryniformis FZU63 and its antimicrobial mode of action against Shewanella putrefaciens. Appl Microbiol Biotechnol 2021; 105:6921-6930. [PMID: 34476515 DOI: 10.1007/s00253-021-11503-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Bacteriocins derived from lactic acid bacteria (LAB) are well recognized as promising food preservative due to high safety and potent antibacterial activity against foodborne pathogens and spoilage bacteria. In this study, an antimicrobial agent-producing strain FZU63 from Chinese sauerkraut was identified as Lactobacillus coryniformis based on physio-biochemical characterization and 16S rDNA sequence analysis. In addition, a bacteriocin was purified from the culture supernatant of L. coryniformis FZU63, and its molecular mass was determined as 1493.709 Da. Moreover, the amino acid sequence of the bacteriocin was predicted to be RQQPMTLDYRW-NH2 using nanoliter/microliter liquid chromatography combined with triple quadrupole-linear ion trap tandem mass spectrometry and was named as Lactocin 63. Furthermore, Lactocin 63 displays potent antimicrobial activity against the tested Gram-positive and negative bacteria based on the results of determining MICs. Subsequently, the action mode of Lactocin 63 against Shewanella putrefaciens was investigated. The results demonstrated that Lactocin 63 targets and is adsorbed onto the bacterial cell wall and membrane and then disrupts cytoplasmic membrane, which is leading to leakage of cytoplasm according to the results of flow cytometry analysis and the observation of cellular ultra-structure using confocal laser microscopy and atomic force microscopy. Collectively, these results are helpful and providing the theoretical base for developing and applying LAB-derived bacteriocins as promising bio-preservatives to combat foodborne pathogens and spoilage bacteria in seafood industries.Key points• A bacteriocin-producing strain Lactobacillus coryniformis was isolated.• A novel bacteriocin produced by Lactobacillus coryniformis FZU63 was characterized.• Action mechanism of the bacteriocin against S. putrefaciens was elucidated in vitro.
Collapse
|
30
|
Parlindungan E, Dekiwadia C, Jones OA. Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Acetate Activates Lactobacillus Bacteriocin Synthesis by Controlling Quorum Sensing. Appl Environ Microbiol 2021; 87:e0072021. [PMID: 33893120 DOI: 10.1128/aem.00720-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteriocins are useful for controlling the composition of microorganisms in fermented food. Bacteriocin synthesis is regulated by quorum sensing mediated by autoinducing peptides. In addition, short-chain fatty acids, especially acetic acid, reportedly regulate bacteriocin synthesis. Five histidine kinases that regulated the synthesis of bacteriocins were selected to verify their interactions with acetate. Acetate activated the kinase activity of PlnB, SppK, and HpK3 in vitro and increased the yield of their cognate bacteriocins plantaricin EF, sakacin A, and rhamnosin B in vivo. The antimicrobial activity against Staphylococcus aureus of the fermentation supernatants of Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus rhamnosus with addition of acetate increased to 298%, 198%, and 289%, respectively, compared with that in the absence of acetate. Our study elucidated the activation activity of acetate in bacteriocin synthesis, and it might provide a potential strategy to increase the production of bacteriocin produced by Lactobacillus. IMPORTANCE Bacteriocins produced by lactic acid bacteria (LAB) are particularly useful in food preservation and food safety. Bacteriocins might increase bacterial competitive advantage against the indigenous microbiota of the intestines; at the same time, bacteriocins could limit the growth of undesired microorganisms in yogurt and other dairy products. This study confirmed that three kinds of histidine kinases were activated by acetate and upregulated bacteriocin synthesis both in vitro and in vivo. The increasing yield of bacteriocins reduced the number of pathogens and increased the number of probiotics in milk. Bacteriocin synthesis activation by acetate may have a broad application in the preservation of dairy products and forage silage.
Collapse
|
32
|
Aziz G, Tariq M, Zaidi AH. Mining indigenous honeybee gut microbiota for Lactobacillus with probiotic potential. MICROBIOLOGY-SGM 2021; 167. [PMID: 33587693 DOI: 10.1099/mic.0.001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was done to explore the diversity of lactic acid bacteria (LAB) associated with the gastrointestinal tract (GIT) of honeybee species endemic to northeastern Pakistan. Healthy worker bees belonging to Apis mellifera, A. dorsata, A. cerana and A. florea were collected from hives and the surroundings of a major apiary in the region. The 16S rRNA amplicon sequencing revealed a microbial community in A. florea that was distinct from the others in having an abundance of Lactobacillus and Bifidobacteria. However, this was not reflected in the culturable bacteria obtained from these species. The isolates were characterized for safety parameters, and 20 LAB strains deemed safe were evaluated for resistance to human GIT stresses like acid and bile, adhesion and adhesiveness, and anti-pathogenicity. The five most robust strains, Enterococcus saigonensis NPL780a, Lactobacillus rapi NPL782a, Lactobacillus kunkeei NPL783a, and NPL784, and Lactobacillus paracasei NPL783b, were identified through normalized Pearson (n) principal components analysis (PCA). These strains were checked for inhibition of human pathogens, antibiotic resistance, osmotic tolerance, metabolic and enzymatic functions, and carbohydrate utilization, along with antioxidative and cholesterol-removing potential. The findings suggest at least three strains (NPL 783a, 784 and 782a) as candidates for further in vitro and in vivo investigations of their potential health benefits and application as novel probiotic adjuncts.
Collapse
Affiliation(s)
- Ghazal Aziz
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Muhammad Tariq
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
33
|
Mechanism and application of Sesbania root-nodulating bacteria: an alternative for chemical fertilizers and sustainable development. Arch Microbiol 2021; 203:1259-1270. [PMID: 33388789 DOI: 10.1007/s00203-020-02137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Chemical fertilizers are used in large-scale throughout the globe to satisfy the food and feed requirement of the world. Demanding cropping with the enhanced application of chemical fertilizers, linked with a decline in the recycling of natural or other waste materials, has led to a decrease in the organic carbon levels in soils, impaired soil physical properties and shrinking soil microbial biodiversity. Sustenance and improvement of soil fertility are fundamental for comprehensive food security and ecological sustainability. To feed the large-scale growing population, the role of biofertilizers and their study tends to be an essential aspect globally. In this review, we have emphasized the nitrogen-fixing plants of Sesbania species. It is a plant that is able to accumulate nitrogen-rich biomass and used as a green manure, which help in soil amelioration. Problems of soil infertility due to salinity, alkalinity and waterlogging could be alleviated through the use of biologically fixed nitrogen by Sesbania plants leading to the conversion of futile land into a fertile one. A group of plant growth-promoting rhizobacteria termed as "rhizobia" are able to nodulate a variety of legumes including Sesbania. The host-specific rhizobial strains can be used as potential alternative for nitrogenous fertilizers as they help the host plant in growth and development and enhance their endurance under stressed conditions. The review gives the depth understanding of how the agriculturally important microorganisms can be used for the reduction of broad-scale application of chemical fertilizers with special attention to Sesbania-nodulating rhizobia.
Collapse
|
34
|
Rollini M, Musatti A, Cavicchioli D, Bussini D, Farris S, Rovera C, Romano D, De Benedetti S, Barbiroli A. From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: a circular economy case study. Sci Rep 2020; 10:21358. [PMID: 33288830 PMCID: PMC7721719 DOI: 10.1038/s41598-020-78430-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Applying a circular economy approach, this research explores the use of cheese whey permeate (CWP), by-product of whey ultrafiltration, as cheap substrate for the production of bacterial cellulose (BC) and Sakacin-A, to be used in an antimicrobial packaging material. BC from the acetic acid bacterium Komagataeibacter xylinus was boosted up to 6.77 g/L by supplementing CWP with β-galactosidase. BC was then reduced to nanocrystals (BCNCs, 70% conversion yield), which were then conjugated with Sakacin-A, an anti-Listeria bacteriocin produced by Lactobacillus sakei in a CWP based broth. Active conjugates (75 Activity Units (AU)/mg), an innovative solution for bacteriocin delivery, were then included in a coating mixture applied onto paper sheets at 25 AU/cm2. The obtained antimicrobial food package was found effective in reducing Listeria population in storage trials carried out on a fresh Italian soft cheese (named "stracchino") intentionally inoculated with Listeria. Production costs of the active material have been mainly found to be associated (90%) to the purification steps. Setting a maximum prudential 50% cost reduction during process up-scaling, conjugates coating formulation would cost around 0.89 €/A4 sheet. Results represent a practical example of a circular economy production procedure by using a food industry by-product to produce antimicrobials for food preservation.
Collapse
Affiliation(s)
- Manuela Rollini
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Alida Musatti
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Daniele Cavicchioli
- ESP, Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20133, Milan, Italy
| | - Daniele Bussini
- SSCCP, Paper Area, INNOVHUB - Stazioni Sperimentali per l'Industria S.r.l., Via G. Colombo 83, 20133, Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Cesare Rovera
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Diego Romano
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Stefano De Benedetti
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Alberto Barbiroli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
35
|
Selvam D, Thangarasu A, Shyu DJH, Neelamegam R, Muthukalingan K, Nagarajan K. Antimicrobial Substance Produced by Pseudomonas aeruginosa Isolated from Slaughterhouse Sediment: Physicochemical Characterization, Purification, and Identification. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10135-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
|
38
|
Mao Y, Zhang X, Xu Z. Identification of antibacterial substances of Lactobacillus plantarum DY-6 for bacteriostatic action. Food Sci Nutr 2020; 8:2854-2863. [PMID: 32566203 PMCID: PMC7300085 DOI: 10.1002/fsn3.1585] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022] Open
Abstract
The antimicrobial activity of lactic acid bacteria is closely related to its metabolites. Our results showed that Lactobacillus plantarum DY-6 had the highest antibacterial activities among the seven bacteria tested in this study. To fully understand the active antimicrobial substances in L. plantarum DY-6, the cell-free supernatant (CFS) were analyzed. Our data indicated that the antibacterial effect of the CFS was positively correlated with the growth of the bacteria, and the main antibacterial substances were lactic acid, acetic acid, propionic acid, caprylic acid, and decyl acid. Finally, this study demonstrated that the antibacterial active substance produced by the lactic acid bacteria could destroy the cell membrane structure of the bacteria, causing bacteria to fail to grow and reproduce normally, thereby exerting a bacteriostatic action. Taken together, our current findings would provide an effective method for rapid screening of antimicrobial substances.
Collapse
Affiliation(s)
- Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)School of BiotechnologyJiangnan UniversityWuxiChina
- Jiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan UniversityWuxiChina
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)School of BiotechnologyJiangnan UniversityWuxiChina
- Jiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan UniversityWuxiChina
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)School of BiotechnologyJiangnan UniversityWuxiChina
- Jiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
39
|
Antibacterial Activity of Lactobacillus Strains Isolated from Mongolian Yogurt against Gardnerella vaginalis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3548618. [PMID: 32382546 PMCID: PMC7195648 DOI: 10.1155/2020/3548618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022]
Abstract
Worldwide interest in the use of functional foods containing probiotic bacteria such as Lactobacillus and Bifidobacterium for health promotion and disease prevention has increased significantly. Probiotics have demonstrated beneficial properties including strengthening the body's natural defense system, inhibiting the growth of pathogenic bacteria, and regulating mental activity, but their effects on the human vagina have not been fully elucidated. The primary purpose of our study was to isolate Lactobacillus strains from old yogurt, a traditional dairy product, and investigate their probiotic potential with respect to the human vaginal system. Four Lactobacillus plantarum (L. plantarum) strains, named ZX1, ZX2, ZX27, and ZX69, were isolated from the yogurt samples. Simultaneously, we used a commercial Lactobacillus strain (Lactobacillus delbrueckii DM8909) as a control strain. We tested the antimicrobial activity of Lactobacillus isolates against Escherichia coli and Gardnerella vaginalis by agar spot and well diffusion tests. Then, we tested the antibiotic susceptibility of the 5 strains by using the minimal inhibitory concentration method. We attempted to detect possible bacteriocin genes by PCR sequencing technique. Using a chemically defined medium simulating genital tract secretions, we found that the selected Lactobacillus strains could alter the expression of known virulence genes in Gardnerella vaginalis. Bacteriocins derived from these isolated strains had potent antibacterial activity against G. vaginalis and E. coli, with the most effective activity observed in the case of ZX27. In addition, all strains including the L. delbrueckii DM8909 were positive for the presence of the plantaricin cluster of genes described in L. plantarum C11. The tested stains possessed the pln gene indicating that one of the antibacterial agents was plantaricin. We assume that the production of antimicrobial substances such as bacteriocins induce G. vaginalis to upregulate antimicrobial resistance genes. The new isolated strains have bacteriocin-related genes and can change the antimicrobial resistance gene transcription of G. vaginalis.
Collapse
|
40
|
Ma J, Yu W, Hou J, Han X, Shao H, Liu Y. Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1751656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiue Han
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hong Shao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ying Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Musatti A, Cavicchioli D, Mapelli C, Bertoni D, Hogenboom JA, Pellegrino L, Rollini M. From Cheese Whey Permeate to Sakacin A: A Circular Economy Approach for the Food-Grade Biotechnological Production of an Anti- Listeria Bacteriocin. Biomolecules 2020; 10:biom10040597. [PMID: 32290606 PMCID: PMC7226247 DOI: 10.3390/biom10040597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cheese Whey Permeate (CWP) is the by-product of whey ultrafiltration for protein recovery. It is highly perishable with substantial disposal costs and has serious environmental impact. The aim of the present study was to develop a novel and cheap CWP-based culture medium for Lactobacillus sakei to produce the food-grade sakacin A, a bacteriocin exhibiting a specific antilisterial activity. Growth conditions, nutrient supplementation and bacteriocin yield were optimized through an experimental design in which the standard medium de Man, Rogosa and Sharpe (MRS) was taken as benchmark. The most convenient formulation was liquid CWP supplemented with meat extract (4 g/L) and yeast extract (8 g/L). Although, arginine (0.5 g/L) among free amino acids was depleted in all conditions, its supplementation did not increase process yield. The results demonstrate the feasibility of producing sakacin A from CWP. Cost of the novel medium was 1.53 €/L and that of obtaining sakacin A 5.67 €/106 AU, with a significant 70% reduction compared to the corresponding costs with MRS (5.40 €/L, 18.00 €/106 AU). Taking into account that the limited use of bacteriocins for food application is mainly due to the high production cost, the obtained reduction may contribute to widening the range of applications of sakacin A as antilisterial agent.
Collapse
Affiliation(s)
- Alida Musatti
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
- Correspondence: ; Tel.: +39-025-031-9150
| | - Daniele Cavicchioli
- ESP, Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy; (D.C.); (D.B.)
| | - Chiara Mapelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| | - Danilo Bertoni
- ESP, Department of Environmental Science and Policy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy; (D.C.); (D.B.)
| | - Johannes A. Hogenboom
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| | - Luisa Pellegrino
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| | - Manuela Rollini
- DeFENS, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy; (C.M.); (J.A.H.); (L.P.); (M.R.)
| |
Collapse
|
42
|
Evaluation of antibacterial properties of lactic acid bacteria from traditionally and industrially produced fermented sausages from Germany. PLoS One 2020; 15:e0230345. [PMID: 32160253 PMCID: PMC7065787 DOI: 10.1371/journal.pone.0230345] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/26/2020] [Indexed: 12/30/2022] Open
Abstract
With regards to the frequently reported findings of spoilage bacteria and pathogens in various foods there is a need to explore new ways to control hazards in food production and to improve consumer safety. Fermented sausages from traditional and industrial production in Germany were screened for lactic acid bacteria with antibacterial effects towards important foodborne pathogens (Escherichia coli DSM 1103, Listeria innocua DSM 20649, Listeria monocytogenes DSM 19094, Pseudomonas aeruginosa DSM 939, Staphylococcus aureus DSM 799 and Salmonella Typhimurium DSM 19587). The obtained isolates and their cell-free supernatants were tested for their antibacterial activity by agar well diffusion assay. Isolates with an inhibitory effect were examined for the underlying antibacterial mechanism. Among the 169 collected isolates, 12.4% showed antibacterial effects only against Listeria innocua DSM 20649 and Listeria monocytogenes DSM 19094. In 6.5% of the isolates, bacteriocins were responsible for the effect. On the remaining test strains, the lactic bacteria isolates exerted no antibacterial effect. Two isolates were selected based on their antibacterial potential against Listeria spp. and the thermostability of the deriving cell free supernatants, traditional product: Pediococcus pentosaceus LMQS 331.3, industrial product: Pediococcus acidilactici LMQS 154.1, were investigated further and confirmed for the presence of bacteriocin structural genes by real-time PCR. Enriched crude bacteriocin preparations were obtained by ammonium sulfate precipitation and were found to remain stable under different pH milieus and to be active towards an extended set of Listeria spp. strains. Fermented meat products from German production are a promising source for bacteriocin-producing lactic acid bacteria. Two bacteriocin-producing isolates were identified which have the potential to contribute to product and consumer safety.
Collapse
|
43
|
Todorov S, Cavicchioli V, Ananieva M, Bivolarski V, Vasileva T, Hinkov A, Todorov D, Shishkov S, Haertlé T, Iliev I, Nero L, Ivanova I. Expression of coagulin A with low cytotoxic activity by
Pediococcus pentosaceus
ST65ACC isolated from raw milk cheese. J Appl Microbiol 2019; 128:458-472. [DOI: 10.1111/jam.14492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- S.D. Todorov
- Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo Brazil
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - V.Q. Cavicchioli
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - M. Ananieva
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - V.P. Bivolarski
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - T.A. Vasileva
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - A.V. Hinkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - D.G. Todorov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - S. Shishkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - T. Haertlé
- Institut National de la Recherche Agronomique UR 1268 Biopolymeres Interactions Assemblages Nantes cedex 3 France
| | - I.N. Iliev
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - L.A. Nero
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - I.V. Ivanova
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| |
Collapse
|
44
|
Mapelli C, Musatti A, Barbiroli A, Saini S, Bras J, Cavicchioli D, Rollini M. Cellulose nanofiber (CNF)-sakacin-A active material: production, characterization and application in storage trials of smoked salmon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4731-4738. [PMID: 30924936 PMCID: PMC6618110 DOI: 10.1002/jsfa.9715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Sakacin-A due to its specific antimicrobial activity may represent a good candidate to develop active packaging solutions for food items supporting Listeria growth. In the present study a protein extract containing the bacteriocin sakacin-A, produced by Lactobacillus sakei Lb 706 in a low-cost culture medium containing deproteinized cheese whey, was adsorbed onto cellulose nanofibers (CNFs) to obtain an active material to be used as a mat (or a separator) in direct contact with foods. RESULTS The applied fermentation conditions allowed 4.51 g L-1 of freeze-dried protein extract to be obtained, characterized by an antimicrobial activity of near 16 700 AU g-1 , that was used for the preparation of the active material by casting. The active material was then characterized by infrared spectra and thermogravimetric analyses. Antimicrobial trials were carried out in vitro using Listeria innocua as indicator strain; results were also confirmed in vivo, employing smoked salmon fillets intentionally inoculated with Listeria innocua: its final population was reduced to about 2.5-3 Log cycles after 28 days of storage at 6 °C in presence of sakacin-A, compared with negative control mats produced without the bacteriocin extract. CONCLUSION This study demonstrates the possibility of producing an antimicrobial active material containing sakacin-A absorbed onto CNFs to decrease Listeria population in smoked salmon, a ready-to eat-food product. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Chiara Mapelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences.Università degli Studi di MilanoMilanItaly
| | - Alida Musatti
- DeFENS, Department of Food, Environmental and Nutritional Sciences.Università degli Studi di MilanoMilanItaly
| | - Alberto Barbiroli
- DeFENS, Department of Food, Environmental and Nutritional Sciences.Università degli Studi di MilanoMilanItaly
| | - Seema Saini
- LGP2, Laboratory of Pulp & Paper ScienceInstitut Polytechnique de GrenobleGrenobleFrance
| | - Julien Bras
- LGP2, Laboratory of Pulp & Paper ScienceInstitut Polytechnique de GrenobleGrenobleFrance
| | - Daniele Cavicchioli
- ESP, Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
| | - Manuela Rollini
- DeFENS, Department of Food, Environmental and Nutritional Sciences.Università degli Studi di MilanoMilanItaly
| |
Collapse
|
45
|
Akbar A, Sadiq MB, Ali I, Anwar M, Muhammad N, Muhammad J, Shafee M, Ullah S, Gul Z, Qasim S, Ahmad S, Anal AK. Lactococcus lactis subsp. lactis isolated from fermented milk products and its antimicrobial potential. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1575474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, Thailand
| | - Muhammad Bilal Sadiq
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, Thailand
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Imran Ali
- Institute of Biochemistry Faculty of Life Science, University of Balochistan, Quetta, Pakistan
| | - Muhammad Anwar
- Institute of Biochemistry Faculty of Life Science, University of Balochistan, Quetta, Pakistan
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Javed Muhammad
- Department of Microbiology, University of Swabi, Swabi, Pakistan
| | - Muhammad Shafee
- Centre for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Sami Ullah
- Department of Chemistry, University of Balochistan, Quetta, Pakistan
| | - Zareen Gul
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Said Qasim
- Department of Geography, University of Balochistan, Quetta, Pakistan
| | - Shaikh Ahmad
- Institute of Biochemistry Faculty of Life Science, University of Balochistan, Quetta, Pakistan
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, Thailand
| |
Collapse
|
46
|
Yilmaz-Akyuz E, Ustun-Aytekin O, Bayram B, Tutar Y. Nutrients, Bioactive Compounds, and Health Benefits of Functional and Medicinal Beverages. NUTRIENTS IN BEVERAGES 2019:175-235. [DOI: 10.1016/b978-0-12-816842-4.00006-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Antibacterial activity and lantibiotic post-translational modification genes in Streptococcus spp. isolated from ruminal fluid. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 2018; 117:781-789. [DOI: 10.1016/j.ijbiomac.2018.05.233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
|
49
|
Stability of Bacteriocin-Like Inhibitory Substance (BLIS) Produced by Pediococcus acidilactici kp10 at Different Extreme Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5973484. [PMID: 30363649 PMCID: PMC6180926 DOI: 10.1155/2018/5973484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
Collapse
|
50
|
Wayah SB, Philip K. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microb Cell Fact 2018; 17:125. [PMID: 30103750 PMCID: PMC6090665 DOI: 10.1186/s12934-018-0972-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Emergence of antibiotic resistance and growing consumer trend towards foods containing biopreservatives stimulated the search for alternative antimicrobials. This research is aimed at characterizing, investigating the mechanism of action, scale up optimization and evaluating the biopreservative potential of a bacteriocin from Lactobacillus fermentum. RESULTS Fermencin SA715 is a novel, broad-spectrum, non-pore-forming and cell wall-associated bacteriocin isolated from L. fermentum GA715 of goat milk origin. A combination of hydrophobic interaction chromatography, solid-phase extraction and reversed-phase HPLC was necessary for purification of the bacteriocin to homogeneity. It has a molecular weight of 1792.537 Da as revealed by MALDI-TOF mass spectrometry. Fermencin SA715 is potent at micromolar concentration, possesses high thermal and pH stability and inactivated by proteolytic enzymes thereby revealing its proteinaceous nature. Biomass accumulation and production of fermencin SA715 was optimum in a newly synthesized growth medium. Fermencin SA715 did not occur in the absence of manganese(II) sulphate. Tween 80, ascorbic acid, sodium citrate and magnesium sulphate enhanced the production of fermencin SA715. Sucrose is the preferred carbon source for growth and bacteriocin production. Sodium chloride concentration higher than 1% suppressed growth and production of fermencin SA715. Optimum bacteriocin production occurred at 37 °C and pH 6-7. Scale up of fermencin SA715 production involved batch fermentation in a bioreactor at a constant pH of 6.5 which resulted in enhanced production. Fermencin SA715 doubled the shelf life and improved the microbiological safety of fresh banana. Bacteriocin application followed by refrigeration tripled the shell life of banana. CONCLUSIONS This study reveals the huge potential of fermencin SA715 as a future biopreservative for bananas and reveals other interesting characteristics which can be exploited in the preservation of other foods. Furthermore insights on the factors influencing the production of fermencin SA715 have been revealed and optimized condition for its production has been established facilitating future commercial production.
Collapse
Affiliation(s)
- Samson Baranzan Wayah
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, Nigeria
| | - Koshy Philip
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|