1
|
Medvedeva S, Achasova K, Boldyreva L, Ogienko A, Kozhevnikova E. The application of explants, crypts, and organoids as models in intestinal barrier research. Tissue Barriers 2024:2423137. [PMID: 39499114 DOI: 10.1080/21688370.2024.2423137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024] Open
Abstract
In vitro models are of great importance in advancing our understanding of human diseases, especially complex disorders with unknown etiologies like inflammatory bowel diseases (IBD). One of the key IBD features is the increased intestinal permeability. The disruption of the intestinal barrier can occur due to a destructive inflammatory response involving intestinal cell death. Alternatively, proteins that form tight junctions (TJ) fail to form function complexes and promote epithelial barrier disruption. The mechanisms behind this process are not fully understood. Thus, in vitro models that facilitate studying the intestinal barrier and its molecular components are of particular importance in the context of IBD. There are in vitro and ex vivo models that can be used to recapitulate some aspects of IBD. Among these are intestinal explants, crypts, and epithelial 3D-organoids. Here we describe some practical limitations of isolated crypts, gut tissue explants, and intestinal organoids as models in epithelial barrier biology, and TJ in particular. Our findings demonstrate that only 3D intestinal organoids formed from single cells are suitable to study barrier permeability in vitro, as primary crypt-derived organoids do not retain epithelial integrity due to cell death. Importantly, 3D organoids raised in culture conditions may fail to recapitulate inflammatory and barrier phenotypes of the source mouse model. To study the features of the inflamed epithelium, ex vivo intestinal explants and crypts were employed. We show here that isolated crypts do not preserve native TJ structure in a long-term experimental setting and tend to disintegrate in the unsupported culture environment. However, intestinal explants were stable in culture conditions for about 24 hours and demonstrated their applicability for short-term living tissue imaging and fluorescence recovery after photobleaching (FRAP). Thus, a combination of 3D organoids and intestinal explants provides a more accurate experimental platform to understand the intestinal epithelial barrier.
Collapse
Affiliation(s)
| | - Kseniya Achasova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Lidiya Boldyreva
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Anna Ogienko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Elena Kozhevnikova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
2
|
Grandmont A, Rhouma M, Létourneau-Montminy MP, Thériault W, Mainville I, Arcand Y, Leduc R, Demers B, Thibodeau A. Characterization of the Effects of a Novel Probiotic on Salmonella Colonization of a Piglet-Derived Intestinal Microbiota Using Improved Bioreactor. Animals (Basel) 2024; 14:787. [PMID: 38473172 DOI: 10.3390/ani14050787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The carriage of Salmonella in pigs is a major concern for the agri-food industry and for global healthcare systems. Humans could develop salmonellosis when consuming contaminated pig products. On the other hand, some Salmonella serotypes could cause disease in swine, leading to economic losses on farms. The purpose of the present study was to characterize the anti-Salmonella activity of a novel Bacillus-based probiotic using a bioreactor containing a piglet-derived intestinal microbiota. Two methods of probiotic administration were tested: a single daily and a continuous dose. Salmonella enumeration was performed using selective agar at T24h, T48h, T72h, T96h and T120h. The DNA was extracted from bioreactor samples to perform microbiome profiling by targeted 16S rRNA gene sequencing on Illumina Miseq. The quantification of short-chain fatty acids (SCFAs) was also assessed at T120h. The probiotic decreased Salmonella counts at T96 for the daily dose and at T120 for the continuous one. Both probiotic doses affected the alpha and beta diversity of the piglet-derived microbiota (p < 0.05). A decrease in acetate concentration and an increase in propionate proportion were observed in the continuous condition. In conclusion, the tested Bacillus-based product showed a potential to modulate microbiota and reduce Salmonella colonization in a piglet-derived intestinal microbiota and could therefore be used in vivo.
Collapse
Affiliation(s)
- Amely Grandmont
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Mohamed Rhouma
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Marie-Pierre Létourneau-Montminy
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Chaire de Recherche sur les Stratégies Alternatives d'Alimentation des Porcs et des Volailles: Approche Systémique pour un Développement Durable, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, QC G1V 0A6, Canada
| | - William Thériault
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | | | - Yves Arcand
- Agriculture et Agroalimentaire Canada, St-Hyacinthe, QC J2S 8E3, Canada
| | - Roland Leduc
- NUVAC Éco-Sciences, Valcourt, QC J0E 2L0, Canada
| | - Bruno Demers
- NUVAC Éco-Sciences, Valcourt, QC J0E 2L0, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Bellerose M, Fravalo P, Mainville I, Arcand Y, Thibodeau A. A short-term bioreactor assay to assess the effect of essential oils on a microbiota derived from piglet's intestinal content. Acta Vet Scand 2023; 65:17. [PMID: 37208761 PMCID: PMC10199583 DOI: 10.1186/s13028-023-00679-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Modulating the microbiota is an emerging way to improve pig health. In-vitro bioreactor systems can be used to reproduce intestinal microbiota to study modulating avenues. In this study, a continuous feeding system to support a microbiota derived from piglet colonic contents, over 72 h, was developed. The microbiota from piglets was collected and used as inoculum. The culture media was derived from an artificial digestion of piglet feed. The microbiota diversity in time, the reproducibility between replicates and the diversity of the bioreactor microbiota compared to the inoculum was assessed. Essential oils were used as a proof of concept to assess the in vitro microbiota modulation. The microbiota diversity was assessed by 16S rRNA amplicon sequencing. Quantitative PCR was also used for total bacteria, lactobacilli and Enterobacteria. RESULTS At the start of the assay, the bioreactor microbiota diversity was similar to the inoculum. Time and replication affected the bioreactor microbiota diversity. Between 48 and 72 h, no statistical variation of the microbiota diversity was observable. After a 48 h running period, thymol and carvacrol were added at 200 ppm or 1000 ppm for 24 h. No microbiota modification was observed by sequencing. Quantitative PCR results showed a significant growth of lactobacilli when thymol was used at 1000 ppm, where only a trend was observed with the 16S analysis. CONCLUSIONS This study presents a bioreactor assay that can be used as a tool for rapid screening of additives and suggests that the effects of essential oils on the microbiota are subtle, acting against a few bacterial genera.
Collapse
Affiliation(s)
- Mathieu Bellerose
- Research Chair in Meat Safety, Faculty of Veterinary Medicine, University of Montreal, 3 200 rue Sicotte, (J2S 2M2), Saint-Hyacinthe, Canada
- Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, 3 200 rue Sicotte, (J2S 2M2), Saint-Hyacinthe, Canada
| | - Philippe Fravalo
- Research Chair in Meat Safety, Faculty of Veterinary Medicine, University of Montreal, 3 200 rue Sicotte, (J2S 2M2), Saint-Hyacinthe, Canada
- Chaire Agro-alimentaire, Conservatoire national des arts et métiers, Le Cnam, 2 Rue Camille Guérin, Ploufragan, 22440 France
| | - Isabelle Mainville
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3 600 Casavant O, Saint-Hyacinthe, J2S 8E3 Canada
| | - Yves Arcand
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3 600 Casavant O, Saint-Hyacinthe, J2S 8E3 Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Faculty of Veterinary Medicine, University of Montreal, 3 200 rue Sicotte, (J2S 2M2), Saint-Hyacinthe, Canada
- Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, 3 200 rue Sicotte, (J2S 2M2), Saint-Hyacinthe, Canada
| |
Collapse
|
4
|
Cortez BRDS, Guedes RMC. A review on the evolution of methods for intestinal in vitro organ culture and its application in veterinary science. Vet World 2023; 16:347-356. [PMID: 37042004 PMCID: PMC10082705 DOI: 10.14202/vetworld.2023.347-356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Different techniques have been reported in studies of intestinal in vitro organ culture (IVOC). A robust compilation of all available methods is lacking in the literature, making it difficult to choose a method that corresponds to the study's demands. In this review, readers can assess the most available methods, allowing them to evaluate which is more suitable for their purposes and requirements. A simplified view of culturing intestinal explants is presented, highlighting the approachability of IVOC. Relevant findings from diverse veterinarian studies, where explants played a major role, as well as the technique used in each, are described to illustrate its applications. Finally, the strengths and limitations of the innovative intestinal IVOC methods are discussed. This review provides a collection of methods for intestinal explant culture and their possible applications in veterinary research. In this way, it aims to broaden access to IVOC techniques and aid decision-making regarding the best suited for a study's purposes.
Collapse
Affiliation(s)
- Barbara Ribeiro de Souza Cortez
- Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
5
|
Gresse R, Chaucheyras-Durand F, Garrido JJ, Denis S, Jiménez-Marín A, Beaumont M, Van de Wiele T, Forano E, Blanquet-Diot S. Pathogen Challenge and Dietary Shift Alter Microbiota Composition and Activity in a Mucin-Associated in vitro Model of the Piglet Colon (MPigut-IVM) Simulating Weaning Transition. Front Microbiol 2021; 12:703421. [PMID: 34349744 PMCID: PMC8328230 DOI: 10.3389/fmicb.2021.703421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the principal pathogen responsible for post-weaning diarrhea in newly weaned piglets. Expansion of ETEC at weaning is thought to be the consequence of various stress factors such as transient anorexia, dietary change or increase in intestinal inflammation and permeability, but the exact mechanisms remain to be elucidated. As the use of animal experiments raise more and more ethical concerns, we used a recently developed in vitro model of piglet colonic microbiome and mucobiome, the MPigut-IVM, to evaluate the effects of a simulated weaning transition and pathogen challenge at weaning. Our data suggested that the tested factors impacted the composition and functionality of the MPigut-IVM microbiota. The simulation of weaning transition led to an increase in relative abundance of the Prevotellaceae family which was further promoted by the presence of the ETEC strain. In contrast, several beneficial families such as Bacteroidiaceae or Ruminococcaceae and gut health related short chain fatty acids like butyrate or acetate were reduced upon simulated weaning. Moreover, the incubation of MPigut-IVM filtrated effluents with porcine intestinal cell cultures showed that ETEC challenge in the in vitro model led to an increased expression of pro-inflammatory genes by the porcine cells. This study provides insights about the etiology of a dysbiotic microbiota in post-weaning piglets.
Collapse
Affiliation(s)
- Raphaële Gresse
- INRAE, UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France.,Lallemand SAS, Blagnac, France
| | | | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Sylvain Denis
- INRAE, UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Angeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Martin Beaumont
- GenPhySE, INRAE, ENVT, Université de Toulouse, Castanet-Tolosan, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Evelyne Forano
- INRAE, UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
6
|
Gresse R, Chaucheyras-Durand F, Denis S, Beaumont M, Van de Wiele T, Forano E, Blanquet-Diot S. Weaning-associated feed deprivation stress causes microbiota disruptions in a novel mucin-containing in vitro model of the piglet colon (MPigut-IVM). J Anim Sci Biotechnol 2021; 12:75. [PMID: 34078434 PMCID: PMC8170946 DOI: 10.1186/s40104-021-00584-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. In concordance with the ethical concerns raised by animal experiments, we developed a new in vitro model of the weaning piglet colon (MPigut-IVM) including a mucin bead compartment to reproduce the mucus surface from the gut to which gut microbes can adhere. RESULTS Our results indicated that the MPigut-IVM is able to establish a representative piglet archaeal and bacterial colon microbiota in terms of taxonomic composition and function. The MPigut-IVM was consequently used to investigate the potential effects of feed deprivation, a common consequence of weaning in piglets, on the microbiota. The lack of nutrients in the MPigut-IVM led to an increased abundance of Prevotellaceae and Escherichia-Shigella and a decrease in Bacteroidiaceae and confirms previous in vivo findings. On top of a strong increase in redox potential, the feed deprivation stress induced modifications of microbial metabolite production such as a decrease in acetate and an increase in proportional valerate, isovalerate and isobutyrate production. CONCLUSIONS The MPigut-IVM is able to simulate luminal and mucosal piglet microbiota and represent an innovative tool for comparative studies to investigate the impact of weaning stressors on piglet microbiota. Besides, weaning-associated feed deprivation in piglets provokes disruptions of MPigut-IVM microbiota composition and functionality and could be implicated in the onset of post-weaning dysbiosis in piglets.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
- Lallemand SAS, F-31702 Blagnac, Cedex France
| | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
- Lallemand SAS, F-31702 Blagnac, Cedex France
| | - Sylvain Denis
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000 Ghent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
7
|
Hansen LHB, Cieplak T, Nielsen B, Zhang Y, Lauridsen C, Canibe N. Screening of probiotic candidates in a simulated piglet small intestine in vitro model. FEMS Microbiol Lett 2021; 368:6240155. [PMID: 33877306 DOI: 10.1093/femsle/fnab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The CoMiniGut in vitro model mimicking the small intestine of piglets was used to evaluate four probiotic strains for their potential as a preventive measure against development of diarrhea in weaned pigs. In the in vitro system, piglet digesta was inoculated with pathogenic enterotoxigenic Escherichia coli F4 (ETEC F4), and the short-chain fatty acid profile and the gut microbiota composition were assessed. A total of four probiotic strains were evaluated: Enterococcus faecium (CHCC 10669), Lactobacillus rhamnosus (CHCC 11994), Bifidobacterium breve (CHCC 15268) and Faecalibacterium prausnitzii (CHCC 28556). The significant differences observed in metabolite concetration and bacterial enumeration were attributed to variation in inoculating material or pathogen challenge rather than probiotic treatment. Probiotic administration influenced the microbiota composition to a small extend. Learnings from the present study indicate that the experimental setup, including incubation time and choice of inoculating material, should be chosen with care.
Collapse
Affiliation(s)
- L H B Hansen
- Chr. Hansen A/S, Animal Health Innovation, Bøge Allé 10-12, 2970 Hørsholm, Denmark.,Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - T Cieplak
- Chr. Hansen A/S, Animal Health Innovation, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - B Nielsen
- Chr. Hansen A/S, Animal Health Innovation, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Y Zhang
- Department of Food Science, Microbiology and Fermentation, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - C Lauridsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - N Canibe
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
8
|
Deschamps C, Fournier E, Uriot O, Lajoie F, Verdier C, Comtet-Marre S, Thomas M, Kapel N, Cherbuy C, Alric M, Almeida M, Etienne-Mesmin L, Blanquet-Diot S. Comparative methods for fecal sample storage to preserve gut microbial structure and function in an in vitro model of the human colon. Appl Microbiol Biotechnol 2020; 104:10233-10247. [PMID: 33085024 DOI: 10.1007/s00253-020-10959-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Elora Fournier
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Frédérique Lajoie
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Cécile Verdier
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Muriel Thomas
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, 75013, Paris, France.,INSERM UMR-S1139, Université de Paris, 75006, Paris, France
| | - Claire Cherbuy
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Monique Alric
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Mathieu Almeida
- MetaGénoPolis, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Dufourny S, Everaert N, Lebrun S, Didelez M, Wavreille J, Froidmont E, Rondia P, Delcenserie V. Oxygen as a key parameter in in vitro dynamic and multi-compartment models to improve microbiome studies of the small intestine? Food Res Int 2020; 133:109127. [PMID: 32466899 DOI: 10.1016/j.foodres.2020.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/10/2020] [Accepted: 02/24/2020] [Indexed: 11/13/2022]
Abstract
In vitro digestion and fermentation models are frequently used for human and animal research purposes. Different dynamic and multi-compartment models exist, but none have been validated with representative microbiota in the distal parts of the small intestine. We recently developed a dynamic and multi-compartment piglet model introducing microbiota in an ileum bioreactor. However, it presented discrepancies compared to in vivo data. Recommendations are available to standardize studies in this field. They target the digestion model but include elements of a fermentation model. But no recommendation is given concerning control of the atmosphere. The gastrointestinal tract is generally associated with anaerobiosis to conduct a good fermentation process. In this study, we attempted to improve the ileal microbiota of the piglet model by testing inoculation: real intestinal content vs feces; the latter being generally used for ethical and economical aspects. Results showed a positive effect of using real intestinal content. Fusobacteriia were less abundant in the model, Bacteroidia were better maintained in the colon. But for the ileum, results showed that anoxic conditions in the ileum bioreactor conditioned the microbial profile probably more than the type of inoculum itself, leading to the general conclusion that in vitro dynamic and multi-compartment models probably have to get oxygenated to improve microbiome studies of the small intestine.
Collapse
Affiliation(s)
- S Dufourny
- Animal Nutrition and Sustainability Unit, Production and Sectors Department, Walloon Agricultural Research Centre, Rue de Liroux 8, B-5030 Gembloux, Belgium.
| | - N Everaert
- Precision Livestock and Nutrition Unit, AgroBioChem Department, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | - S Lebrun
- Food Quality Management, Food Science Department, FARAH, University of Liège, Avenue de Cureghem 10, B-4000 Liège, Belgium.
| | - M Didelez
- Animal Nutrition and Sustainability Unit, Production and Sectors Department, Walloon Agricultural Research Centre, Rue de Liroux 8, B-5030 Gembloux, Belgium.
| | - J Wavreille
- Animal Breeding, Quality Production and Welfare Unit, Production and Sectors Department, Walloon Agricultural Research Centre, Rue de Liroux 8, B-5030 Gembloux, Belgium.
| | - E Froidmont
- Animal Nutrition and Sustainability Unit, Production and Sectors Department, Walloon Agricultural Research Centre, Rue de Liroux 8, B-5030 Gembloux, Belgium.
| | - P Rondia
- Animal Nutrition and Sustainability Unit, Production and Sectors Department, Walloon Agricultural Research Centre, Rue de Liroux 8, B-5030 Gembloux, Belgium.
| | - V Delcenserie
- Food Quality Management, Food Science Department, FARAH, University of Liège, Avenue de Cureghem 10, B-4000 Liège, Belgium.
| |
Collapse
|
10
|
Baby-SPIME: A dynamic in vitro piglet model mimicking gut microbiota during the weaning process. J Microbiol Methods 2019; 167:105735. [PMID: 31669849 DOI: 10.1016/j.mimet.2019.105735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
The study aimed to adapt the SHIME® model, developed to simulate human digestion and fermentation, to a baby-SPIME (baby Simulator of Pig Intestinal Microbial Ecosystem). What constitutes a unique feature of this model is its twofold objective of introducing an ileal microbial community and mimicking a dietary weaning transition. This model should then be ideally suited to test the dietary weaning strategies of piglets in vitro. Regarding the microbiota, the main phyla making up the model were Firmicutes, Bacteroidetes and Proteobacteria although Bacteroidetes decreased after inoculation (p = 0.043 in ileum, p = 0.021 in colon) and Delta-Proteobacteria were favoured (p = 0.083 in ileum, p = 0.043 in colon) compared to Gamma-Proteobacteria. The designed model led to a low representation of Bacilli - especially Lactobacillus sp. in the ileum and a weak representation of Bacteroidia in the proximal colon. However, Mitsuokella and Prevotella were part of the major genera of the model along with Bifidobacterium, Fusobacterium, Megasphaera and Bacteroides. As a result of weaning, two major changes - normally occurring in vivo - were detected in the system: firstly, Firmicutes diminished when Bacteroidetes increased particularly in the proximal colon; secondly, Bacteroides decreased and Prevotella increased (mean value for four runs). In terms of metabolite production, while a ratio acetate: propionate: butyrate of 60:26:14 was obtained in post-weaned colon, the expected inversion of the ratio propionate: butyrate in the post-weaned ileum was unfortunately not observed. To conclude, the so-called baby-SPIME model meets expectations regarding the resident microbiota of the proximal colon bioreactor and the metabolites produced thereof. In terms of the evolution of major groups of bacteria, the in vitro weaning process appeared to be successful. However, higher concentration of butyric acid would have been expected in ileum part of newly weaned piglets, as observed in vivo. The microbiota in the ileum bioreactor seemed in fact to act like a pre-colon. This suggests that microbial profile in ileum bioreactor had to be improved.
Collapse
|
11
|
Aziz K, Haseeb Zaidi A, Fatima HN, Tariq M. Lactobacillus fermentum strains of dairy-product origin adhere to mucin and survive digestive juices. J Med Microbiol 2019; 68:1771-1786. [PMID: 31613203 DOI: 10.1099/jmm.0.001090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Introduction. There is an ever present need to isolate and characterize indigenous bacterial strains with potential probiotic health benefits for humans.Aim. Lactobacillus fermentum of dairy origin was focused because of its propensity to adhere to the intestinal glycoprotein, mucin.Methodology. The lactobacillus strains were screened for mucin adhesion, resistance to low pH and bile, autoaggregation, hydrophobicity, and survival in an in vitro digestion model. The cholesterol-lowering and oxalate-degrading effects of selected strains were also determined. Safety was assessed for haemolytic, mucinolytic and gelatinase activity, biogenic amine production, antibiotic resistance and phenol resistance. Expression of the 32-mmub adhesion-related gene was also measured following strain exposure to simulated gastrointestinal tract (GIT) digestion.Results. The selected mucin-adhesive strains were tolerant to acid (pH 3.0) and bile (0.25 %) and demonstrated >85 % survival following simulated human digestion in the presence of milk. The digestive treatment did not affect the adhesive potential of PL20, and PL27, regardless of the food matrix. The simulated digestion had less effect on their adhesion than on the type strain and it also did not correlate with the mmub gene expression level as determined by qPCR. The selected strains exhibited cholesterol removal (36-44 %) and degraded oxalate (66-55 %). Neither of these strains exhibited undesirable characteristics.Conclusion. These preliminary findings suggest a functionality in the two strains of L. fermentum with high colonization potential on GIT mucosal membranes and possible health-promoting effects. This prima facie evidence suggests the need for further studies to test these probiotic candidates as live biotherapeutic agents in vivo.
Collapse
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000, Punjab, Pakistan
| | | | | | - Muhammad Tariq
- National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000, Punjab, Pakistan
| |
Collapse
|
12
|
Douny C, Dufourny S, Brose F, Verachtert P, Rondia P, Lebrun S, Marzorati M, Everaert N, Delcenserie V, Scippo ML. Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:188-196. [DOI: 10.1016/j.jchromb.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
|
13
|
Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci 2019; 263:52-67. [PMID: 30508694 DOI: 10.1016/j.cis.2018.11.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays. This review describes the surface interactions of liposomes with their encapsulated ingredients and with external food components and updates the biological fate of liposomes after ingestion. It summarizes current models for the human stomach and intestine that are available and their relevance in nutritional studies. It highlights limitations and challenges in the use of these models for liposomal colloid system digestion and discusses crucial factors, such as enzymes and bile salts, that affect liposomal bilayer degradation.
Collapse
|
14
|
Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol 2017; 25:851-873. [PMID: 28602521 DOI: 10.1016/j.tim.2017.05.004] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
Weaning is a critical event in the pig's life cycle, frequently associated with severe enteric infections and overuse of antibiotics; this raises serious economic and public health concerns. In this review, we explain why gut microbiota dysbiosis, induced by abrupt changes in the diet and environment of piglets, emerges as a leading cause of post-weaning diarrhea, even if the exact underlying mechanisms remain unclear. Then, we focus on nonantimicrobial alternatives, such as zinc oxide, essential oils, and prebiotics or probiotics, which are currently evaluated to restore intestinal balance and allow a better management of the crucial weaning transition. Finally, we discuss how in vitro models of the piglet gut could be advantageously used as a complement to ex vivo and in vivo studies for the development and testing of new feed additives.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France; Lallemand Animal Nutrition, F-31702 Blagnac Cedex, France
| | | | | | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000, Gent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRA, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|