1
|
Song J, Kamal R, Chu Y, Liang S, Zhao ZK, Huang Q. Binary solvent extraction of intracellular lipids from Rhodotorula toruloides for cell recycling. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:53. [PMID: 40355961 PMCID: PMC12070525 DOI: 10.1186/s13068-025-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Microbial lipid extraction is a critical process in the production of biofuels and other valuable chemicals from oleaginous microorganisms. The process involves the separation of lipids from microbial cells. Given the complexity of microbial cell walls and the demand for efficient and environmentally friendly extraction methods, further research is still needed in this area. This study aims to pursue the extraction of intracellular lipids from oleaginous yeasts using inexpensive solvents, without disrupting the cells and even maintaining a certain level of cell viability. RESULTS The study used fresh fermentation broth of Rhodotorula toruloides as the lipid extraction target and employed a binary solvent of methyl tert-butyl ether (MTBE) and n-hexane for lipid extraction. The effects of extraction time and solvent ratio on cell viability, lipid extraction efficiency, and fatty acid composition were analyzed. Conditions that balanced lipid yield and cell survival were selected for lipid extraction. Specifically, using a binary solvent (with 40% MTBE) to extract an equal volume of R. toruloides fermentation broth achieved a total lipid extraction rate of 60%, while maintaining a 5% cell survival rate (the surviving cells served as the seed for the second round of lipid production). After separating the solvent phase and supplementing the lipid-extracted cells with carbon sources and a small amount of nitrogen sources, the cells gradually regained biomass and produced lipids. Repeating this "gentle" extraction on surviving and regrown cells and adding carbon and nitrogen sources can enable a second round of growth and lipid production in these cells. CONCLUSIONS This is an interesting finding that may potentially encompass the extraction mechanisms of polar/nonpolar solvents and the phenomenon of yeast autophagy. This method does not require the destruction of the cell wall of oleaginous yeast. The separation after extraction is simple, and both the cells and solvents can be recycled. It provides a possible approach for simultaneous fermentation and lipid extraction.
Collapse
Affiliation(s)
- Jingyi Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Rasool Kamal
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yadong Chu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Yantai Institute of Coastal Zone Research, CAS, Yantai, 264003, People's Republic of China
| | - Shiyu Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian University of Technology, School of Bioengineering, Dalian, 116024, People's Republic of China
| | - Zongbao K Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian University of Technology, School of Bioengineering, Dalian, 116024, People's Republic of China
| | - Qitian Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, People's Republic of China.
- Yantai Institute of Coastal Zone Research, CAS, Yantai, 264003, People's Republic of China.
| |
Collapse
|
2
|
Žganjar M, Ogrizović M, Matul M, Čadež N, Gunde-Cimerman N, González-Fernández C, Gostinčar C, Tomás-Pejó E, Petrovič U. High-throughput screening of non-conventional yeasts for conversion of organic waste to microbial oils via carboxylate platform. Sci Rep 2024; 14:14233. [PMID: 38902520 PMCID: PMC11190255 DOI: 10.1038/s41598-024-65150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.
Collapse
Affiliation(s)
- Mia Žganjar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Ogrizović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Mojca Matul
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Institute of Sustainable Processes, Dr. Mergelina, Valladolid, Spain
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Sarris D, Tsouko E, Photiades A, Tchakouteu SS, Diamantopoulou P, Papanikolaou S. Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 2: Citric Acid Production and Circular-Oriented Valorization of Glucose-Enriched Olive Mill Wastewaters Using Novel Yarrowia lipolytica Strains. Microorganisms 2023; 11:2243. [PMID: 37764087 PMCID: PMC10534340 DOI: 10.3390/microorganisms11092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets for resource efficiency, sustainable consumption-production, and low-carbon technologies. In this work, the potential of three novel wild-type Yarrowia lipolytica strains (namely LMBF Y-46, LMBF Y-47 and ACA-YC 5033) regarding the production of CA and other valuable metabolites was tested on glucose-based media, and the most promising amongst the screened strains (viz. the strain ACA-YC 5033) was cultured on glucose-based media, in which part of the fermentation water had been replaced by olive-mill wastewaters (OMWs) in a novel approach of simultaneous OMW valorization and bioremediation. In the first part of this study, the mentioned strains were cultured under nitrogen-limited conditions with commercial (low-cost) glucose employed as a sole carbon source in shake-flask cultures at an initial concentration (S0) ≈ of 50 g/L. Variable quantities of secreted citric acid (CA) and intra-cellular compounds (viz. polysaccharides and lipids) were produced. All strains did not accumulate significantly high lipid quantities (i.e., maximum lipid in dry cell weight [DCW] values ≈30% w/w were noted) but produced variable CA quantities. The most promising strain, namely ACA-YC 5033, produced CA up to c. 24 g/L, with a yield of CA produced on glucose consumed (YCA/S) ≈ 0.45 g/g. This strain in stirred tank bioreactor experiments, at remarkably higher S0 concentrations (≈110 g/L) and the same initial nitrogen quantity added into the medium, produced notably higher CA quantities, up to 57 g/L (YCA/S ≈ 0.52 g/g). The potential of the same strain (ACA-YC 5033) to bioremediate OMWs and to produce value-added compounds, i.e., yeast cells, CA, and intra-cellular metabolites, was also assessed; under nitrogen-limited conditions in which OMWs had partially replaced tap water and significant glucose concentrations had been added (S0 ≈ 100 g/L, simultaneous molar ratio C/N ≈ 285 g/g, initial phenolic compounds [Phen0] adjusted to ≈1.0 g/L; these media were similar to the OMWs generated from the traditional press extraction systems) the notable CA quantity of 60.2 g/L with simultaneous YCA/S = 0.66 g/g, was obtained in shake flasks, together with satisfactory phenolic compounds removal (up to 19.5% w/w) and waste decolorization (up to 47.0%). Carbon-limited conditions with Phen0 ≈ 1.0 g/L favored the production of yeast DCW (up to 25.3 g/L), with equally simultaneous interesting phenolic compounds and color removal. The fatty acid profile showed that cellular lipids were highly unsaturated with oleic, linoleic and palmitoleic acids, accounting for more than 80% w/w. This study proposed an interesting approach that could efficiently address the biotreatment of toxic effluents and further convert them into circular-oriented bioproducts.
Collapse
Affiliation(s)
- Dimitris Sarris
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food, Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (E.T.); (A.P.)
| | - Erminta Tsouko
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food, Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (E.T.); (A.P.)
| | - Angelos Photiades
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food, Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (E.T.); (A.P.)
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Attiki, Greece;
| | - Sidoine Sadjeu Tchakouteu
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Attiki, Greece;
| | - Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Demeter, 1 Sofokli Venizelou Street, 14123 Lykovryssi, Attiki, Greece;
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Attiki, Greece;
| |
Collapse
|
4
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
5
|
Chaturvedi S, Bhattacharya A, Rout PK, Nain L, Khare SK. An Overview of Enzymes and Rate-Limiting Steps Responsible for Lipid Production in Oleaginous Yeast. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Prasant K. Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Lata Nain
- Division of Microbiology, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|
6
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
7
|
Deeba F, Kumar KK, Rajacharya GH, Gaur NA. Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides. J Fungi (Basel) 2021; 7:jof7110967. [PMID: 34829254 PMCID: PMC8625802 DOI: 10.3390/jof7110967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Oleaginous yeast Rhodosporidium toruloides has great biotechnological potential and scientific interest, yet the molecular rationale of its cellular behavior to carbon and nitrogen ratios with concurrent lipid agglomeration remains elusive. Here, metabolomics adaptations of the R. toruloides in response to varying glucose and nitrogen concentrations have been investigated. In preliminary screening we found that 5% glucose (w/v) was optimal for further analysis in Rhodosporidium toruloides 3641. Hereafter, the effect of complementation to increase lipid agglomeration was evaluated with different nitrogen sources and their concentration. The results obtained illustrated that the biomass (13 g/L) and lipid (9.1 g/L) production were maximum on 5% (w/v) glucose and 0.12% (NH4)2SO4. Furthermore, to shed lights on lipid accumulation induced by nitrogen-limitation, we performed metabolomic analysis of the oleaginous yeast R. toruloides 3641. Significant changes were observed in metabolite concentrations by qualitative metabolomics through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), which were mapped onto the governing metabolic pathways. Notable finding in this strain concerns glycerol and CDP-DAG metabolism wherein reduced production of glycerol and phospholipids induced a bypass leading to enhanced de-novo triacylglyceride synthesis. Collectively, our findings help in understanding the central carbon metabolism of R. toruloides which may assist in developing rationale metabolic models and engineering efforts in this organism.
Collapse
Affiliation(s)
- Farha Deeba
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| | | | | | - Naseem A. Gaur
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| |
Collapse
|
8
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
9
|
Chen H, Chen H, Lu H, Tang X, Zhang H, Chen YQ, Chen W. Carbohydrate analysis of Mortierella alpina by colorimetry and HPLC-ELSD to reveal accumulation differences of sugar and lipid. Biotechnol Lett 2021; 43:1289-1301. [PMID: 33864523 DOI: 10.1007/s10529-021-03120-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To establish reliable methods for the extraction and quantification of the total carbohydrate and intracellular saccharides from Mortierella alpina and study the changes between carbohydrate and lipid in fermentation process. RESULTS The extraction of mycelia with HCl following a photometric phenol-sulphuric acid reaction was identified as an optimal method for total carbohydrate analysis in Mortierella alpina, which the extraction efficiency performed 1.1-3.6 fold than other five methods. The total carbohydrate content increased from initial 19.26 to 25.86% during early fermentation process and declined gradually thereafter, while the fatty acid was increasing from 8.47 to 31.03%. For separation and qualitative estimation of intracellular saccharides, the acetonitrile/water freeze-thaw method for extraction and Sugar-Pak I column for separation proved to be possible. With the glucose rapidly decreasing at the beginning of growth, the trehalose accumulated rapidly from 1.63 to 5.04% and then decreased slightly but maintain above 4% of dry biomass. CONCLUSIONS This work established comprehensive carbohydrate extraction and analysis methods of Mortierella alpina and identified the main saccharide in fermentation process which indicated that the accumulation of fatty acids was related to the change of intracellular carbohydrate content.
Collapse
Affiliation(s)
- Hanqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
10
|
Wang Z, Zhou L, Lu M, Zhang Y, Perveen S, Zhou H, Wen Z, Xu Z, Jin M. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl Microbiol Biotechnol 2021; 105:1745-1758. [PMID: 33523248 DOI: 10.1007/s00253-021-11130-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/26/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Yarrowia lipolytica strain is a promising cell factory for the conversion of lignocellulose to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to lignocellulose-derived inhibitors toxicity tolerance of Y. lipolytica are also required to achieve industrial application. Here, adaptive laboratory evolution was employed with increasing concentrations of ferulic acid. The adaptive laboratory evolution experiments led to evolve Y. lipolytica strain yl-XYL + *FA*4 with increased tolerance to ferulic acid as compared to the parental strain. Specifically, the evolved strain could tolerate 1.5 g/L ferulic acid, whereas 0.5 g/L ferulic acid could cause about 90% lethality of the parental strain. Transcriptome analysis of the evolved strain revealed several targets underlying toxicity tolerance enhancements. YALI0_E25201g, YALI0_F05984g, YALI0_B18854g, and YALI0_F16731g were among the highest upregulated genes, and the beneficial contributions of these genes were verified via reverse engineering. Recombinant strains with overexpressing each of these four genes obtained enhanced tolerance to ferulic acid as compared to the control strain. Fortunately, recombinant strains with overexpression of YALI0_E25201g, YALI0_B18854g, and YALI0_F16731g individually also obtained enhanced tolerance to vanillic acid. Overall, this work demonstrated a whole strain improvement cycle by "non-rational" metabolic engineering and presented new targets to modify Y. lipolytica for microbial lignocellulose valorization. KEY POINTS: • Adaptive evolution improved the ferulic acid tolerance of Yarrowia lipolytica • Transcriptome sequence was applied to analyze the ferulic acid tolerate strain • Three genes were demonstrated for both ferulic acid and vanillic acid tolerance.
Collapse
Affiliation(s)
- Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huarong Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
11
|
Wen Z, Zhang S, Odoh CK, Jin M, Zhao ZK. Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond. FEMS Yeast Res 2020; 20:foaa038. [PMID: 32614407 PMCID: PMC7334043 DOI: 10.1093/femsyr/foaa038] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The red yeast Rhodosporidium toruloides naturally produces microbial lipids and carotenoids. In the past decade or so, many studies demonstrated R. toruloides as a promising platform for lipid production owing to its diverse substrate appetites, robust stress resistance and other favorable features. Also, significant progresses have been made in genome sequencing, multi-omic analysis and genome-scale modeling, thus illuminating the molecular basis behind its physiology, metabolism and response to environmental stresses. At the same time, genetic parts and tools are continuously being developed to manipulate this distinctive organism. Engineered R. toruloides strains are emerging for enhanced production of conventional lipids, functional lipids as well as other interesting metabolites. This review updates those progresses and highlights future directions for advanced biotechnological applications.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing 210094, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| | - Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing 210094, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian 116023, China
| |
Collapse
|
12
|
Shen H, Li Q, Yu X. Lipid Production by Rhodotorula glutinis in Continuous Cultivation with a Gravity Sedimentation System. Indian J Microbiol 2020; 60:246-250. [PMID: 32255857 PMCID: PMC7105584 DOI: 10.1007/s12088-019-00849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022] Open
Abstract
Lipid accumulation is generally believed to be a partially growth-coupled biochemical process that results in differences in lipid content between different cells. To separate lipid-rich cells and increase the cellular biomass in bioreactors during the cultivation of the oleaginous yeasts, a gravity sedimentation system (GSS) is coupled to a bioreactor. The dilution rate (D) and the ratio of the outflow rate from the outlet of the GSS to the inflow rate into the bioreactor (B) were evaluated. The biomass in the bioreactor with GSS increased by 16.3% and 30.6% at D values of 0.05 h-1 (B = 0.25) and 0.02 h-1 (B = 0.5), respectively. Interestingly, cells containing 39.3% lipids were obtained from the outlet of the GSS (D = 0.02 h-1, B = 0.5), and the lipid content increased by 7.8% compared to that of the bioreactor. The results indicated that use of a GSS is a very effective method for increasing the cell concentration and separation of lipid-rich cells.
Collapse
Affiliation(s)
- Hongwei Shen
- Dalian Xinyulong Marine Biological Seed Industry Technology Company Limited, 4 Luxun Rd., Dalian, 116023 People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd., Dalian, 116023 People’s Republic of China
| | - Qiang Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd., Dalian, 116023 People’s Republic of China
| | - Xue Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd., Dalian, 116023 People’s Republic of China
| |
Collapse
|
13
|
Lopes HJS, Bonturi N, Kerkhoven EJ, Miranda EA, Lahtvee PJ. C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Appl Microbiol Biotechnol 2020; 104:2639-2649. [PMID: 31980919 PMCID: PMC7044259 DOI: 10.1007/s00253-020-10386-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 11/06/2022]
Abstract
Microbial oils are lipids produced by oleaginous microorganisms, which can be used as a potential feedstock for oleochemical production. The oleaginous yeast Rhodotorula toruloides can co-produce microbial oils and high-value compounds from low-cost substrates, such as xylose and acetic acid (from hemicellulosic hydrolysates) and raw glycerol (a byproduct of biodiesel production). One step towards economic viability is identifying the best conditions for lipid production, primarily the most suitable carbon-to-nitrogen ratio (C/N). Here, we aimed to identify the best conditions and cultivation mode for lipid production by R. toruloides using various low-cost substrates and a range of C/N ratios (60, 80, 100, and 120). Turbidostat mode was used to achieve a steady state at the maximal specific growth rate and to avoid continuously changing environmental conditions (i.e., C/N ratio) that inherently occur in batch mode. Regardless of the carbon source, higher C/N ratios increased lipid yields (up to 60% on xylose at a C/N of 120) but decreased the specific growth rate. Growth on glycerol resulted in the highest specific growth and lipid production (0.085 g lipids/gDW*h) rates at C/Ns between 60 and 100. We went on to study lipid production using glycerol in both batch and fed-batch modes, which resulted in lower specific lipid production rates compared with turbisdostat, however, fed batch is superior in terms of biomass production and lipid titers. By combining the data we obtained in these experiments with a genome-scale metabolic model of R. toruloides, we identified targets for improvements in lipid production that could be carried out either by metabolic engineering or process optimization.
Collapse
Affiliation(s)
- Helberth Júnnior Santos Lopes
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP 13083-970 Brazil
| | | | - Eduard Johannes Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Göteborg, Sweden
| | - Everson Alves Miranda
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, State University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP 13083-970 Brazil
| | | |
Collapse
|
14
|
Dinh HV, Suthers PF, Chan SHJ, Shen Y, Xiao T, Deewan A, Jagtap SS, Zhao H, Rao CV, Rabinowitz JD, Maranas CD. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metab Eng Commun 2019; 9:e00101. [PMID: 31720216 PMCID: PMC6838544 DOI: 10.1016/j.mec.2019.e00101] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Rhodosporidium toruloides is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast's metabolic capabilities, we reconstructed a genome-scale model of R. toruloides IFO0880's metabolic network (iRhto1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes. In this work, we integrated and supplemented the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism's metabolic capabilities. Predictions of genotype-phenotype relations were improved through manual curation of gene-protein-reaction rules for 543 reactions leading to correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 53.8%). Organism-specific macromolecular composition and ATP maintenance requirements were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen limitations. Overall, iRhto1108 reproduced R. toruloides's utilization capabilities for 18 alternate substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 819 deletion mutants. As a demonstration to the model's fidelity in guiding engineering interventions, the OptForce procedure was applied on iRhto1108 for triacylglycerol overproduction. Suggested interventions recapitulated many of the previous successful implementations of genetic modifications and put forth a few new ones.
Collapse
Affiliation(s)
- Hoang V. Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Siu Hung Joshua Chan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Tianxia Xiao
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Anshu Deewan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Sujit S. Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champagne, 114 Roger Adams Laboratory MC 712, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, 285 Frick Laboratory, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, 306 Chemical and Biomedical Engineering Building, PA, 16802-4400, USA
| |
Collapse
|
15
|
Arbter P, Sinha A, Troesch J, Utesch T, Zeng AP. Redox governed electro-fermentation improves lipid production by the oleaginous yeast Rhodosporidium toruloides. BIORESOURCE TECHNOLOGY 2019; 294:122122. [PMID: 31525584 DOI: 10.1016/j.biortech.2019.122122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Electro-fermentation (EF) is a promising technique to increase the performance of bioprocesses. Here, the effect of EF on the lipid production by the yeast Rhodosporidium toruloides is studied. First, an in silico analysis was performed to unveil possible lipid yield increase and metabolic shifts by EF. Subsequently, cathodic EF (CEF) and anodic EF (AEF) were experimentally tested at different pO2 levels. CEF enabled artificial lowering of the extracellular redox potential to less than -200 mV even under strictly aerobic conditions. CEF and AEF both positively affected lipid yield and productivity. Additional CEF cultivations with the redox mediator Neutral Red yielded an immense increase in the ratio of saturated fatty acids (from 37% to 50%). Overall, this work demonstrates that EF offers broad potential to improve microbial lipid production. In this context, the use of redox mediators might be of special future interest for the production of cocoa-butter equivalents.
Collapse
Affiliation(s)
- Philipp Arbter
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Aakanksha Sinha
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Julie Troesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029 Beijing, China.
| |
Collapse
|
16
|
Kim M, Park BG, Kim EJ, Kim J, Kim BG. In silico identification of metabolic engineering strategies for improved lipid production in Yarrowia lipolytica by genome-scale metabolic modeling. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:187. [PMID: 31367232 PMCID: PMC6657051 DOI: 10.1186/s13068-019-1518-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/03/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Yarrowia lipolytica, an oleaginous yeast, is a promising platform strain for production of biofuels and oleochemicals as it can accumulate a high level of lipids in response to nitrogen limitation. Accordingly, many metabolic engineering efforts have been made to develop engineered strains of Y. lipolytica with higher lipid yields. Genome-scale model of metabolism (GEM) is a powerful tool for identifying novel genetic designs for metabolic engineering. Several GEMs for Y. lipolytica have recently been developed; however, not many applications of the GEMs have been reported for actual metabolic engineering of Y. lipolytica. The major obstacle impeding the application of Y. lipolytica GEMs is the lack of proper methods for predicting phenotypes of the cells in the nitrogen-limited condition, or more specifically in the stationary phase of a batch culture. RESULTS In this study, we showed that environmental version of minimization of metabolic adjustment (eMOMA) can be used for predicting metabolic flux distribution of Y. lipolytica under the nitrogen-limited condition and identifying metabolic engineering strategies to improve lipid production in Y. lipolytica. Several well-characterized overexpression targets, such as diglyceride acyltransferase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase, were successfully rediscovered by our eMOMA-based design method, showing the relevance of prediction results. Interestingly, the eMOMA-based design method also suggested non-intuitive knockout targets, and we experimentally validated the prediction with a mutant lacking YALI0F30745g, one of the predicted targets involved in one-carbon/methionine metabolism. The mutant accumulated 45% more lipids compared to the wild-type. CONCLUSION This study demonstrated that eMOMA is a powerful computational method for understanding and engineering the metabolism of Y. lipolytica and potentially other oleaginous microorganisms.
Collapse
Affiliation(s)
- Minsuk Kim
- Institute of Engineering Research, Seoul National University, Seoul, 08826 Republic of Korea
- Present Address: Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Beom Gi Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Eun-Jung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
17
|
Castañeda MT, Nuñez S, Garelli F, Voget C, De Battista H. Comprehensive analysis of a metabolic model for lipid production in Rhodosporidium toruloides. J Biotechnol 2018; 280:11-18. [PMID: 29787798 DOI: 10.1016/j.jbiotec.2018.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
The yeast Rhodosporidium toruloides has been extensively studied for its application in biolipid production. The knowledge of its metabolism capabilities and the application of constraint-based flux analysis methodology provide useful information for process prediction and optimization. The accuracy of the resulting predictions is highly dependent on metabolic models. A metabolic reconstruction for R. toruloides metabolism has been recently published. On the basis of this model, we developed a curated version that unblocks the central nitrogen metabolism and, in addition, completes charge and mass balances in some reactions neglected in the former model. Then, a comprehensive analysis of network capability was performed with the curated model and compared with the published metabolic reconstruction. The flux distribution obtained by lipid optimization with flux balance analysis was able to replicate the internal biochemical changes that lead to lipogenesis in oleaginous microorganisms. These results motivate the development of a genome-scale model for complete elucidation of R. toruloides metabolism.
Collapse
Affiliation(s)
- María Teresita Castañeda
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP-CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina; Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina.
| | - Sebastián Nuñez
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Fabricio Garelli
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Claudio Voget
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP-CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Hernán De Battista
- Grupo de Control Aplicado (GCA), Instituto LEICI, UNLP-CONICET, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
18
|
Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:2509-2523. [DOI: 10.1007/s00253-018-8813-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
|
19
|
Dias O, Basso TO, Rocha I, Ferreira EC, Gombert AK. Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates. Antonie van Leeuwenhoek 2017; 111:183-195. [PMID: 28900755 DOI: 10.1007/s10482-017-0940-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serves [corrected] as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.
Collapse
Affiliation(s)
- Oscar Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil
| | - Thiago O Basso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil.
| | - Isabel Rocha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénio C Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreas K Gombert
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil.,School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
20
|
High lipids accumulation in Rhodosporidium toruloides by applying single and multiple nutrients limitation in a simple chemically defined medium. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1282-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|