1
|
An Y, Garcia SL, Hambäck PA. Microbial transfer through fecal strings on eggs affects leaf beetle microbiome dynamics. mSystems 2025:e0172324. [PMID: 40358205 DOI: 10.1128/msystems.01723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiomes of holometabolous insects can be strongly affected by metamorphosis. Previous studies suggest that microbiome colonization and community development often rely on specialized transmission routes between host life stages. However, there is a lack of comparative studies of microbial community dynamics from different transmission mechanisms. We compared the gut microbial community dynamics across life stages in five Galerucella species that differ in their potential microbial transfer mechanism by sequencing amplicons of the 16S rRNA gene. Females of three of the studied species place a fecal string on top of the egg, which may enhance the transfer of gut microbes, whereas females of the two other species do not. We found that the α-diversity was more stable between life stages in fecal string-placer species compared with the non-fecal string-placer species. Moreover, there were consistent microbiome differences between species, with multiple taxa in each species consistently appearing in all life stages. Fecal strings placed on eggs seem to play an important role in the diversity and dynamics of gut bacteria in Galerucella species, facilitating the vertical transfer of gut bacteria between host insect generations. Alternative, but less efficient, transmission routes appear to occur in non-fecal string-placer species. IMPORTANCE We explore the consequences of having different mechanisms for transferring and establishing the gut microbiome between generations on gut microbial community dynamics. This process is often problematic in holometabolous insects, which have a complete metamorphosis between larval and adult stages. In our previous research, we found that females of some species within the genus Galerucella (Chrysomelidae) place a fecal string on the eggs, which is later consumed by the hatching larvae, whereas other species in the same genus do not have this behavior. In this paper, we therefore quantify the microbial community dynamics across all life stages in five Galerucella beetles (three with and two without fecal strings). Our results also indicate that the dynamics are much more stable in the species with fecal strings, particularly in the early life stages.
Collapse
Affiliation(s)
- Yueqing An
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
| |
Collapse
|
2
|
Tanfouri N, Guerfali MM, Asimakis E, Mokhtar NB, Apostolopoulou G, Hamden H, Charaabi K, Fadhl S, Stathopoulou P, Cherif A, Tsiamis G. Characterization of the microbial communities in Tunisian wild populations of the Mediterranean fruit fly (Ceratitis capitata) and their implications for the future implementation of the sterile insect technique. INSECT SCIENCE 2025. [PMID: 40098416 DOI: 10.1111/1744-7917.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025]
Abstract
Insects and their associated microbiota have developed a sustained and mutually beneficial relationship, characterized by the influence of the symbiotic microorganisms on the host's physiological processes and fitness parameters. The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), is one of the world's most ubiquitous, invasive, and harmful agricultural pests. In Tunisia, the medfly is widely distributed across all bioclimatic zones. However, in the absence of surveillance, infestations can escalate drastically, causing damage levels as high as 100%. Our study aimed to characterize the microbiome profile of Tunisian medfly populations from Zaghouan, Tozeur, Siliana, and Bizerte to understand the microbial dynamics implicated in the invasiveness and adaptability potential if SIT is applied. We conducted amplicon sequencing using MiSeq Illumina and a culture-dependent approach. Our findings revealed notable differences in symbiotic communities across regions. For instance, Serratia was prevalent in Tozeur populations, while Klebsiella showed high abundance in Bizerte. The composition of the bacterial communities within the medfly populations was influenced by several factors including the environmental conditions, geographical location, developmental stage, and the sex of the insects. Investigating the intricate relationship between insects and their microbiota is pivotal for understanding their biology and developing effective pest management strategies. Additionally, the isolation of bacteria from adult and larval medflies collected in the Bizerte region revealed the presence of bacterial species that could be utilized as attractants or supplements in larval artificial diets in the case of application of the SIT aiming at producing competitive sterile males.
Collapse
Affiliation(s)
- Nesrine Tanfouri
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
- Higher Institute of Biotechnology Sidi Thabet, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Georgia Apostolopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Haythem Hamden
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Salma Fadhl
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Ameur Cherif
- Higher Institute of Biotechnology Sidi Thabet, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| |
Collapse
|
3
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Li X, Li P, Li D, Cai X, Gu S, Zeng L, Cheng D, Lu Y. Dynamics of Bactrocera dorsalis Resistance to Seven Insecticides in South China. INSECTS 2024; 15:679. [PMID: 39336647 PMCID: PMC11432527 DOI: 10.3390/insects15090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Bactrocera dorsalis is a highly invasive and destructive pest distributed worldwide. Chemical insecticides remain the primary measure for their control; however, this species has already developed resistance to several insecticides. In recent years, there have been several reports of monitoring B. dorsalis resistance in China, but continuous monitoring results are lacking and do not even span a decade. In this study, we monitored the dynamics of resistance to seven insecticides among 11 geographically distinct Chinese populations of B. dorsalis (2010-2013; follow-up in 2023). The 11 populations were found to adapt rapidly to antibiotic insecticides (spinosad, emamectin benzoate, and avermectin), reaching high levels of insecticide resistance in several areas. Overall, a decreasing trend in resistance to organophosphorus insecticides (chlorpyrifos and trichlorfon) was observed, whereas pyrethroid (beta-cypermethrin and cyhalothrin) resistance trends were observed to both increase and decrease. The monitoring of field resistance among different B. dorsalis populations over the duration of this study is important for improving the efficiency and sustainability of agricultural pest management, and the results provide a scientific basis for the development of more effective resistance management strategies.
Collapse
Affiliation(s)
- Xinlian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Peizheng Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Doudou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xinyan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shiwei Gu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zeng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Daifeng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Zhao J, Guan G, Li D, Yu X, Shentu X. Study on the gut symbiotic microbiota in long- and short-winged brown planthopper, Nilaparvata lugens (Stål). Sci Rep 2024; 14:11306. [PMID: 38760487 PMCID: PMC11101650 DOI: 10.1038/s41598-024-62350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.
Collapse
Affiliation(s)
- Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Guangxiang Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Fan L, Guan G, Zhao J, Li D, Yu X, Shentu X. Comparative analysis of the diversity of symbionts in fat body of long- and short-winged brown planthoppers. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22096. [PMID: 38500448 DOI: 10.1002/arch.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
The microbial community structure plays an important role in the internal environment of brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), which is an indispensable part to reflect the internal environment of BPH. Wing dimorphism is a strategy for balancing flight and reproduction of insects. Here, quantitative fluorescence PCR was used to analyse the number and changes of the symbionts in the fat body of long- and short-winged BPHs at different developmental stages. A metagenomic library was constructed based on the 16 S rRNA sequence and internal transcribed spacer sequence for high-throughput sequencing, to analyze the community structure and population number of the symbionts of long- and short-winged BPHs, and to make functional prediction. This study enriches the connotation of BPH symbionts, and laid a theoretical foundation for the subsequent study of BPH-symbionts interaction and the function of symbionts in the host.
Collapse
Affiliation(s)
- Linlin Fan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Guangxiang Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
7
|
Wang Y, Zhao Y, Zhang J, Li Z. Heat Shock Protein Genes Affect the Rapid Cold Hardening Ability of Two Invasive Tephritids. INSECTS 2024; 15:90. [PMID: 38392510 PMCID: PMC10889258 DOI: 10.3390/insects15020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Bactrocera dorsalis and Bactrocera correcta are two invasive species that can cause major economic damage to orchards and the fruit import and export industries. Their distribution is advancing northward due to climate change, which is threatening greater impacts on fruit production. This study tested the rapid cold-hardening ability of the two species and identified the temperature associated with the highest survival rate. Transcriptome data and survival data from the two Bactrocera species' larvae were obtained after rapid cold-hardening experiments. Based on the sequencing of transcripts, four Hsp genes were found to be affected: Hsp68 and Hsp70, which play more important roles in the rapid cold hardening of B. dorsalis, and Hsp23 and Hsp70, which play more important roles in the rapid cold hardening of B. correcta. This study explored the adaptability of the two species to cold, demonstrated the expression and function of four Hsps in response to rapid cold hardening, and explained the occurrence and expansion of these two species of tephritids, offering information for further studies.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
8
|
Gao HH, Zhao S, Wang RJ, Qin DY, Chen P, Zhang AS, Zhuang QY, Zhai YF, Zhou XH. Gut bacterium promotes host fitness in special ecological niche by affecting sugar metabolism in Drosophila suzukii. INSECT SCIENCE 2023; 30:1713-1733. [PMID: 36810869 DOI: 10.1111/1744-7917.13189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
As an important fruit pest of global significance, Drosophila suzukii occupies a special ecological niche, with the characteristics of high sugar and low protein contents. This niche differs from those occupied by other fruit-damaging Drosophila species. Gut bacteria substantially impact the physiology and ecology of insects. However, the contribution of gut microbes to the fitness of D. suzukii in their special ecological niche remains unclear. In this study, the effect of Klebsiella oxytoca on the development of D. suzukii was examined at physiological and molecular levels. The results showed that, after the removal of gut microbiota, the survival rate and longevity of axenic D. suzukii decreased significantly. Reintroduction of K. oxytoca to the midgut of D. suzukii advanced the development level of D. suzukii. The differentially expressed genes and metabolites between axenic and K. oxytoca-reintroduced D. suzukii were enriched in the pathways of carbohydrate metabolism. This advancement was achieved through an increased glycolysis rate and the regulation of the transcript level of key genes in the glycolysis/gluconeogenesis pathway. Klebsiella oxytoca is likely to play an important role in increasing host fitness in their high-sugar ecological niche by stimulating the glycolysis/gluconeogenesis pathway. As a protein source, bacteria can also provide direct nutrition for D. suzukii, which depends on the quantity or biomass of K. oxytoca. This result may provide a new target for controlling D. suzukii by inhibiting sugar metabolism through eliminating the effect of K. oxytoca and thus disrupting the balance of gut microbial communities.
Collapse
Affiliation(s)
- Huan-Huan Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Academy of Grape, Jinan, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rui-Juan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dong-Yun Qin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - An-Sheng Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qian-Ying Zhuang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi-Fan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xian-Hong Zhou
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
9
|
Mondal S, Somani J, Roy S, Babu A, Pandey AK. Insect Microbial Symbionts: Ecology, Interactions, and Biological Significance. Microorganisms 2023; 11:2665. [PMID: 38004678 PMCID: PMC10672782 DOI: 10.3390/microorganisms11112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 11/26/2023] Open
Abstract
The guts of insect pests are typical habitats for microbial colonization and the presence of bacterial species inside the gut confers several potential advantages to the insects. These gut bacteria are located symbiotically inside the digestive tracts of insects and help in food digestion, phytotoxin breakdown, and pesticide detoxification. Different shapes and chemical assets of insect gastrointestinal tracts have a significant impact on the structure and makeup of the microbial population. The number of microbial communities inside the gastrointestinal system differs owing to the varying shape and chemical composition of digestive tracts. Due to their short generation times and rapid evolutionary rates, insect gut bacteria can develop numerous metabolic pathways and can adapt to diverse ecological niches. In addition, despite hindering insecticide management programs, they still have several biotechnological uses, including industrial, clinical, and environmental uses. This review discusses the prevalent bacterial species associated with insect guts, their mode of symbiotic interaction, their role in insecticide resistance, and various other biological significance, along with knowledge gaps and future perspectives. The practical consequences of the gut microbiome and its interaction with the insect host may lead to encountering the mechanisms behind the evolution of pesticide resistance in insects.
Collapse
Affiliation(s)
- Sankhadeep Mondal
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Jigyasa Somani
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Somnath Roy
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Azariah Babu
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Abhay K. Pandey
- Deparment of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri 735225, West Bengal, India
| |
Collapse
|
10
|
Xie Z, Xu L, Zhao J, Li N, Qin D, Xiao C, Lu Y, Guo Z. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly, Bactrocera dorsalis (Hendel) by physiological substances transformation and cryoprotectants accumulation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:574-586. [PMID: 37501573 DOI: 10.1017/s0007485323000251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Insect response to cold stress is often associated with adaptive strategies and chemical variation. However, low-temperature domestication to promote the cold tolerance potential of Bactrocera dorsalis and transformation of main internal substances are not clear. Here, we use a series of low-temperature exposure experiments, supercooling point (SCP) measurement, physiological substances and cryoprotectants detection to reveal that pre-cooling with milder low temperatures (5 and 10°C) for several hours (rapid cold hardening) and days (cold acclimation) can dramatically improve the survival rate of adults and pupae under an extremely low temperature (-6.5°C). Besides, the effect of rapid cold hardening for adults could be maintained even 4 h later with 25°C exposures, and SCP was significantly declined after cold acclimation. Furthermore, content of water, fat, protein, glycogen, sorbitol, glycerol and trehalose in bodies were measured. Results showed that water content was reduced and increased content of proteins, glycogen, glycerol and trehalose after two cold domestications. Our findings suggest that rapid cold hardening and cold acclimation could enhance cold tolerance of B. dorsalis by increasing proteins, glycerol, trehalose and decreasing water content. Conclusively, identifying a physiological variation will be useful for predicting the occurrence and migration trend of B. dorsalis populations.
Collapse
Affiliation(s)
- Zifei Xie
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Luchen Xu
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Jie Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Na Li
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Chun Xiao
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Zijun Guo
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| |
Collapse
|
11
|
Li H, Li Z, Zhao Z. Egg-Associated Germs Induce Salicylate Defenses but Not Render Plant Against a Global Invasive Fruit Fly Effectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37021960 DOI: 10.1021/acs.jafc.3c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Germs associated with insect eggs can profoundly mediate interactions between host plants and herbivores, with the potential to coordinate plant physiological reactions with cascading effects on insect fitness. An experimental system was established including the oriental fruit fly (OFF, Bactrocera dorsalis) and tomato to examine the functions of egg-associated germs in mediating plant-herbivore interactions. OFF feeding resulted in significantly increased tannins, flavonoids, amino acids, and salicylic acid in the host tomato. These defensive responses of tomato were induced by the egg-associated germs, including Lactococcus sp., Brevundimonas sp., and Vagococcus sp. Tannins and flavonoids had no significant feedback effects on the pupal weight of OFF, while pupal biomass was significantly decreased by tannins and flavonoids in the germ-free treatment. Metabolome analysis showed that OFF mainly induced metabolic changes in carboxylic acid derivatives. Phenylalanine significantly induced downstream metabolic changes associated with phenylpropanoid accumulation. Finally, we conclude that the effects of egg-associated germs played an important role in facilitating OFF population adaptation and growth by mediating plant defenses, which provides a new paradigm for exploring the interaction of plant-pest and implementing effective pest biocontrol.
Collapse
Affiliation(s)
- Hao Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihua Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
12
|
Hafsi A, Delatte H. Enterobactereaceae symbiont as facilitators of biological invasion: review on Tephritidae fruit flies. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly. Commun Biol 2022; 5:973. [PMID: 36109578 PMCID: PMC9477868 DOI: 10.1038/s42003-022-03947-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractGut bacteria play important roles in insect life cycle, and various routes can be used by insects to effectively transmit their gut bacteria. However, it is unclear if the gut bacteria can spread by actively attracting their insect hosts, and the recognition mechanisms of host insects are poorly understood. Here, we explore chemical interactions between Bactrocera dorsalis and its gut bacterium Citrobacter sp. (CF-BD). We found that CF-BD could affect the development of host ovaries and could be vertically transmitted via host oviposition. CF-BD could attract B. dorsalis to lay eggs by producing 3-hexenyl acetate (3-HA) in fruits that were hosts of B. dorsalis. Furthermore, we found that B. dorsalis could directly recognize CF-BD in fruits with their ovipositors in which olfactory genes were expressed to bind 3-HA. This work reports an important mechanism concerning the active spread of gut bacteria in their host insects.
Collapse
|
14
|
Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol 2022; 13:979383. [PMID: 36187965 PMCID: PMC9516005 DOI: 10.3389/fmicb.2022.979383] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022] Open
Abstract
Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.
Collapse
Affiliation(s)
- Saleem Jaffar
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
16
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Wen T, Nie Q, Han L, Gong Z, Li D, Ma Q, Wang Z, He W, Wen L, Peng H. Molecularly imprinted polymers-based piezoelectric coupling sensor for the rapid and nondestructive detection of infested citrus. Food Chem 2022; 387:132905. [PMID: 35447512 DOI: 10.1016/j.foodchem.2022.132905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Tao Wen
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiyi Nie
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Longbo Han
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhongliang Gong
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Dapeng Li
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiang Ma
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiyu Wang
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Weitao He
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liang Wen
- College of Life Sciences, South China Normal University, Guangzhou, Guangdong 510630, China
| | - Hailong Peng
- Department of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
18
|
Singh S, Singh A, Baweja V, Roy A, Chakraborty A, Singh IK. Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism. Microorganisms 2021; 9:microorganisms9122422. [PMID: 34946024 PMCID: PMC8707026 DOI: 10.3390/microorganisms9122422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022] Open
Abstract
Insects nurture a panoply of microbial populations that are often obligatory and exist mutually with their hosts. Symbionts not only impact their host fitness but also shape the trajectory of their phenotype. This co-constructed niche successfully evolved long in the past to mark advanced ecological specialization. The resident microbes regulate insect nutrition by controlling their host plant specialization and immunity. It enhances the host fitness and performance by detoxifying toxins secreted by the predators and abstains them. The profound effect of a microbial population on insect physiology and behaviour is exploited to understand the host–microbial system in diverse taxa. Emergent research of insect-associated microbes has revealed their potential to modulate insect brain functions and, ultimately, control their behaviours, including social interactions. The revelation of the gut microbiota–brain axis has now unravelled insects as a cost-effective potential model to study neurodegenerative disorders and behavioural dysfunctions in humans. This article reviewed our knowledge about the insect–microbial system, an exquisite network of interactions operating between insects and microbes, its mechanistic insight that holds intricate multi-organismal systems in harmony, and its future perspectives. The demystification of molecular networks governing insect–microbial symbiosis will reveal the perplexing behaviours of insects that could be utilized in managing insect pests.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India;
| | - Varsha Baweja
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Amit Roy
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16521 Prague 6, Czech Republic;
- Correspondence: (A.C.); (I.K.S.)
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; (S.S.); (V.B.)
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
- Correspondence: (A.C.); (I.K.S.)
| |
Collapse
|
19
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Insecticide resistance governed by gut symbiosis in a rice pest, Cletus punctiger, under laboratory conditions. Biol Lett 2021; 17:20200780. [PMID: 33653096 DOI: 10.1098/rsbl.2020.0780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance to toxins in insects is generally thought of as their own genetic trait, but recent studies have revealed that gut microorganisms could mediate resistance by detoxifying phytotoxins and man-made insecticides. By laboratory experiments, we here discovered a striking example of gut symbiont-mediated insecticide resistance in a serious rice pest, Cletus punctiger. The rice bug horizontally acquired fenitrothion-degrading Burkholderia through oral infection and housed it in midgut crypts. Fenitrothion-degradation test revealed that the gut-colonizing Burkholderia retains a high degrading activity of the organophosphate compound in the insect gut. This gut symbiosis remarkably increased resistance against fenitrothion treatment in the host rice bug. Considering that many stinkbug pests are associated with soil-derived Burkholderia, our finding strongly supports that a number of stinkbug species could gain resistance against insecticide simply by acquiring insecticide-degrading gut bacteria.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Seonghan Jang
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| |
Collapse
|
20
|
Hassan B, Siddiqui JA, Xu Y. Vertically Transmitted Gut Bacteria and Nutrition Influence the Immunity and Fitness of Bactrocera dorsalis Larvae. Front Microbiol 2020; 11:596352. [PMID: 33193277 PMCID: PMC7661685 DOI: 10.3389/fmicb.2020.596352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 01/12/2023] Open
Abstract
Symbiotic bacterial communities that colonize the digestive tract of tephritid fruit flies interact with nutrient intake to improve the flies' fitness and immunity. Some bacterial species consistently inhabit the tephritid guts and are transmitted to the next generation vertically. These species contribute significantly to some aspects of their host's physiology. In the current study, we examined the role of four vertically transmitted bacteria (Citrobacter, Enterobacter, Klebsiella, and Providencia) on the fitness parameters and immunity of Bactrocera dorsalis larvae that were fed a nutritionally manipulated diet. For this purpose, eggs were collected from axenic, gnotobiotic, and symbiotic adult flies, and larvae were reared on four types of diets in which carbohydrate and/or protein contents were reduced and then compared with larvae raised on a control diet. The diet and bacterial interactions significantly affected the fitness and immunity of B. dorsalis. Larvae of axenic flies grew slower and displayed weaker immune-based responses (PO activity, antibacterial activity, survival) than larvae of gnotobiotic and symbiotic flies. Overall, larvae reared on the low-protein diet grew slower than those reared on the control or low-carbohydrate diets. Survival, PO activity, and antibacterial activity were significantly lower in the hemolymph of larvae reared on low-protein diets. Our results also revealed that the levels of hemolymph protein, glucose, trehalose, and triglyceride in larvae from axenic flies were significantly lower than those in larvae of the symbiotic group after they fed on most of the tested diets. These results strongly infer that diet and vertically transmitted bacteria are both essential contributors to the fitness and immunity of B. dorsalis.
Collapse
Affiliation(s)
- Babar Hassan
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Junaid Ali Siddiqui
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Gichuhi J, Khamis F, Van den Berg J, Mohamed S, Ekesi S, Herren JK. Influence of inoculated gut bacteria on the development of Bactrocera dorsalis and on its susceptibility to the entomopathogenic fungus, Metarhizium anisopliae. BMC Microbiol 2020; 20:321. [PMID: 33087056 PMCID: PMC7579797 DOI: 10.1186/s12866-020-02015-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Symbiotic interactions between insects and bacteria have been associated with a vast variety of physiological, ecological and evolutionary consequences for the host. A wide range of bacterial communities have been found in association with the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), an important pest of cultivated fruit in most regions of the world. We evaluated the diversity of gut bacteria in B. dorsalis specimens from several populations in Kenya and investigated the roles of individual bacterial isolates in the development of axenic (germ-free) B. dorsalis fly lines and their responses to the entomopathogenic fungus, Metarhizium anisopliae. Results We sequenced 16S rRNA to evaluate microbiomes and coupled this with bacterial culturing. Bacterial isolates were mono-associated with axenic B. dorsalis embryos. The shortest embryonic development period was recorded in flies with an intact gut microbiome while the longest period was recorded in axenic fly lines. Similarly, larval development was shortest in flies with an intact gut microbiome, in addition to flies inoculated with Providencia alcalifaciens. Adult B. dorsalis flies emerging from embryos that had been mono-associated with a strain of Lactococcus lactis had decreased survival when challenged with a standard dosage of M. anisopliae ICIPE69 conidia. However, there were no differences in survival between the germ-free lines and flies with an intact microbiome. Conclusions These findings will contribute to the selection of probiotics used in artificial diets for B. dorsalis rearing and the development of improved integrated pest management strategies based on entomopathogenic fungi. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02015-y.
Collapse
Affiliation(s)
- Joseph Gichuhi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Johnnie Van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samira Mohamed
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| |
Collapse
|
22
|
Roque-Romero L, Hernández E, Aceituno-Medina M, Ventura C, Toledo J, Malo EA. Attractiveness and Sexual Competitiveness of Anastrepha obliqua Males (Diptera: Tephritidae) Fed on a Diet Enriched With Providencia rettgeri. Front Microbiol 2020; 11:1777. [PMID: 33013722 PMCID: PMC7509840 DOI: 10.3389/fmicb.2020.01777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/07/2020] [Indexed: 12/05/2022] Open
Abstract
The West Indian fruit fly, Anastrepha obliqua (Macquart), is the second most important tephritid fruit fly in Mexico, infesting mango, hog plum and guava fruits. To control this pest, the Mexican government has implemented the use of the sterile insect technique (SIT), which involves the mass production, sterilization and release of flies. However, the A. obliqua laboratory males used in SIT are selected to a lesser extent by the wild females during competitiveness tests. The objective of this study was to compare the effects of males fed on fruit fly food enriched with Providencia rettgeri to those in males fed on food alone, assessing male mating competitiveness, capture of females using traps baited with males fed with the enriched diet and sex pheromone components. The results indicated that males fed with the diet enriched with P. rettgeri had increased mating competitiveness and captured more females in the field cage tests. However, no difference was observed in the proportion of volatile sex pheromone components identified during the calling of A. obliqua males. The results suggest the value of incorporating bacteria into the mass rearing technique of A. obliqua adults in order to improve the sexual competitiveness of males from the laboratory compared to wild males.
Collapse
Affiliation(s)
| | - Emilio Hernández
- Programa Moscafrut SADER-SENASICA, Subdirección de Desarrollo de Métodos, Chiapas, Mexico
| | | | - Carmen Ventura
- Programa Moscafrut SADER-SENASICA, Subdirección de Desarrollo de Métodos, Chiapas, Mexico
| | - Jorge Toledo
- Grupo de Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Chiapas, Mexico
| | - Edi A Malo
- Grupo de Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Chiapas, Mexico
| |
Collapse
|
23
|
Noman MS, Liu L, Bai Z, Li Z. Tephritidae bacterial symbionts: potentials for pest management. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:1-14. [PMID: 31223102 DOI: 10.1017/s0007485319000403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the genera Anastrepha, Bactrocera, Ceratitis, and Rhagoletis. Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera of Klebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia, and Providencia constitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.
Collapse
Affiliation(s)
- M S Noman
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - L Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Bai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Z Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
24
|
Meng F, Bar-Shmuel N, Shavit R, Behar A, Segoli M. Gut bacteria of weevils developing on plant roots under extreme desert conditions. BMC Microbiol 2019; 19:311. [PMID: 31888482 PMCID: PMC6937996 DOI: 10.1186/s12866-019-1690-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. Accordingly, we hypothesized that insects in desert environments may evolve associations with gut bacteria to adapt to the extremely low nutrient availability. For this, we conducted a systematic survey of bacterial communities in the guts of weevils developing inside mud chambers affixed to plant roots in the Negev Desert of Israel, based on 16S rRNA gene amplicon sequencing. RESULTS Our analyses revealed that gut bacterial communities in weevil larvae were similar across a wide geographical range, but differed significantly from those of the mud chambers and of the surrounding soils. Nevertheless, a high proportion of bacteria (including all of the core bacteria) found in the weevils were also detected in the mud chambers and soils at low relative abundances. The genus Citrobacter (of the Enterobacteriaceae family) was the predominant group in the guts of all individual weevils. The relative abundance of Citrobacter significantly decreased at the pupal and adult stages, while bacterial diversity increased. A mini literature survey revealed that members of the genus Citrobacter are associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation in different insects. CONCLUSIONS The results suggest that although weevils could potentially acquire their gut bacteria from the soil, weevil host internal factors, rather than external environmental factors, were more important in shaping their gut bacterial communities, and suggest a major role for Citrobacter in weevil nutrition in this challenging environment. This study highlights the potential involvement of gut bacteria in the adaptation of insects to nutritional deficiencies under extreme desert conditions.
Collapse
Affiliation(s)
- Fengqun Meng
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | - Nitsan Bar-Shmuel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adi Behar
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
25
|
Zaada DSY, Ben-Yosef M, Yuval B, Jurkevitch E. The host fruit amplifies mutualistic interaction between Ceratitis capitata larvae and associated bacteria. BMC Biotechnol 2019; 19:92. [PMID: 31847844 PMCID: PMC6918632 DOI: 10.1186/s12896-019-0581-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background The Mediterranean fruit fly Ceratitis capitata is a major pest in horticulture. The development of fly larvae is mediated by bacterial decay in the fruit tissue. Despite the importance of bacteria on larval development, very little is known about the interaction between bacteria and larvae in their true ecological context. Understanding their relationship and inter-dependence in the host fruit is important for the development of new pest control interfaces to deal with this pest. Results We find no negative effects on egg hatch or larval development brought about by the bacterial isolates tested. The various symbionts inhabiting the fly’s digestive system differ in their degree of contribution to the development of fly larvae depending on the given host and their sensitivity to induced inhibition caused by female produced antimicrobial peptides. These differences were observed not only at the genus or species level but also between isolates of the same species. We demonstrate how the microbiota from the mother’s gut supports the development of larvae in the fruit host and show that larvae play a major role in spreading the bacterial contagion in the infected fruit itself. In addition, we present (for the first time) evidence for horizontal transfer of bacteria between larvae of different maternal origin that develop together in the same fruit. Conclusions Larvae play a major role in the spread and shaping of the microbial population in the fruit. The transfer of bacteria between different individuals developing in the same fruit suggests that the infested fruit serves as a microbial hub for the amplification and spread of bacterial strains between individuals.
Collapse
Affiliation(s)
- Doron Shalom Yishai Zaada
- Departments of Entomology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel.
| | - Michael Ben-Yosef
- Departments of Entomology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| | - Boaz Yuval
- Departments of Entomology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| | - Edouard Jurkevitch
- Departments of Plant Pathology & Microbiology, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, 76100, Rehovot, Israel
| |
Collapse
|
26
|
Wei DD, He W, Lang N, Miao ZQ, Xiao LF, Dou W, Wang JJ. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21601. [PMID: 31328817 DOI: 10.1002/arch.21601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bactrocera dorsalis (Hendel) is considered to be a highly invasive and destructive agricultural pest due to its strong dispersal and adaptive capacity. Rapid development of insecticide resistance poses a serious threat to the sustainable control of this pest. Here, the resistance mechanisms and invasion pathways of this fly are outlined for a better understanding of the resistance-gene flow pattern and invasion routes. We believe this microreview will provide a glimpse of the native regions, spread and management of resistance, and guide future work on these important topics.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ning Lang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin-Fan Xiao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Akami M, Ren XM, Qi X, Mansour A, Gao B, Cao S, Niu CY. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol 2019; 19:229. [PMID: 31640545 PMCID: PMC6805663 DOI: 10.1186/s12866-019-1607-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023] Open
Abstract
Background The gut bacteria of tephritid fruit flies play prominent roles in nutrition, reproduction, maintenance and ecological adaptations of the host. Here, we adopted an approach based on direct observation of symbiotic or axenic flies feeding on dishes seeded with drops of full diet (containing all amino acids) or full diet supplemented with bacteria at similar concentrations to explore the effects of intestinal bacteria on foraging decision and fitness of Bactrocera dorsalis. Results The results show that intestinal probiotics elicit beneficial foraging decision and enhance the female reproduction fitness and survival of B. dorsalis (symbiotic and axenic), yet preferences for probiotic diets were significantly higher in axenic flies to which they responded faster compared to full diet. Moreover, females fed diet supplemented with Pantoea dispersa and Enterobacter cloacae laid more eggs but had shorter lifespan while female fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity compared to the positive control. Conversely, flies fed sugar diet (negative control) were not able to produce eggs, but lived longer than those from the positive control. Conclusions These results suggest that intestinal bacteria can drive the foraging decision in a way which promotes the reproduction and survival of B. dorsalis. Our data highlight the potentials of gut bacterial isolates to control the foraging behavior of the fly and empower the sterile insect technique (SIT) program through the mass rearing.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| | - Xue-Ming Ren
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Qi
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdelaziz Mansour
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Bingli Gao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Cao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Akami M, Njintang NY, Gbaye OA, Andongma AA, Rashid MA, Niu CY, Nukenine EN. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci Rep 2019; 9:6435. [PMID: 31015559 PMCID: PMC6478711 DOI: 10.1038/s41598-019-42843-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Bacteria inhabiting the gut of insects provide many benefits to their hosts, such as aiding in food digestion, reproduction, and immunity, tissue homeostasis, adaptation to environment and resistance to pathogen and pesticides. The cowpea beetle, Callosobruchus maculatus, is a serious cosmopolitan pest of pulses. This beetle has lent itself as a guinea pig for several ecological studies. It harbors a consortium of bacterial communities in its gut, but the evidence for their role in its physiology is fragmentary. In this work, we hypothesized that gut microbiota mediates C. maculatus resistance to dichlorvos (DDVP or O,O-dimethyl O-2,2-dichlorovinylphosphate) and represent the target of Lippia adoensis (Gambian Tea Bush) essential oil (EO). Symbiotic and aposymbiotic beetles were exposed to artificial cowpea seeds earlier treated with DDVP or EO. Adult mortality and changes in gut bacterial community composition and abundance were examined at F1 and F5 generations. The susceptibility of experimental beetles to DDVP was significantly affected by their symbiotic status. The adult mortality decreased across generations in DDVP treatments, and remained significantly higher in aposymbiotic groups. In EO treatments, the mortality was consistent irrespective of symbiotic status and experimental generations. When compared to DDVP and the Control, EO treatments had significantly lower bacterial richness and diversity, as well as lower abundance of Proteobacteria, Firmicutes, and Bacteroidetes. These results support our hypothesis and describe the responses of gut microbial communities to pesticide treatments. This could be of interest for developing new management strategies of this pest.
Collapse
Affiliation(s)
- Mazarin Akami
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon.
| | - Nicolas Yanou Njintang
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| | - Olajire A Gbaye
- Department of Biology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Awawing A Andongma
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Adnan Rashid
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Ying Niu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Elias Nchiwan Nukenine
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| |
Collapse
|
29
|
Microbiota and potential opportunistic pathogens associated with male and female fruit flies of Malaysian Bactrocera carambolae (Insecta: Tephritidae). Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Akami M, Andongma AA, Zhengzhong C, Nan J, Khaeso K, Jurkevitch E, Niu CY, Yuval B. Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS One 2019; 14:e0210109. [PMID: 30650116 PMCID: PMC6334898 DOI: 10.1371/journal.pone.0210109] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022] Open
Abstract
The gut microbiome of insects directly or indirectly affects the metabolism, immune status, sensory perception and feeding behavior of its host. Here, we examine the hypothesis that in the oriental fruit fly (Bactrocera dorsalis, Diptera: Tephritidae), the presence or absence of gut symbionts affects foraging behavior and nutrient ingestion. We offered protein-starved flies, symbiotic or aposymbiotic, a choice between diets containing all amino acids or only the non-essential ones. The different diets were presented in a foraging arena as drops that varied in their size and density, creating an imbalanced foraging environment. Suppressing the microbiome resulted in significant changes of the foraging behavior of both male and female flies. Aposymbiotic flies responded faster to the diets offered in experimental arenas, spent more time feeding, ingested more drops of food, and were constrained to feed on time-consuming patches (containing small drops of food), when these offered the full complement of amino acids. We discuss these results in the context of previous studies on the effect of the gut microbiome on host behavior, and suggest that these be extended to the life history dimension.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Awawing A. Andongma
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Zhengzhong
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiang Nan
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Kanjana Khaeso
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Edouard Jurkevitch
- Department of Microbiology and Plant Diseases, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (BY); (CYN)
| | - Boaz Yuval
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail: (BY); (CYN)
| |
Collapse
|
31
|
|
32
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|