1
|
Abraham N, Chan E, Li XZ, Zhu H, Mats L, Zhou T, Seah SYK. Patulin Detoxification by Evolutionarily Divergent Reductases of Gluconobacter oxydans ATCC 621. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6842-6853. [PMID: 40066527 PMCID: PMC11926874 DOI: 10.1021/acs.jafc.4c12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
The mycotoxin patulin in processed apple juice poses a significant threat to food safety, driving the need for effective detoxification strategies. Gluconobacter oxydans ATCC 621 can detoxify patulin to ascladiol using either the short-chain dehydrogenases/reductases (SDRs)─GOX0525, GOX1899, and GOX0716─or the aldo-keto reductase (AKR) GOX1462. While GOX0525 and GOX1899 have been previously characterized, this study focuses on GOX0716 and GOX1462, evaluating their optimal pH, thermostability, thermoactivity, and substrate specificity, thereby completing the characterization of all four reductases. GOX0716 and GOX1462 exhibit pH optima of 6 and 7, respectively, and are functional across a broad temperature range of 25-55 °C. GOX0716 was determined to be more thermostable than GOX1462, with a half-life of 4.95 h at 55 °C. Phylogenetic analysis revealed that these SDRs belong to distinct evolutionary families with broad substrate specificity. GOX0716 is a member of the SDR79 family, which shares a common ancestry with the SDR111 family of fungal anthrol reductases. Conversely, GOX1462 is a member of the AKR18 family, which is involved in detoxification of the mycotoxin, deoxynivalenol (DON). Molecular docking analysis of Alphafold models highlights distinct variations in the active site architectures of these SDRs and AKRs, offering insights into their differing catalytic efficiencies toward patulin.
Collapse
Affiliation(s)
- Nadine Abraham
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Guelph
Research and Development Centre, Agriculture
and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Edicon Chan
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Guelph
Research and Development Centre, Agriculture
and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xiu-Zhen Li
- Guelph
Research and Development Centre, Agriculture
and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph
Research and Development Centre, Agriculture
and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Lili Mats
- Guelph
Research and Development Centre, Agriculture
and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Ting Zhou
- Guelph
Research and Development Centre, Agriculture
and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Stephen Y. K. Seah
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Tafere Abrha G, Li Q, Kuang X, Xiao D, Ayepa E, Wu J, Chen H, Zhang Z, Liu Y, Yu X, Xiang Q, Ma M. Phenotypic and comparative transcriptomics analysis of RDS1 overexpression reveal tolerance of Saccharomyces cerevisiae to furfural. J Biosci Bioeng 2023; 136:270-277. [PMID: 37544800 DOI: 10.1016/j.jbiosc.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023]
Abstract
The yeast Saccharomyces cerevisiae able to tolerate lignocellulose-derived inhibitors like furfural. Yeast strain performance tolerance has been measured by the length of the lag phase for cell growth in response to the furfural inhibitor challenge. The aims of this work were to obtain RDS1 yeast tolerant strain against furfural through overexpression using a method of in vivo homologous recombination. Here, we report that the overexpressing RDS1 recovered more rapidly and displayed a lag phase at about 12 h than its parental strain. Overexpressing RDS1 strain encodes a novel aldehyde reductase with catalytic function for reduction of furfural with NAD(P)H as the co-factor. It displayed the highest specific activity (24.8 U/mg) for furfural reduction using NADH as a cofactor. Fluorescence microscopy revealed improved accumulation of reactive oxygen species resistance to the damaging effects of inhibitor in contrast to the parental. Comparative transcriptomics revealed key genes potentially associated with stress responses to the furfural inhibitor, including specific and multiple functions involving defensive reduction-oxidation reaction process and cell wall response. A significant change in expression level of log2 (fold change >1) was displayed for RDS1 gene in the recombinant strain, which demonstrated that the introduction of RDS1 overexpression promoted the expression level. Such signature expressions differentiated tolerance phenotypes of RDS1 from the innate stress response of its parental strain. Overexpression of the RDS1 gene involving diversified functional categories is accountable for stress tolerance in yeast S. cerevisiae to survive and adapt the furfural during the lag phase.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Qian Li
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xiaolin Kuang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Difan Xiao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Ellen Ayepa
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jinjian Wu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Huan Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Zhengyue Zhang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yina Liu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Menggen Ma
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
3
|
Abrha GT, Li Q, Kuang X, Xiao D, Ayepa E, Wu J, Chen H, Zhang Z, Liu Y, Yu X, Xiang Q, Ma M. Contribution of YPRO15C Overexpression to the Resistance of Saccharomyces cerevisiae BY4742 Strain to Furfural Inhibitor. Pol J Microbiol 2023; 72:177-186. [PMID: 37314359 DOI: 10.33073/pjm-2023-019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 06/15/2023] Open
Abstract
Lignocellulosic biomass is still considered a feasible source of bioethanol production. Saccharomyces cerevisiae can adapt to detoxify lignocellulose-derived inhibitors, including furfural. Tolerance of strain performance has been measured by the extent of the lag phase for cell proliferation following the furfural inhibitor challenge. The purpose of this work was to obtain a tolerant yeast strain against furfural through overexpression of YPR015C using the in vivo homologous recombination method. The physiological observation of the overexpressing yeast strain showed that it was more resistant to furfural than its parental strain. Fluorescence microscopy revealed improved enzyme reductase activity and accumulation of oxygen reactive species due to the harmful effects of furfural inhibitor in contrast to its parental strain. Comparative transcriptomic analysis revealed 79 genes potentially involved in amino acid biosynthesis, oxidative stress, cell wall response, heat shock protein, and mitochondrial-associated protein for the YPR015C overexpressing strain associated with stress responses to furfural at the late stage of lag phase growth. Both up- and down-regulated genes involved in diversified functional categories were accountable for tolerance in yeast to survive and adapt to the furfural stress in a time course study during the lag phase growth. This study enlarges our perceptions comprehensively about the physiological and molecular mechanisms implicated in the YPR015C overexpressing strain's tolerance under furfural stress. Construction illustration of the recombinant plasmid. a) pUG6-TEF1p-YPR015C, b) integration diagram of the recombinant plasmid pUG6-TEF1p-YPR into the chromosomal DNA of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
- 3Department of Biotechnology, College of Dry Land Agriculture and Natural Resources, Mekelle University, Mekelle, Ethiopia
| | - Qian Li
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Xiaolin Kuang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Difan Xiao
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Ellen Ayepa
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Jinjian Wu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Huan Chen
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Zhengyue Zhang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Yina Liu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Xiumei Yu
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Quanju Xiang
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
| | - Menggen Ma
- 1Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Sichuan, China
- 2Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Sichuan, China
| |
Collapse
|
4
|
Becerra ML, Lizarazo LM, Rojas HA, Prieto GA, Martinez JJ. Biotransformation of 5-hydroxymethylfurfural and furfural with bacteria of bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Lai D, Huang X, Wang C, Ow DW. Arabidopsis OXIDATIVE STRESS 3 enhances stress tolerance in Schizosaccharomyces pombe by promoting histone subunit replacement that upregulates drug-resistant genes. Genetics 2021; 219:6371188. [PMID: 34740252 DOI: 10.1093/genetics/iyab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/04/2021] [Indexed: 11/14/2022] Open
Abstract
Histone replacement in chromatin-remodeling plays an important role in eukaryotic gene expression. New histone variants replacing their canonical counterparts often lead to a change in transcription, including responses to stresses caused by temperature, drought, salinity, and heavy metals. In this study, we describe a chromatin-remodeling process triggered by eviction of Rad3/Tel1-phosphorylated H2Aα, in which a heterologous plant protein AtOXS3 can subsequently bind fission yeast HA2.Z and Swc2, a component of the SWR1 complex, to facilitate replacement of H2Aα with H2A.Z. The histone replacement increases occupancy of the oxidative stress-responsive transcription factor Pap1 at the promoters of at least three drug-resistant genes, which enhances their transcription and hence primes the cell for higher stress tolerance.
Collapse
Affiliation(s)
- Dingwang Lai
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Huang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changhu Wang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Chen H, Li J, Wan C, Fang Q, Bai F, Zhao X. Improvement of inhibitor tolerance in Saccharomyces cerevisiae by overexpression of the quinone oxidoreductase family gene YCR102C. FEMS Yeast Res 2020; 19:5543220. [PMID: 31374572 DOI: 10.1093/femsyr/foz055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Budding yeast Saccharomyces cerevisiae is widely used for lignocellulosic biorefinery. However, its fermentation efficiency is challenged by various inhibitors (e.g. weak acids, furfural) in the lignocellulosic hydrolysate, and acetic acid is commonly present as a major inhibitor. The effects of oxidoreductases on the inhibitor tolerance of S. cerevisiae have mainly focused on furfural and vanillin, whereas the influence of quinone oxidoreductase on acetic acid tolerance is still unknown. In this study, we show that overexpression of a quinone oxidoreductase-encoding gene, YCR102C, in S. cerevisiae, significantly enhanced ethanol production under acetic acid stress as well as in the inhibitor mixture, and also improved resistance to simultaneous stress of 40°C and 3.6 g/L acetic acid. Increased catalase activities, NADH/NAD+ ratio and contents of several metals, especially potassium, were observed by YCR102C overexpression under acetic acid stress. To our knowledge, this is the first report that the quinone oxidoreductase family protein is related to acid stress tolerance. Our study provides a novel strategy to increase lignocellulosic biorefinery efficiency using yeast cell factory.
Collapse
Affiliation(s)
- Hongqi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Wan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Fang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Hu X, Han X, Wu L, Wang H, Ouyang Y, Li Q, Kuang X, Xiang Q, Yu X, Li X, Gu Y, Zhao K, Chen Q, Ma M. The open reading frame 02797 from Candida tropicalis encodes a novel NADH-dependent aldehyde reductase. Protein Expr Purif 2020; 171:105625. [PMID: 32173567 DOI: 10.1016/j.pep.2020.105625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Owing to its high-temperature tolerance, robustness, and wide use of carbon sources, Candida tropicalis is considered a good candidate microorganism for bioconversion of lignocellulose to ethanol. It also has the intrinsic ability to in situ detoxify aldehydes derived from lignocellulosic hydrolysis. However, the aldehyde reductases that catalyze this bioconversion in C. tropicalis remain unknown. Herein, we found that the uncharacterized open reading frame (ORF), CTRG_02797, from C. tropicalis encodes a novel and broad substrate-specificity aldehyde reductase that reduces at least seven aldehydes. This enzyme strictly depended on NADH rather than NADPH as the co-factor for catalyzing the reduction reaction. Its highest affinity (Km), maximum velocity (Vmax), catalytic rate constant (Kcat), and catalytic efficiency (Kcat/Km) were observed when reducing acetaldehyde (AA) and its enzyme activity was influenced by different concentrations of salts, metal ions, and chemical protective additives. Protein localization assay demonstrated that Ctrg_02797p was localized in the cytoplasm in C. tropicalis cells, which ensures an effective enzymatic reaction. Finally, Ctrg_02797p was grouped into the cinnamyl alcohol dehydrogenase (CADH) subfamily of the medium-chain dehydrogenase/reductase family. This research provides guidelines for exploring more uncharacterized genes with reduction activity for detoxifying aldehydes.
Collapse
Affiliation(s)
- Xiangdong Hu
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xuebing Han
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Lan Wu
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Hanyu Wang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Yidan Ouyang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Qian Li
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xiaolin Kuang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Yunfu Gu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Qiang Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China
| | - Menggen Ma
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China; Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, PR China.
| |
Collapse
|
8
|
Wang H, Li Q, Zhang Z, Zhou C, Ayepa E, Abrha GT, Han X, Hu X, Yu X, Xiang Q, Li X, Gu Y, Zhao K, Xie C, Chen Q, Ma M. YKL107W from Saccharomyces cerevisiae encodes a novel aldehyde reductase for detoxification of acetaldehyde, glycolaldehyde, and furfural. Appl Microbiol Biotechnol 2019; 103:5699-5713. [DOI: 10.1007/s00253-019-09885-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
|
9
|
Zhao M, Shi D, Lu X, Zong H, Zhuge B, Ji H. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant. BIORESOURCE TECHNOLOGY 2019; 273:634-640. [PMID: 30502643 DOI: 10.1016/j.biortech.2018.11.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study ethanol fermentation properties of the robust mutant Candida glycerinogenes UG21 from non-detoxified lignocellulose hydrolysate. C. glycerinogenes UG21 with high tolerance to elevated temperature, acetic acid, and furfural was obtained and applied in lignocellulose-based ethanol production. C. glycerinogenes UG21 exhibited highly-efficient degradation ability to furfural. High levels of acetic acid and furfural inhibited cell growths and ethanol production of Saccharomyces cerevisiae ZWA46 and industrial Angel yeast but had a slight impact on biomass and ethanol titer of C. glycerinogenes UG21. Using non-detoxified sugarcane bagasse hydrolysate, C. glycerinogenes UG21 reached 1.24 g/L/h of ethanol productivity at 40 °C but ethanol production of S. cerevisiae ZWA46 and Angel yeast was inhibited. Further, C. glycerinogenes UG-21 exhibited 2.42-fold and 1.58-fold higher productivity than S. cerevisiae ZWA46 and Angel yeast under low-toxicity hydrolysate. Therefore, C. glycerinogenes UG-21 could be an excellent candidate for low-cost lignocelluloses ethanol production.
Collapse
Affiliation(s)
- Meilin Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dingchang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xinyao Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hong Zong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bin Zhuge
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Hao Ji
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
10
|
Wang H, Li Q, Kuang X, Xiao D, Han X, Hu X, Li X, Ma M. Functions of aldehyde reductases from Saccharomyces cerevisiae in detoxification of aldehyde inhibitors and their biotechnological applications. Appl Microbiol Biotechnol 2018; 102:10439-10456. [PMID: 30306200 DOI: 10.1007/s00253-018-9425-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022]
Abstract
Bioconversion of lignocellulosic biomass to high-value bioproducts by fermentative microorganisms has drawn extensive attentions worldwide. Lignocellulosic biomass cannot be efficiently utilized by microorganisms, such as Saccharomyces cerevisiae, but has to be pretreated prior to fermentation. Aldehyde compounds, as the by-products generated in the pretreatment process of lignocellulosic biomass, are considered as the most important toxic inhibitors to S. cerevisiae cells for their growth and fermentation. Aldehyde group in the aldehyde inhibitors, including furan aldehydes, aliphatic aldehydes, and phenolic aldehydes, is identified as the toxic factor. It has been demonstrated that S. cerevisiae has the ability to in situ detoxify aldehydes to their corresponding less or non-toxic alcohols. This reductive reaction is catalyzed by the NAD(P)H-dependent aldehyde reductases. In recent years, detoxification of aldehyde inhibitors by S. cerevisiae has been extensively studied and a huge progress has been made. This mini-review summarizes the classifications and structural features of the characterized aldehyde reductases from S. cerevisiae, their catalytic abilities to exogenous and endogenous aldehydes and effects of metal ions, chemical protective additives, and salts on enzyme activities, subcellular localization of the aldehyde reductases and their possible roles in protection of the subcellular organelles, and transcriptional regulation of the aldehyde reductase genes by the key stress-response transcription factors. Cofactor preference of the aldehyde reductases and their molecular mechanisms and efficient supply pathways of cofactors, as well as biotechnological applications of the aldehyde reductases in the detoxification of aldehyde inhibitors derived from pretreatment of lignocellulosic biomass, are also included or supplemented in this mini-review.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qian Li
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiaolin Kuang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Difan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xuebing Han
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiangdong Hu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Menggen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|