1
|
Fernández M, Barahona S, Gutierrez F, Alcaíno J, Cifuentes V, Baeza M. Bacterial Diversity, Metabolic Profiling, and Application Potential of Antarctic Soil Metagenomes. Curr Issues Mol Biol 2024; 46:13165-13178. [PMID: 39590379 PMCID: PMC11593224 DOI: 10.3390/cimb46110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 11/28/2024] Open
Abstract
Antarctica has attracted increasing interest in understanding its microbial communities, metabolic potential, and as a source of microbial hydrolytic enzymes with industrial applications, for which advances in next-generation sequencing technologies have greatly facilitated the study of unculturable microorganisms. In this work, soils from seven sub-Antarctic islands and Union Glacier were studied using a whole-genome shotgun metagenomic approach. The main findings were that the microbial community at all sites was predominantly composed of the bacterial phyla Actinobacteria and Cyanobacteria, and the families Streptomycetaceae and Pseudonocardiaceae. Regarding the xenobiotic biodegradation and metabolism pathway, genes associated with benzoate, chloroalkane, chloroalkene, and styrene degradation were predominant. In addition, putative genes encoding industrial enzymes with predicted structural properties associated with improved activity at low temperatures were found, with catalases and malto-oligosyltrehalose trehalohydrolase being the most abundant. Overall, our results show similarities between soils from different Antarctic sites with respect to more abundant bacteria and metabolic pathways, especially at higher classification levels, regardless of their geographic location. Furthermore, our results strengthen the potential of Antarctic soils as a source of industrially relevant enzymes.
Collapse
Affiliation(s)
- Mario Fernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Salvador Barahona
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile;
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| |
Collapse
|
2
|
Tulsook K, Bussadee P, Arnthong J, Mhuantong W, U-Thai P, Trakarnpaiboon S, Champreda V, Suwannarangsee S. Engineering a high-sugar tolerant strain of Saccharomyces cerevisiae for efficient trehalose production using a cell surface display approach. BIORESOUR BIOPROCESS 2024; 11:101. [PMID: 39422852 PMCID: PMC11489382 DOI: 10.1186/s40643-024-00816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Trehalose production via a one-step enzymatic route using trehalose synthase (TreS) holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates. However, the development of a robust whole-cell biocatalyst expressing TreS remains crucial for enabling practical and economically viable production. In this study, a high-sugar tolerant strain of S. cerevisiae was screened and employed as a host cell for the cell surface display of TreS from Acidiplasma aeolicum. The resultant strain, S. cerevisiae I3A, exhibited remarkable surface displayed TreS activity of 3358 U/g CDW and achieved approximately 64% trehalose yield (10.8 g/L/h productivity) from maltose. Interestingly, no glucose by-product was observed during trehalose production. The S. cerevisiae I3A cells exhibited reusability for up to 12 cycles leading to potential cost reduction of trehalose products. Therefore, our study demonstrated the development of a high-sugar tolerant S. cerevisiae strain expressing TreS on its surface as a whole-cell biocatalyst for efficient and economical trehalose production with potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Kan Tulsook
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Piyada Bussadee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Jantima Arnthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Panida U-Thai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Srisakul Trakarnpaiboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
3
|
Yong ZL, Chen YT, Chan C, Lee GC. Enzymatic Production of Trehalose and Trehalulose by Immobilized Thermostable Trehalose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39364532 DOI: 10.1021/acs.jafc.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Trehalose, a versatile disaccharide renowned for its unique physical and chemical properties, finds extensive application in the food, pharmaceutical, and cosmetic industries. While conventional extraction methods face challenges, enzymatic conversion offers a promising avenue for the industrial production of trehalose. This study delves into a novel synthetic approach utilizing a recombinant enzyme, merging the thermostable trehalose synthase domain from Thermus thermophiles with a cellulose binding domain. Immobilization of this enzyme on cellulose matrices enhances stability and facilitates product purification, opening avenues for efficient enzymatic synthesis. Notably, the engineered enzyme demonstrates additional activity, converting sucrose into trehalulose. This dual functionality, combined with immobilization strategies, holds immense potential for scalable and cost-effective production of trehalose and trehalulose, offering promising prospects in various industrial and biomedical applications.
Collapse
Affiliation(s)
- Zi-Ling Yong
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Ting Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching Chan
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
- College of Industry Academia Innovation, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
4
|
Ye LC, Chow SY, Chang SC, Kuo CH, Wang YL, Wei YJ, Lee GC, Liaw SH, Chen WM, Chen SC. Structural and Mutational Analyses of Trehalose Synthase from Deinococcus radiodurans Reveal the Interconversion of Maltose-Trehalose Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18649-18657. [PMID: 39109746 PMCID: PMC11342931 DOI: 10.1021/acs.jafc.4c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.
Collapse
Affiliation(s)
- Li-Ci Ye
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sih-Yao Chow
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - San-Chi Chang
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Chia-Hung Kuo
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Yung-Lin Wang
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yong-Jun Wei
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Guan-Chiun Lee
- Department
of Life Science, National Taiwan Normal
University, No. 162, Sec. 1, Heping East Road, Taipei 116, Taiwan
| | - Shwu-Huey Liaw
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Ming Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Sheng-Chia Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| |
Collapse
|
5
|
Lee CY, So YS, Yoo SH, Lee BH, Seo DH. Impact of artificial sweeteners and rare sugars on the gut microbiome. Food Sci Biotechnol 2024; 33:2047-2064. [PMID: 39130663 PMCID: PMC11315849 DOI: 10.1007/s10068-024-01597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative sugars are often used as sugar substitutes because of their low calories and glycemic index. Recently, consumption of these sweeteners in diet foods and beverages has increased dramatically, raising concerns about their health effects. This review examines the types and characteristics of artificial sweeteners and rare sugars and analyzes their impact on the gut microbiome. In the section on artificial sweeteners, we have described the chemical structures of different sweeteners, their digestion and absorption processes, and their effects on the gut microbiota. We have also discussed the biochemical properties and production methods of rare sugars and their positive and negative effects on gut microbial communities. Finally, we have described how artificial sweeteners and rare sugars alter the gut microbiome and how these changes affect the gut environment. Our observations aim to improve our understanding regarding the potential health implications of the consumption of artificial sweeteners and low-calorie sugars.
Collapse
Affiliation(s)
- Chang-Young Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Yun-Sang So
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
6
|
Hao T, Xu Y, Liang C, Peng X, Yu S, Peng L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. CHEMOSPHERE 2024; 353:141535. [PMID: 38403121 DOI: 10.1016/j.chemosphere.2024.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.
Collapse
Affiliation(s)
- Tianqi Hao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Xiaoshuai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
7
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
8
|
Izadi Z, Rashidi M, Derakhshankhah H, Dolati M, Ghanbari Kermanshahi M, Adibi H, Samadian H. Curcumin-loaded porous particles functionalized with pH-responsive cell-penetrating peptide for colorectal cancer targeted drug delivery. RSC Adv 2023; 13:34587-34597. [PMID: 38024994 PMCID: PMC10670635 DOI: 10.1039/d3ra06270h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
The anticancer properties of curcumin have been broadly examined in several shapes, such as nanoparticles and nanocomposite structures. Despite its benefits, curcumin also has some disadvantages, including rapid metabolism, poor absorption, and rapid systemic excretion. Therefore, numerous strategies have been used to increase curcumin's bioavailability. One of these approaches is the use of porous particles like aerogels as drug carriers. Aerogels are special due to their peculiar physical structure. They have a high specific surface area, a significant amount of porosity, and a solid composition, which make them a good choice for drug delivery systems. In the present study, a pH-sensitive aerogel was constructed and evaluated for targeted drug delivery of curcumin to colon cancer. To control the release of curcumin, trehalose was used as a coating agent, and PLP (poly(l-lysine isophthalamide)) was used as a targeted drug delivery agent. PLP is a pseudo-peptidic polymer that increases the cell permeability. In order to investigate and compare the synthesized aerogel before and after loading curcumin and coating with trehalose, physicochemical characterization analyses were performed. Finally, the efficacy of the final formulation was evaluated on HT29 colon cells using the cell bioavailability test. The results indicated the successful synthesis of the aerogel with porous structure with solitary cavities. The trehalose coating performed well, preventing drug release at lower pH but allowing the drug to be released at its intended site. The designed curcumin-loaded porous particles functionalized with PLP showed significant efficacy due to increasing penetration of curcumin into cells, and has potential for use as a new drug carrier with dual effectivity in cancer therapy.
Collapse
Affiliation(s)
- Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- USERN Office, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Rashidi
- USERN Office, Kermanshah University of Medical Sciences Kermanshah Iran
- Student Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- USERN Office, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mozhdeh Dolati
- USERN Office, Kermanshah University of Medical Sciences Kermanshah Iran
- Student Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Ghanbari Kermanshahi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- USERN Office, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
9
|
Zhang S, Ni D, Zhu Y, Xu W, Zhang W, Mu W. A comprehensive review on the properties, production, and applications of functional glucobioses. Crit Rev Food Sci Nutr 2023; 64:13149-13162. [PMID: 37819266 DOI: 10.1080/10408398.2023.2261053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Glucobiose is a range of disaccharides consisting of two glucose molecules, generally including trehalose, kojibiose, sophorose, nigerose, laminaribiose, maltose, cellobiose, isomaltose, and gentiobiose. The difference glycosidic bonds of two glucose molecules result in the diverse molecular structures, physiochemical properties and physiological functions of these glucobioses. Some glucobioses are abundant in nature but have unconspicuous roles on health like maltose, whereas some rare glucobioses display remarkable biological effects. It is unpractical process to extract these rare glucobioses from natural resources, while biological synthesis is a feasible approach. Recently, the production and application of glucobiose have attracted considerable attention. This review provides a comprehensive overview of glucobioses, including their natural sources and physicochemical properties like structure, sweetness, digestive performance, toxicology, and cariogenicity. Specific enzymes used for the production of various glucobioses and fermentation production processes are summarized. Additionally, their versatile functions and broad applications are also introduced.
Collapse
Affiliation(s)
- Shuqi Zhang
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resoruces, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Trakarnpaiboon S, Bunterngsook B, Lekakarn H, Prongjit D, Champreda V. Characterization of cold-active trehalose synthase from Pseudarthrobacter sp. for trehalose bioproduction. BIORESOUR BIOPROCESS 2023; 10:65. [PMID: 38647947 PMCID: PMC10992939 DOI: 10.1186/s40643-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/29/2023] [Indexed: 04/25/2024] Open
Abstract
Trehalose is a functional sugar that has numerous applications in food, cosmetic, and pharmaceutical products. Production of trehalose from maltose via a single-step enzymatic catalysis using trehalose synthase (TreS) is a promising method compared with the conventional two-step process due to its simplicity with lower formation of byproducts. In this study, a cold-active trehalose synthase (PaTreS) from Pseudarthrobacter sp. TBRC 2005 was heterologously expressed and characterized. PaTreS showed the maximum activity at 20 °C and maintained 87% and 59% of its activity at 10 °C and 4 °C, respectively. The enzyme had remarkable stability over a board pH range of 7.0-9.0 with the highest activity at pH 7.0. The activity was enhanced by divalent metal ions (Mg2+, Mn2+ and Ca2+). Conversion of high-concentration maltose syrup (100-300 g/L) using PaTreS yielded 71.7-225.5 g/L trehalose, with 4.5-16.4 g/L glucose as a byproduct within 16 h. The work demonstrated the potential of PaTreS as a promising biocatalyst for the development of low-temperature trehalose production, with the advantages of reduced risk of microbial contamination with low generation of byproduct.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Daran Prongjit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
11
|
Wang X, Jiang Y, Liu H, Zhang X, Yuan H, Huang D, Wang T. In vitro assembly of the trehalose bi-enzyme complex with artificial scaffold protein. Front Bioeng Biotechnol 2023; 11:1251298. [PMID: 37711449 PMCID: PMC10497880 DOI: 10.3389/fbioe.2023.1251298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction: Trehalose is a significant rare sugar known for its stable properties and ability to protect biomolecules from environmental factors. Methods: In this study, we present a novel approach utilizing a scaffold protein-mediated assembly method for the formation of a trehalose bi-enzyme complex. This complex consists of maltooligosyltrehalose synthase (MTSase) and maltooligosyltrehalose trehalohydrolase (MTHase), which work in tandem to catalyze the substrate and enhance the overall catalytic efficiency. Utilizing the specific interaction between cohesin and dockerin, this study presents the implementation of an assembly, an analysis of its efficiency, and an exploration of strategies to enhance enzyme utilization through the construction of a bi-enzyme complex under optimal conditions in vitro. Results and Discussion: The bi-enzyme complex demonstrated a trehalose production level 1.5 times higher than that of the free enzyme mixture at 40 h, with a sustained upward trend. Compared to free enzyme mixtures, the adoption of a scaffold protein-mediated bi-enzyme complex may improve cascade reactions and catalytic effects, thus presenting promising prospects.
Collapse
Affiliation(s)
- Xiangyi Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| | - Xinyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
12
|
Dietary Trehalose as a Bioactive Nutrient. Nutrients 2023; 15:nu15061393. [PMID: 36986123 PMCID: PMC10054017 DOI: 10.3390/nu15061393] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Trehalose is a naturally occurring, non-reducing disaccharide comprising two covalently-linked glucose molecules. It possesses unique physiochemical properties, which account for multiple biological roles in a variety of prokaryotic and eukaryotic organisms. In the past few decades, intensive research on trehalose has uncovered its functions, and extended its uses as a sweetener and stabilizer in the food, medical, pharmaceutical, and cosmetic industries. Further, increased dietary trehalose consumption has sparked research on how trehalose affects the gut microbiome. In addition to its role as a dietary sugar, trehalose has gained attention for its ability to modulate glucose homeostasis, and potentially as a therapeutic agent for diabetes. This review discusses the bioactive effects of dietary trehalose, highlighting its promise in future industrial and scientific contributions.
Collapse
|
13
|
Co-culture fermentation characteristics of antifreeze yeast and mining of related freezing-resistant genes. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Production of Trehalose from Maltose by Whole Cells of Permeabilized Recombinant Corynebacterium glutamicum. Processes (Basel) 2022. [DOI: 10.3390/pr10122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Trehalose (α-D-glucopyranosyl-1,1-α-D-glucopyranoside) is a stable and nonreducing disaccharide; can be used as sweetener, stabilizer, and humectant; and has many applications in the food, pharmaceutical, and cosmetic industries. Trehalose production from maltose catalyzed by trehalose synthase (TreS) is simple and economically feasible for industrial-scale application. Reducing the cost and enhancing the efficiency of TreS synthesis and the conversion of maltose to trehalose is critical for trehalose production. In this study, the homologous TreS was constitutively overexpressed in Corynebacterium glutamicum ATCC13032 by removing the repressor gene lacIq fragment in the plasmid, and TreS expression could be exempt from the inducer addition and induction process. For cell permeabilization, Triton X-100 was used as a permeabilization agent, and the treatment time was 3 h. In the conversion system, the permeabilized cells of recombinant C. glutamicum were used as biocatalysts, 300 g/L maltose was used as a substrate, and 173.7 g/L trehalose was produced within 12 h under 30 °C and pH 7.0 conditions. In addition, the whole-cell biocatalysts showed promising reusability. This study provides a safe, convenient, practical, and low-cost pathway for the production of trehalose.
Collapse
|
15
|
Trakarnpaiboon S, Champreda V. Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct. J Microbiol Biotechnol 2022; 32:1054-1063. [PMID: 35791071 PMCID: PMC9628947 DOI: 10.4014/jmb.2202.02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35°C and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Rd., Klong Luang District, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Rd., Klong Luang District, Pathumthani 12120, Thailand,Corresponding author Phone: +66-2564-6700 Fax: +66-2564-6707 E-mail:
| |
Collapse
|
16
|
Gong F, Ge T, Liu J, Xiao J, Wu X, Wang H, Zhu Y, Xia D, Hu B. Trehalose inhibits ferroptosis via NRF2/HO-1 pathway and promotes functional recovery in mice with spinal cord injury. Aging (Albany NY) 2022; 14:3216-3232. [PMID: 35400664 PMCID: PMC9037257 DOI: 10.18632/aging.204009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) is the main cause of severe damage to the central nervous system and leads to irreversible tissue loss and neurological dysfunction. Ferroptosis is a cell death pattern, newly discovered in recent years. Ferroptosis is an oxidizing cell death induced by small molecules, and is an iron-dependent process caused by the imbalance between the generation and degradation of lipid reactive oxygen species (ROS) in cells. As an antioxidant, trehalose can effectively prevent lipid peroxidation. Studies have reported that trehalose can improve the prognosis of SCI. However, it is unclear whether these benefits are related to ferroptosis. In this study, we demonstrated for the first time that trehalose reduces the degeneration and iron accumulation of neurons by inhibiting the production of ROS and ferroptosis caused by lipid peroxides after SCI, thus promoting the survival of neurons and improving the recovery of motor function. More specifically, we found that trehalose inhibited the expansion of cavities in the nerve tissue of mice with SCI, inhibited neuron loss, and improved functional recovery. In terms of mechanism, our results indicate that the neuroprotective effect of trehalose is due to the activation of the NRF2/HO-1 pathway, which in turn inhibits ferroptosis and ferroptosis-related inflammation. Our findings provide important insights into the previously unknown role of trehalose in SCI, as well as new evidence supporting the hypothesis that suppression of ferroptosis plays a key neuroprotective role in SCI.
Collapse
Affiliation(s)
- Fangyi Gong
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Ting Ge
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Jing Liu
- Department of Emergency Medicine, Ningbo First Hospital, Ningbo, China
| | - Jin Xiao
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Xiaochuan Wu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Hehui Wang
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Yingchun Zhu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Dongdong Xia
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| | - Baiwen Hu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
17
|
NTH2 1271_1272delTA Gene Disruption Results in Salt Tolerance in Saccharomyces cerevisiae. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Trehalose is a common energy reservoir, and its accumulation results in osmotic protection. This sugar can accumulate through its synthesis or slow degradation of the reservoir by trehalase enzymes. Saccharomyces cerevisiae contains two neutral trehalases, NTH1 and NTH2, responsible for 75% and 25% of the enzymatic metabolism. We were interested in the loss-of-function of both enzymes with CRISPR/Cas9. The later NTH2 was of great importance since it is responsible for minor metabolic degradation of this sugar. It was believed that losing its functionality results in limited osmotic protection. We constructed an osmotolerant superior yeast capable of growing in 0.85 M NaCl after independent nth2 1271_1272delTA mutation by CRISPR/Cas9 technology, compared with nth1 893_894insT and wild type. We suggest that this yeast model could give clues to breeding commercial yeast resulting in non-GMO salinity-tolerant strains.
Collapse
|
18
|
Park JC, Jeong H, Kim Y, Lee HS. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35040429 DOI: 10.1099/mic.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene whcE of Corynebacterium glutamicum plays a positive role in oxidative stress responses and the WhcE protein interacts with SpiE. By utilizing 2D-PAGE analysis, we identified the otsB gene to be under the control of whcE. The transcription of otsB, encoding trehalose 6-phosphatase, was stimulated by oxidative stress, and whcE and spiE were involved in diamide-mediated transcriptional stimulation. The ΔotsB strain was created and found to be sensitive to the thiol-specific oxidant diamide, suggesting a role of the gene in stress responses. Genes located upstream of otsB, such as NCgl2534 and otsA, formed an operon and purified WhcE was able to bind to the promoter region of the operon (PNCgl2534), but the binding was only possible in the presence of the oxidant diamide. In addition, the transcriptional activation of PNCgl2534 by WhcE was demonstrated in in vivo assays and the transcription was stimulated in cells exposed to the oxidant diamide. These findings indicate that WhcE is a transcriptional activator, and otsB, which is involved in trehalose biosynthesis, has a role in oxidative stress responses in C. glutamicum.
Collapse
Affiliation(s)
- Jung Chul Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| |
Collapse
|
19
|
Abstract
A novel putative trehalose synthase gene (treM) was identified from an extreme temperature thermal spring. The gene was expressed in Escherichia coli followed by purification of the protein (TreM). TreM exhibited the pH optima of 7.0 for trehalose and trehalulose production, although it was functional and stable in the pH range of 5.0 to 8.0. Temperature activity profiling revealed that TreM can catalyze trehalose biosynthesis in a wide range of temperatures, from 5°C to 80°C. The optimum activity for trehalose and trehalulose biosynthesis was observed at 45°C and 50°C, respectively. A catalytic reaction performed at the low temperature of 5°C yielded trehalose with significantly reduced by-product (glucose) production in the reaction. TreM displayed remarkable thermal stability at optimum temperatures, with only about 20% loss in the activity after heat (50°C) exposure for 24 h. The maximum bioconversion yield of 74% trehalose (at 5°C) and 90% trehalulose (at 50°C) was obtained from 100 mM maltose and 70 mM sucrose, respectively. TreM was demonstrated to catalyze trehalulose biosynthesis utilizing the low-cost feedstock jaggery, cane molasses, muscovado, and table sugar. IMPORTANCE Trehalose is a rare sugar of high importance in biological research, with its property to stabilize cell membrane and proteins and protect the organism from drought. It is instrumental in the cryopreservation of human cells, e.g., sperm and blood stem cells. It is also very useful in the food industry, especially in the preparation of frozen food products. Trehalose synthase is a glycosyl hydrolase 13 (GH13) family enzyme that has been reported from about 22 bacterial species so far. Of these enzymes, to date, only two have been demonstrated to catalyze the biosynthesis of both trehalose and trehalulose. We have investigated the metagenomic data of an extreme temperature thermal spring to discover a novel gene that encodes a trehalose synthase (TreM) with higher stability and dual transglycosylation activities of trehalose and trehalulose biosynthesis. This enzyme is capable of catalyzing the transformation of maltose to trehalose and sucrose to trehalulose in a wide pH and temperature range. The present investigation endorses the thermal aquatic habitat as a promising genetic resource for the biocatalysts with high potential in producing high-value rare sugars.
Collapse
|
20
|
Trakarnpaiboon S, Bunterngsook B, Wansuksriand R, Champreda V. Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production. J Microbiol Biotechnol 2021; 31:1455-1464. [PMID: 34409951 PMCID: PMC9705850 DOI: 10.4014/jmb.2106.06032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40°C, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand
| | - Rungtiva Wansuksriand
- Cassava and Starch Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Bangkok 10900, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand,Corresponding author Phone: +66 2564 6700 x 3446 Fax: +66 2564 6707 E-mail:
| |
Collapse
|
21
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
22
|
Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules 2021; 26:molecules26133965. [PMID: 34209563 PMCID: PMC8271679 DOI: 10.3390/molecules26133965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.
Collapse
|
23
|
Huang X, Jiang B, Chen J, Zhang T, Zheng L. Enzymatic Preparation of Non‐Reducing Oligosaccharides from Maltodextrins and Nigerooligosaccharides. STARCH-STARKE 2021. [DOI: 10.1002/star.202100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Huang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu 214122 China
| | - Luhua Zheng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
24
|
Comparative metabolome classification of desert truffles Terfezia claveryi and Terfezia boudieri via its aroma and nutrients profile. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Garcia CA, Gardner JG. Bacterial α-diglucoside metabolism: perspectives and potential for biotechnology and biomedicine. Appl Microbiol Biotechnol 2021; 105:4033-4052. [PMID: 33961116 PMCID: PMC8237927 DOI: 10.1007/s00253-021-11322-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
In a competitive microbial environment, nutrient acquisition is a major contributor to the survival of any individual bacterial species, and the ability to access uncommon energy sources can provide a fitness advantage. One set of soluble carbohydrates that have attracted increased attention for use in biotechnology and biomedicine is the α-diglucosides. Maltose is the most well-studied member of this class; however, the remaining four less common α-diglucosides (trehalose, kojibiose, nigerose, and isomaltose) are increasingly used in processed food and fermented beverages. The consumption of trehalose has recently been shown to be a contributing factor in gut microbiome disease as certain pathogens are using α-diglucosides to outcompete native gut flora. Kojibiose and nigerose have also been examined as potential prebiotics and alternative sweeteners for a variety of foods. Compared to the study of maltose metabolism, our understanding of the synthesis and degradation of uncommon α-diglucosides is lacking, and several fundamental questions remain unanswered, particularly with regard to the regulation of bacterial metabolism for α-diglucosides. Therefore, this minireview attempts to provide a focused analysis of uncommon α-diglucoside metabolism in bacteria and suggests some future directions for this research area that could potentially accelerate biotechnology and biomedicine developments. KEY POINTS: • α-diglucosides are increasingly important but understudied bacterial metabolites. • Kinetically superior α-diglucoside enzymes require few amino acid substitutions. • In vivo studies are required to realize the biotechnology potential of α-diglucosides.
Collapse
Affiliation(s)
- Cecelia A Garcia
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
26
|
Marín S, Cortés M, Acosta M, Delgado K, Escuti C, Ayma D, Demergasso C. From Laboratory towards Industrial Operation: Biomarkers for Acidophilic Metabolic Activity in Bioleaching Systems. Genes (Basel) 2021; 12:genes12040474. [PMID: 33806162 PMCID: PMC8065656 DOI: 10.3390/genes12040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
In the actual mining scenario, copper bioleaching, mainly raw mined material known as run-of-mine (ROM) copper bioleaching, is the best alternative for the treatment of marginal resources that are not currently considered part of the profitable reserves because of the cost associated with leading technologies in copper extraction. It is foreseen that bioleaching will play a complementary role in either concentration-as it does in Minera Escondida Ltd. (MEL)-or chloride main leaching plants. In that way, it will be possible to maximize mines with installed solvent-extraction and electrowinning capacities that have not been operative since the depletion of their oxide ores. One of the main obstacles for widening bioleaching technology applications is the lack of knowledge about the key events and the attributes of the technology's critical events at the industrial level and mainly in ROM copper bioleaching industrial operations. It is relevant to assess the bed environment where the bacteria-mineral interaction occurs to learn about the limiting factors determining the leaching rate. Thus, due to inability to accurately determine in-situ key variables, their indirect assessment was evaluated by quantifying microbial metabolic-associated responses. Several candidate marker genes were selected to represent the predominant components of the microbial community inhabiting the industrial heap and the metabolisms involved in microbial responses to changes in the heap environment that affect the process performance. The microbial community's predominant components were Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus sp. Oxygen reduction, CO2 and N2 fixation/uptake, iron and sulfur oxidation, and response to osmotic stress were the metabolisms selected regarding research results previously reported in the system. After that, qPCR primers for each candidate gene were designed and validated. The expression profile of the selected genes vs. environmental key variables in pure cultures, column-leaching tests, and the industrial bioleaching heap was defined. We presented the results obtained from the industrial validation of the marker genes selected for assessing CO2 and N2 availability, osmotic stress response, as well as ferrous iron and sulfur oxidation activity in the bioleaching heap process of MEL. We demonstrated that molecular markers are useful for assessing limiting factors like nutrients and air supply, and the impact of the quality of recycled solutions. We also learned about the attributes of variables like CO2, ammonium, and sulfate levels that affect the industrial ROM-scale operation.
Collapse
Affiliation(s)
- Sabrina Marín
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Mayra Cortés
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Mauricio Acosta
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Karla Delgado
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Camila Escuti
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Diego Ayma
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Cecilia Demergasso
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| |
Collapse
|
27
|
Zhao X, Chen Y, Zhang L, Li Z, Wu X, Chen J, Wang F. Molecular cloning and biochemical characterization of a trehalose synthase from Myxococcus sp. strain V11. Protein Expr Purif 2021; 183:105865. [PMID: 33675938 DOI: 10.1016/j.pep.2021.105865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
The tresI gene of Myxococcus sp. strain V11 was cloned, and found to encode a trehalose synthase comprising 551 amino acids. The deduced molecular weight of the encoded TreS I protein 64.7 kDa and the isoelectric point (pI) was predicted to be 5.6. The catalytic cleft consists of the Asp202-Glu244-Asp310 catalytic triad and additional conserved residues. The recombinant (His)6-tag enzyme was expressed in Escherichia coli BL21(DE3) and purified by Ni2+-affinity chromatography, resulting in a specific activity of up to 172.7 U/mg. TLC and HPLC results confirmed that rTreS I can convert maltose into trehalose, with a yield of 61%. The KM and Vmax values of recombinant TreS I for maltose were 0.62 mM and 25.5 mM min-1 mg-1 protein, respectively. TreS I was optimally active at 35° and stable at temperatures of <25 °C. TreS I was stable within a narrow range of pH values, from 6.0 to 7.0. The enzymatic activity was slightly stimulated by Mg2+ and strongly inhibited by Fe3+, Co2+ and Cu2+. TreS I was also strongly inhibited by SDS and weakly by EDTA and TritonX-100.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yunda Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Lixia Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, PR China
| | - Jinyin Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China; Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, 330045, PR China.
| |
Collapse
|
28
|
Sekitoh T, Okamoto T, Fujioka A, Yoshioka T, Terui S, Imanaka H, Ishida N, Imamura K. Crystallization characteristics of amorphous trehalose dried from alcohol. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
30
|
Qiao Y, Wang W, Lu X. Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metab Eng 2020; 62:161-171. [DOI: 10.1016/j.ymben.2020.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
|
31
|
Idebenone protects mitochondrial function against amyloid beta toxicity in primary cultured cortical neurons. Neuroreport 2020; 31:1104-1110. [PMID: 32925607 DOI: 10.1097/wnr.0000000000001526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction has been repeatedly identified to be hallmark brain pathology underlying neuronal stress in Alzheimer's disease. As a result, mitochondrial medicine for the treatment of Alzheimer's disease has received increasing recognition. Idebenone (IDB) is a synthetic analog of Coenzyme Q10 (CoQ10) carrying antioxidizing property. Previous clinical trials reported a conflicting disease-modifying effect of IDB on Alzheimer's disease patients. However, whether IDB is preventive against amyloid beta (Aβ)-induced mitochondrial and neuronal stress has not been comprehensively investigated. In this study, we adopted an in-vitro setting by using primary cultured cortical neurons for the test. Neurons were pretreated with IDB prior to Aβ exposure. IDB pretreatment significant prevented neurons from Aβ-induced collapse of mitochondrial bioenergetics and perturbations of the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling. Importantly, the treatment of IDB alone demonstrated an indiscernible side effect on the measured mitochondrial function, PKA/CREB signaling and neuronal viability. Therefore, our findings in together show a preventive effect of IDB against Aβ-mediated mitochondrial and neuronal injury. The use of IDB may hold potential to reduce the risk of Alzheimer's disease as a preventive strategy.
Collapse
|
32
|
Mahato DK, Keast R, Liem DG, Russell CG, Cicerale S, Gamlath S. Sugar Reduction in Dairy Food: An Overview with Flavoured Milk as an Example. Foods 2020; 9:E1400. [PMID: 33023125 PMCID: PMC7600122 DOI: 10.3390/foods9101400] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the public health concern associated with the consumption of added sugar, the World Health Organization recommends cutting down sugar in processed foods. Furthermore, due to the growing concern of increased calorie intake from added sugar in sweetened dairy foods, the present review provides an overview of different types and functions of sugar, various sugar reduction strategies, and current trends in the use of sweeteners for sugar reduction in dairy food, taking flavoured milk as a central theme where possible to explore the aforementioned aspects. The strength and uniqueness of this review are that it brings together all the information on the available types of sugar and sugar reduction strategies and explores the current trends that could be applied for reducing sugar in dairy foods without much impact on consumer acceptance. Among different strategies for sugar reduction, the use of natural non-nutritive sweeteners (NNSs), has received much attention due to consumer demand for natural ingredients. Sweetness imparted by sugar can be replaced by natural NNSs, however, sugar provides more than just sweetness to flavoured milk. Sugar reduction involves multiple technical challenges to maintain the sensory properties of the product, as well as to maintain consumer acceptance. Because no single sugar has a sensory profile that matches sucrose, the use of two or more natural NNSs could be an option for food industries to reduce sugar using a holistic approach rather than a single sugar reduction strategy. Therefore, achieving even a small sugar reduction can significantly improve the diet and health of an individual.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (R.K.); (D.G.L.); (C.G.R.); (S.C.); (S.G.)
| | | | | | | | | | | |
Collapse
|
33
|
Becker J, Wittmann C. Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol 2020; 65:118-128. [DOI: 10.1016/j.copbio.2020.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
|
34
|
Trehalose for Ocular Surface Health. Biomolecules 2020; 10:biom10050809. [PMID: 32466265 PMCID: PMC7277924 DOI: 10.3390/biom10050809] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Trehalose is a natural disaccharide synthesized in various life forms, but not found in vertebrates. An increasing body of evidence demonstrates exceptional bioprotective characteristics of trehalose. This review discusses the scientific findings on potential functions of trehalose in oxidative stress, protein clearance, and inflammation, with an emphasis on animal models and clinical trials in ophthalmology. The main objective is to help understand the beneficial effects of trehalose in clinical trials and practice, especially in patients suffering from ocular surface disease. The discussion is supplemented with an overview of patents for the use of trehalose in dry eye and with prospects for the 2020s.
Collapse
|
35
|
Zhu L, Shen B, Song Z, Jiang L. Permeabilized TreS-Expressing Bacillus subtilis Cells Decorated with Glucose Isomerase and a Shell of ZIF-8 as a Reusable Biocatalyst for the Coproduction of Trehalose and Fructose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4464-4472. [PMID: 32193930 DOI: 10.1021/acs.jafc.0c00971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials with versatile properties. In this study, ZIF-8 was employed to establish a two-enzyme system by encapsulating permeabilized Bacillus subtilis cells coated with glucose isomerase. B. subtilis was constructed by introducing the shuttle plasmid PMA5 associated with the overexpression of trehalose synthase. Using this two-enzyme system, trehalose was produced by trehalose synthase and the byproduct glucose was converted to fructose with the help of glucose isomerase. The decrease in glucose production not only relieved the inhibition of the entire reaction chain but also increased the final yield of trehalose. The highest trehalose production rate reached 67.7% and remained above 50% after 20 batches. In addition, the toxicity of the ZIF-8 coating for B. subtilis was investigated by fluorescence microscopy and was found to be negligible. By simulating an extreme environment, the ZIF-8 coating was demonstrated to have a protective effect on the cells and enzymes. This study provides a theoretical basis for the application of MOFs in the immobilization of microorganisms and enzymes.
Collapse
Affiliation(s)
- Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Bowen Shen
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Zhe Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
36
|
Lin YF, Su PC, Chen PT. Production and characterization of a recombinant thermophilic trehalose synthase from Thermus antranikianii. J Biosci Bioeng 2020; 129:418-422. [DOI: 10.1016/j.jbiosc.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022]
|
37
|
Zhang X, Zhang Y, Li H. Regulation of trehalose, a typical stress protectant, on central metabolisms, cell growth and division of Saccharomyces cerevisiae CEN.PK113-7D. Food Microbiol 2020; 89:103459. [PMID: 32138981 DOI: 10.1016/j.fm.2020.103459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Trehalose could protect the typical food microorganism Saccharomyces cerevisiae cell against environmental stresses; however, the other regulation effects of trehalose on yeast cells during the fermentation are still poorly understood. In this manuscript, different concentrations (i.e., 0, 2 and 5% g/v) of trehalose were respectively added into the medium to evaluate the effect of trehalose on growth, central metabolisms and division of S. cerevisiae CEN.PK113-7D strain that could uptake exogenous trehalose. Results indicated that addition of trehalose could inhibit yeast cell growth in the presence or absence of 8% v/v ethanol stress. Exogenous trehalose inhibited the glucose transporting efficiency and reduced intracellular glucose content. Simultaneously, increased intracellular trehalose content destroyed the steady state of trehalose cycle and caused the imbalance between the upper glycolysis part and the lower part, thereby leading to the dysfunction of glycolysis and further inhibiting the normal yeast cell growth. Moreover, energy metabolisms were impaired and the ATP production was reduced by addition of trehalose. Finally, exogenous trehalose-associated inhibition on yeast cell growth and metabolisms delayed cell cycle. These results also highlighted our knowledge about relationship between trehalose and growth, metabolisms and division of S. cerevisiae cells during fermentation.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaxian Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
38
|
Qiu L, Wei XY, Wang SJ, Wang JJ. Characterization of trehalose-6-phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:185-192. [PMID: 31973856 DOI: 10.1016/j.pestbp.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Biological control potential of entomopathogenic fungi depending on conidiation capacity, conidial stress tolerance and virulence can be improved through genetic engineering. To explore a possible role of trehalose biosynthesis pathway in improving fungal pest-control potential, we characterized biological functions of trehalose-6-phosphate phosphatase (BbTPP) in Beauveria bassiana, an insect mycopathogen that serves as a main source of fungal insecticides. Deletion of BbTPP resulted in abolished trehalose biosynthesis, reduced conidiation capacity, decreases in conidial thermotolerance and UV-B resistance, increased hyphal sensitivities to chemical stresses, and attenuated virulence. By contrast, over-expression of BbTPP led to increased trehalose accumulation, decreased T6P accumulation, and enhanced stress tolerance and virulence despite little impact on growth and conidiation under normal conditions. These results indicate that BbTPP serves as not only a key player in control of trehalose biosynthesis required for multiple cellular functions but also a potential candidate to be exploited for genetic improvement of fungal potential against insect pests.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Xiao-Yu Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shou-Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
39
|
Sucrose isomers as alternative sweeteners: properties, production, and applications. Appl Microbiol Biotechnol 2019; 103:8677-8687. [PMID: 31587089 DOI: 10.1007/s00253-019-10132-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 01/02/2023]
Abstract
In the daily diet, sweeteners play an indispensable role. Among them, sucrose, a widely occurring disaccharide in nature, is a commonly used sweetener. However, the intake of sucrose can cause a rapid increase in blood glucose, which leads to a number of health problems. Therefore, there is an urgent need for possible alternatives to sucrose. Currently, four naturally occurring sucrose isomers, trehalulose, turanose, leucrose, and isomaltulose are considered to be possible alternatives to sucrose due to their suitable sweetness, potential physiological benefits, and feasible production processes. This review covers the properties of these alternative sweeteners, including their structure, sweetness, hydrolysis rate, toxicology, and cariogenicity, and exhibits their potential applications in chronic diseases management, anti-inflammatory supplement, prebiotic dietary supplement, and stabilizing agent. The biosynthesis of these sucrose isomers using carbohydrate-active enzymes and their industrial production processes are also systematically summarized.
Collapse
|
40
|
Liu H, Wang S, Song L, Yuan H, Liu K, Meng W, Wang T. Trehalose Production Using Recombinant Trehalose Synthase in Bacillus subtilis by Integrating Fermentation and Biocatalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9314-9324. [PMID: 31352776 DOI: 10.1021/acs.jafc.9b03402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trehalose, a stable nonreducing disaccharide, protects biomolecules against environmental stress. However, trehalose production using secretory trehalose synthase (TreS) by Bacillus subtilis has not been well studied. In this study, a mutant TreS was successfully secreted and expressed in B. subtilis WB800N. The extracellular enzyme activity of TreS regulated by the P43 promoter and SPPhoD signal peptide in recombinant B. subtilis WB800N reached 23080.6 ± 1119.4 U/L in a 5-L fermenter after optimizing the culture medium, while xpF, skfA, lytC, and sdpC were knocked out. To reduce maltose consumption, malP and amyE corresponding to maltose transporters were further deleted. To simplify the trehalose production process, we invented a fermentation-coupling biocatalysis process involving recombinant bacteria fermentation to secrete TreS and simultaneous conversion of maltose to trehalose by TreS and found that the conversion rate of maltose to trehalose reached 75.5%, suggesting that this is an efficient strategy for large-scale trehalose production using recombinant B. subtilis.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Song Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Longxiang Song
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Wu Meng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , People's Republic of China
| |
Collapse
|
41
|
Wang ZP, Zhang LL, Liu S, Liu XY, Yu XJ. Whole Conversion of Soybean Molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations. Biomolecules 2019; 9:E353. [PMID: 31404957 PMCID: PMC6722743 DOI: 10.3390/biom9080353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Isomaltulose is mainly produced from sucrose by microbial fermentation, when the utilization of sucrose contributes a high production cost. To achieve a low-cost isomaltulose production, soy molasses was introduced as an alternative substrate. Firstly, α-galactosidase gene from Rhizomucor miehei was expressed in Yarrowia lipolytica, which then showed a galactosidase activity of 121.6 U/mL. Under the effects of the recombinant α-galactosidase, most of the raffinose-family oligosaccharides in soy molasses were hydrolyzed into sucrose. Then the soy molasses hydrolysate with high sucrose content (22.04%, w/w) was supplemented into the medium, with an isomaltulose production of 209.4 g/L, and the yield of 0.95 g/g. Finally, by virtue of the bioremoval process using Pichia stipitis, sugar byproducts in broth were transformed into ethanol at the end of fermentation, thus resulting in high isomaltulose purity (97.8%). The bioprocess employed in this study provides a novel strategy for low-cost and efficient isomaltulose production from soybean molasses.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin-Lin Zhang
- College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao 266510, China
| | - Song Liu
- Development & Reform Bureau, West Coast New Area, Qingdao 266000, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China.
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
42
|
Ren X, Wang J, Li Y, Wang F, Wang R, Li P, Ma C, Su J. Computational and Enzymatic Analyses Unveil the Catalytic Mechanism of Thermostable Trehalose Synthase and Suggest Strategies for Improved Bioconversion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8177-8185. [PMID: 31290662 DOI: 10.1021/acs.jafc.9b01848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, and is therefore essential for trehalose production. Consequently, dissecting the catalytic mechanism of TreS is important for enzyme optimization and industrial applications. TreS from Thermobaculum terrenum (TtTreS) is a thermostable enzyme. Here, we studied the composition of the TtTreS active site through computer calculation and enzyme analysis. The results were consistent with a two-step double-displacement mechanism, similar to that of glycoside hydrolase 13 family enzymes. However, our data suggested that glucose rotation, following breakage of the α-1,4 glycosidic bond, is a key factor determining the reaction direction and conversion rate. The N246 residue plays an important role in glucose rotation. Moreover, we established a saturated mutation model for the nonconserved amino acids around the substrate gateway domain. Finally, four TtTreS mutants (K136T, Y137D, K138N, and D139S) resulted in improved trehalose yield compared to that of the wild-type enzyme.
Collapse
Affiliation(s)
- Xudong Ren
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Yan Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Fen Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Chunling Ma
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) , Qilu University of Technology , Jinan , Shandong 250353 , China
- Key Laboratory of Shandong Microbial Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250353 , China
| |
Collapse
|
43
|
Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability. Appl Environ Microbiol 2019; 85:AEM.03084-18. [PMID: 30737350 DOI: 10.1128/aem.03084-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1) coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation prone and are mainly expressed as catalytically active inclusion bodies in Escherichia coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis (PyTreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constant, K eq, for the reversible synthesis of trehalose from glucose and a nucleotide sugar was determined in both the synthesis and hydrolysis directions utilizing UDP-glucose and ADP-glucose, respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control.IMPORTANCE The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here, we present an efficient methodology for the production and analysis of a thermostable, aggregation-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis directions. Our results show that uridine establishes an equilibrium constant which is more in favor of the product trehalose than when adenosine is employed as the nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control as the position of the equilibrium depends solely on the reaction conditions and is not affected by the nature of the catalyst.
Collapse
|
44
|
Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, Jiang B. Characterization of a Recombinant Trehalose Synthase from Arthrobacter chlorophenolicus and its Unique Kinetics Indicating a Substrate Cooperativity. Appl Biochem Biotechnol 2018; 187:1255-1271. [DOI: 10.1007/s12010-018-2877-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023]
|
45
|
Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, Jiang B. Combination of sequence-based and in silico screening to identify novel trehalose synthases. Enzyme Microb Technol 2018; 115:62-72. [DOI: 10.1016/j.enzmictec.2018.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 01/14/2023]
|