1
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
3
|
Zhao K, Tang H, Zhang B, Zou S, Liu Z, Zheng Y. Microbial production of vitamin B5: current status and prospects. Crit Rev Biotechnol 2023; 43:1172-1192. [PMID: 36210178 DOI: 10.1080/07388551.2022.2104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
Collapse
Affiliation(s)
- Kuo Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
4
|
Werner F, Schwardmann LS, Siebert D, Rückert-Reed C, Kalinowski J, Wirth MT, Hofer K, Takors R, Wendisch VF, Blombach B. Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:116. [PMID: 37464396 DOI: 10.1186/s13068-023-02367-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Fatty acid-derived products such as fatty alcohols (FAL) find growing application in cosmetic products, lubricants, or biofuels. So far, FAL are primarily produced petrochemically or through chemical conversion of bio-based feedstock. Besides the well-known negative environmental impact of using fossil resources, utilization of bio-based first-generation feedstock such as palm oil is known to contribute to the loss of habitat and biodiversity. Thus, the microbial production of industrially relevant chemicals such as FAL from second-generation feedstock is desirable. RESULTS To engineer Corynebacterium glutamicum for FAL production, we deregulated fatty acid biosynthesis by deleting the transcriptional regulator gene fasR, overexpressing a fatty acyl-CoA reductase (FAR) gene of Marinobacter hydrocarbonoclasticus VT8 and attenuating the native thioesterase expression by exchange of the ATG to a weaker TTG start codon. C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) produced in shaking flasks 0.54 ± 0.02 gFAL L-1 from 20 g glucose L-1 with a product yield of 0.054 ± 0.001 Cmol Cmol-1. To enable xylose utilization, we integrated xylA encoding the xylose isomerase from Xanthomonas campestris and xylB encoding the native xylulose kinase into the locus of actA. This approach enabled growth on xylose. However, adaptive laboratory evolution (ALE) was required to improve the growth rate threefold to 0.11 ± 0.00 h-1. The genome of the evolved strain C. glutamicum gX was re-sequenced, and the evolved genetic module was introduced into C. glutamicum ∆fasR cg2692TTG (pEKEx2-maqu2220) which allowed efficient growth and FAL production on wheat straw hydrolysate. FAL biosynthesis was further optimized by overexpression of the pntAB genes encoding the membrane-bound transhydrogenase of E. coli. The best-performing strain C. glutamicum ∆fasR cg2692TTG CgLP12::(Ptac-pntAB-TrrnB) gX (pEKEx2-maqu2220) produced 2.45 ± 0.09 gFAL L-1 with a product yield of 0.054 ± 0.005 Cmol Cmol-1 and a volumetric productivity of 0.109 ± 0.005 gFAL L-1 h-1 in a pulsed fed-batch cultivation using wheat straw hydrolysate. CONCLUSION The combination of targeted metabolic engineering and ALE enabled efficient FAL production in C. glutamicum from wheat straw hydrolysate for the first time. Therefore, this study provides useful metabolic engineering principles to tailor this bacterium for other products from this second-generation feedstock.
Collapse
Affiliation(s)
- Felix Werner
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
| | - Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marie-Theres Wirth
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany
| | - Katharina Hofer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, 94315, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
5
|
Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization. Appl Environ Microbiol 2022; 88:e0151822. [PMID: 36383019 PMCID: PMC9746319 DOI: 10.1128/aem.01518-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Xylose, the major component of lignocellulosic biomass, cannot be naturally or efficiently utilized by most microorganisms. Xylose (co)utilization is considered a cornerstone of efficient lignocellulose-based biomanufacturing. We evolved a rapidly xylose-utilizing strain, Cev2-18-5, which showed the highest reported specific growth rate (0.357 h-1) on xylose among plasmid-free Corynebacterium glutamicum strains. A genetically clear chassis strain, CGS15, was correspondingly reconstructed with an efficient glucose-xylose coutilization performance based on comparative genomic analysis and mutation reconstruction. With the introduction of a succinate-producing plasmid, the resulting strain, CGS15-SA1, can efficiently produce 97.1 g/L of succinate with an average productivity of 8.09 g/L/h by simultaneously utilizing glucose and xylose from corn stalk hydrolysate. We further revealed a novel xylose regulatory mechanism mediated by the endogenous transcription factor IpsA with global regulatory effects on C. glutamicum. A synergistic effect on carbon metabolism and energy supply, motivated by three genomic mutations (Psod(C131T)-xylAB, Ptuf(Δ21)-araE, and ipsAC331T), was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. Overall, this work not only provides promising C. glutamicum chassis strains for a lignocellulosic biorefinery but also enriches the understanding of the xylose regulatory mechanism. IMPORTANCE A novel xylose regulatory mechanism mediated by the transcription factor IpsA was revealed. A synergistic effect on carbon metabolism and energy supply was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. The new xylose regulatory mechanism enriches the understanding of nonnatural substrate metabolism and encourages exploration new engineering targets for rapid xylose utilization. This work also provides a paradigm to understand and engineer the metabolism of nonnatural renewable substrates for sustainable biomanufacturing.
Collapse
|
6
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
7
|
Ray D, Anand U, Jha NK, Korzeniewska E, Bontempi E, Proćków J, Dey A. The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. ENVIRONMENTAL RESEARCH 2022; 213:113622. [PMID: 35710026 DOI: 10.1016/j.envres.2022.113622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Ever since its discovery in 1957, Corynebacterium glutamicum has become a well-established industrial strain and is known for its massive capability of producing various amino acids (like L-lysine and L-glutamate) and other value-added chemicals. With the rising demand for these bio-based products, the revelation of the whole genome sequences of the wild type strains, and the astounding advancements made in the fields of metabolic engineering and systems biology, our perspective of C. glutamicum has been revolutionized and has expanded our understanding of its strain development. With these advancements, a new era for C. glutamicum supremacy in the field of industrial biotechnology began. This led to remarkable progress in the enhancement of tailor-made over-producing strains and further development of the substrate spectrum of the bacterium, to easily accessible, economical, and renewable resources. C. glutamicum has also been metabolically engineered and used in the degradation/assimilation of highly toxic and ubiquitous environmental contaminant, arsenic, present in water or soil. Here, we review the history, current knowledge, progress, achievements, and future trends relating to the versatile metabolic factory, C. glutamicum. This review paper is devoted to C. glutamicum which is one of the leading industrial microbes, and one of the most promising and versatile candidates to be developed. It can be used not only as a platform microorganism to produce different value-added chemicals and recombinant proteins, but also as a tool for bioremediation, allowing to enhance specific properties, for example in situ bioremediation.
Collapse
Affiliation(s)
- Durga Ray
- Department of Microbiology, St. Aloysius' College, Jabalpur, Madhya Pradesh, 482001, India.
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719, Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
8
|
Zhao N, Song J, Zhang H, Lin Y, Han S, Huang Y, Zheng S. Development of a Transcription Factor-Based Diamine Biosensor in Corynebacterium glutamicum. ACS Synth Biol 2021; 10:3074-3083. [PMID: 34662101 DOI: 10.1021/acssynbio.1c00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diamines serve as major platform chemicals that can be employed to a variety of industrial scenarios, particularly as monomers for polymer synthesis. High-throughput sensors for diamine biosynthesis can greatly improve the biological production of diamines. Here, we identified and characterized a transcription factor-driven biosensor for putrescine and cadaverine in Corynebacterium glutamicum. The transcriptional TetR-family regulatory protein CgmR (CGL2612) is used for the specific detection of diamine compounds. This study also improved the dynamic range and the sensitivity to putrescine by systematically optimizing genetic components of pSenPut. By a single cell-based screening strategy for a library of CgmR with random mutations, this study obtained the most sensitive variant CgmRI152T, which possessed an experimentally determined limit of detection (LoD) of ≤0.2 mM, a K of 11.4 mM, and a utility of 720. Using this highly sensitive putrescine biosensor pSenPutI152T, we demonstrated that CgmRI152T can be used as a sensor to detect putrescine produced biologically in a C. glutamicum system. This high sensitivity and the range of CgmR will be an influential tool for rewiring metabolic circuits and facilitating the directed evolution of recombinant strains toward the biological synthesis of diamine compounds.
Collapse
Affiliation(s)
- Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jie Song
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Hao Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, P. R. China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Krahn I, Bonder D, Torregrosa-Barragán L, Stoppel D, Krause JP, Rosenfeldt N, Meiswinkel TM, Seibold GM, Wendisch VF, Lindner SN. Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 9:669093. [PMID: 34124022 PMCID: PMC8193941 DOI: 10.3389/fbioe.2021.669093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Fructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (∼10%) compared to glucose (∼60%). Consequently, the biosynthesis of NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose-specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and, consequently, NADPH availability. Here, we generated deletion strains lacking either the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose-specific PTS as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose-specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, and P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased ODs, reduced side-product accumulation, and increased L-lysine production by 50%.
Collapse
Affiliation(s)
- Irene Krahn
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Daniel Bonder
- Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lucía Torregrosa-Barragán
- Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Dominik Stoppel
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Jens P Krause
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Tobias M Meiswinkel
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Gerd M Seibold
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Steffen N Lindner
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.,Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
10
|
Chen C, Cui Z, Zhao J, Li S, Ren X, Chen T, Wang Z. Improving diacetyl production in Corynebacterium glutamicum via modifying respiratory chain. J Biotechnol 2021; 332:20-28. [PMID: 33771625 DOI: 10.1016/j.jbiotec.2021.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
To explore the suitability of Corynebacterium glutamicum as a chassis for diacetyl production from glucose, diacetyl metabolic pathway and the respiratory chain were linked to achieve redox balance. The carbon flux was redirected from pyruvate to diacetyl by overexpressing the α-acetolactate synthase, in combination with disruption the biosynthetic pathways of lactate, acetoin, 2,3-butanediol and acetate in C. glutamicum ATCC 13032. These modifications resulted in a sharp increase of the NADH/NAD+ ratio from 0.53 to 1.10, and produced 0.58 g/L diacetyl under aerobic conditions, representing a 58-fold increase over the wild type. Although the modification of the by-product pathways is an effective strategy, these disruption led to intracellular cofactor imbalance. NADH re-oxidization was further successfully solved by overexpressing of cytochrome bd oxidase. We constructed an efficient respiration-dependent cell factory by modification of the respiratory chain, improving diacetyl titer to 1.29 g/L in CGC11, decreased NADH/NAD+ ratio to 0.45, increased the ATP concentration from 8.51 to 10.64 μM/gDCW. To our best knowledge, this is the first report of diacetyl synthesis in C. glutamicum. Intracellular cofactor imbalance can be reduced by modification of the respiratory chain for production of diacetyl as well as other bio-based products with cofactor imbalance in C. glutamicum.
Collapse
Affiliation(s)
- Cong Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shuting Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaoting Ren
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Zhang B, Jiang Y, Li Z, Wang F, Wu XY. Recent Progress on Chemical Production From Non-food Renewable Feedstocks Using Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 8:606047. [PMID: 33392171 PMCID: PMC7775722 DOI: 10.3389/fbioe.2020.606047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/31/2020] [Indexed: 11/13/2022] Open
Abstract
Due to the non-renewable nature of fossil fuels, microbial fermentation is considered a sustainable approach for chemical production using glucose, xylose, menthol, and other complex carbon sources represented by lignocellulosic biomass. Among these, xylose, methanol, arabinose, glycerol, and other alternative feedstocks have been identified as superior non-food sustainable carbon substrates that can be effectively developed for microbe-based bioproduction. Corynebacterium glutamicum is a model gram-positive bacterium that has been extensively engineered to produce amino acids and other chemicals. Recently, in order to reduce production costs and avoid competition for human food, C. glutamicum has also been engineered to broaden its substrate spectrum. Strengthening endogenous metabolic pathways or assembling heterologous ones enables C. glutamicum to rapidly catabolize a multitude of carbon sources. This review summarizes recent progress in metabolic engineering of C. glutamicum toward a broad substrate spectrum and diverse chemical production. In particularly, utilization of lignocellulosic biomass-derived complex hybrid carbon source represents the futural direction for non-food renewable feedstocks was discussed.
Collapse
Affiliation(s)
- Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
13
|
Wu XY, Guo XY, Zhang B, Jiang Y, Ye BC. Recent Advances of L-ornithine Biosynthesis in Metabolically Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 2020; 7:440. [PMID: 31998705 PMCID: PMC6962107 DOI: 10.3389/fbioe.2019.00440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
L-ornithine, a valuable non-protein amino acid, has a wide range of applications in the pharmaceutical and food industries. Currently, microbial fermentation is a promising, sustainable, and environment-friendly method to produce L-ornithine. However, the industrial production capacity of L-ornithine by microbial fermentation is low and rarely meets the market demands. Various strategies have been employed to improve the L-ornithine production titers in the model strain, Corynebacterium glutamicum, which serves as a major indicator for improving the cost-effectiveness of L-ornithine production by microbial fermentation. This review focuses on the development of high L-ornithine-producing strains by metabolic engineering and reviews the recent advances in breeding strategies, such as reducing by-product formation, improving the supplementation of precursor glutamate, releasing negative regulation and negative feedback inhibition, increasing the supply of intracellular cofactors, modulating the central metabolic pathway, enhancing the transport system, and adaptive evolution for improving L-ornithine production.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yan Guo
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Liu W, Tang D, Wang H, Lian J, Huang L, Xu Z. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. Appl Microbiol Biotechnol 2019; 103:8911-8922. [PMID: 31583448 DOI: 10.1007/s00253-019-10118-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
Corynebacterium glutamicum is a versatile workhorse for producing industrially important commodities. The design of an optimal strain often requires the manipulation of metabolic and regulatory genes to different levels, such as overexpression, downregulation, and deletion. Unfortunately, few tools to achieve multiple functions simultaneously have been reported. Here, a dual-functional clustered regularly interspaced short palindromic repeats (CRISPR) (RE-CRISPR) system that combined genome editing and transcriptional repression was designed using a catalytically active Cas12a (a.k.a. Cpf1) in C. glutamicum. Firstly, gene deletion was achieved using Cas12a under a constitutive promoter. Then, via engineering of the guide RNA sequences, transcriptional repression was successfully achieved using a catalytically active Cas12a with crRNAs containing 15 or 16 bp spacer sequences, whose gene repression efficiency was comparable to that of the canonical system (deactivated Cas12a with full-length crRNAs). Finally, RE-CRISPR was developed to achieve genome editing and transcriptional repression simultaneously by transforming a single crRNA plasmid and Cas12a plasmid. The application of RE-CRISPR was demonstrated to increase the production of cysteine and serine for ~ 3.7-fold and 2.5-fold, respectively, in a single step. This study expands the application of CRISPR/Cas12a-based genome engineering and provides a powerful synthetic biology tool for multiplex metabolic engineering of C. glutamicum.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dandan Tang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haijiao Wang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
15
|
Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:41. [PMID: 30858878 PMCID: PMC6391826 DOI: 10.1186/s13068-019-1381-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/18/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Many microbes used for the rapid discovery and development of metabolic pathways have sensitivities to final products and process reagents. Isopentenol (3-methyl-3-buten-1-ol), a biogasoline candidate, has an established heterologous gene pathway but is toxic to several microbial hosts. Reagents used in the pretreatment of plant biomass, such as ionic liquids, also inhibit growth of many host strains. We explored the use of Corynebacterium glutamicum as an alternative host to address these constraints. RESULTS We found C. glutamicum ATCC 13032 to be tolerant to both the final product, isopentenol, as well to three classes of ionic liquids. A heterologous mevalonate-based isopentenol pathway was engineered in C. glutamicum. Targeted proteomics for the heterologous pathway proteins indicated that the 3-hydroxy-3-methylglutaryl-coenzyme A reductase protein, HmgR, is a potential rate-limiting enzyme in this synthetic pathway. Isopentenol titers were improved from undetectable to 1.25 g/L by combining three approaches: media optimization; substitution of an NADH-dependent HmgR homolog from Silicibacter pomeroyi; and development of a C. glutamicum ∆poxB ∆ldhA host chassis. CONCLUSIONS We describe the successful expression of a heterologous mevalonate-based pathway in the Gram-positive industrial microorganism, C. glutamicum, for the production of the biogasoline candidate, isopentenol. We identified critical genetic factors to harness the isopentenol pathway in C. glutamicum. Further media and cultivation optimization enabled isopentenol production from sorghum biomass hydrolysates.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Robin A. Herbert
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Alberto Rodriguez
- Joint BioEnergy Institute, Emeryville, CA USA
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 USA
| | - John Gladden
- Joint BioEnergy Institute, Emeryville, CA USA
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|