1
|
O'Kennedy MM, Reedy SE, Abolnik C, Khan A, Smith T, du Preez I, Olajide E, Daly J, Cullinane A, Chambers TM. Protective efficacy of a bivalent equine influenza H3N8 virus-like particle vaccine in horses. Vaccine 2025; 50:126861. [PMID: 39938315 DOI: 10.1016/j.vaccine.2025.126861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Equine influenza (EI) is a highly contagious acute respiratory disease of wild and domesticated horses, donkeys, mules, and other Equidae. EI is caused by the Equine Influenza virus (EIV), is endemic in many countries and outbreaks still have a severe impact on the equine industry globally. Conventional EI vaccines are widely used, but a need exists for a platform that facilitates prompt manufacturing of a highly immunogenic, antigenically matched, updated vaccine product. Here we developed a plant-produced bivalent EI virus-like particle (VLP) vaccine candidate which lacks the viral genome and are therefore non-infectious. We conducted a pilot safety/dose response study of a plant produced bivalent VLP vaccine expressing the HA proteins of Florida clade (FC) 1 and FC2 EIV in 1:1 ratio. Groups of three EIV seronegative horses were vaccinated using four antigen levels (0 sham control, 250, 500, 1000 HAU/dose component). Two doses of vaccines were administered one month apart, and horses were observed for adverse reactions, which were minimal. Sera were collected for hemagglutination inhibition (HI) testing using FC1 and FC2 viruses. One month after the second dose, all horses were challenged with the aerosolized FC1 virus. Horses were observed daily for clinical signs, and nasopharyngeal swabs were collected to quantify viral RNA using qPCR and infectious virus by titration in embryonated hens' eggs. Results showed that all vaccinated groups seroconverted prior to challenge. Post-challenge, both clinical scores and virus shedding were much reduced in all vaccinates compared to the sham-vaccinated controls. We conclude that the VLP vaccines were safe and effective in this natural host challenge model. A safe, efficacious, new-generation bivalent EI VLP vaccine produced in plants, which can promptly and regularly be antigenically matched to ensure optimal protection, will pave the way to highly competitive commercially viable vaccine products for all economic environments globally.
Collapse
Affiliation(s)
- Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR), Biomanufacturing Technologies, Future Production: Chemical Cluster, South Africa; Department of Production Animal Studies, University of Pretoria, South Africa.
| | | | - Celia Abolnik
- Department of Production Animal Studies, University of Pretoria, South Africa
| | - Amjad Khan
- University of Kentucky, Department of Veterinary Science, USA; University of Haripur, Department of Public Health, Pakistan
| | - Tanja Smith
- Council for Scientific and Industrial Research (CSIR), Biomanufacturing Technologies, Future Production: Chemical Cluster, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR), Biomanufacturing Technologies, Future Production: Chemical Cluster, South Africa
| | - Edward Olajide
- University of Kentucky, Department of Veterinary Science, USA
| | - Janet Daly
- School of Veterinary Medicine & Science, University of Nottingham, United Kingdom
| | | | | |
Collapse
|
2
|
Liu R, Cai R, Wang M, Zhang J, Zhang H, Li C, Sun C. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. ENVIRONMENTAL MICROBIOME 2024; 19:43. [PMID: 38909236 PMCID: PMC11193907 DOI: 10.1186/s40793-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Lavrov KV, Shemyakina AO, Grechishnikova EG, Gerasimova TV, Kalinina TI, Novikov AD, Leonova TE, Ryabchenko LE, Bayburdov TA, Yanenko AS. A new concept of biocatalytic synthesis of acrylic monomers for obtaining water-soluble acrylic heteropolymers. Metab Eng Commun 2024; 18:e00231. [PMID: 38222043 PMCID: PMC10787234 DOI: 10.1016/j.mec.2023.e00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Rhodococcus strains were designed as model biocatalysts (BCs) for the production of acrylic acid and mixtures of acrylic monomers consisting of acrylamide, acrylic acid, and N-alkylacrylamide (N-isopropylacrylamide). To obtain BC strains, we used, among other approaches, adaptive laboratory evolution (ALE), based on the use of the metabolic pathway of amide utilization. Whole genome sequencing of the strains obtained after ALE, as well as subsequent targeted gene disruption, identified candidate genes for three new amidases that are promising for the development of BCs for the production of acrylic acid from acrylamide. New BCs had two types of amidase activities, acrylamide-hydrolyzing and acrylamide-transferring, and by varying the ratio of these activities in BCs, it is possible to influence the ratio of monomers in the resulting mixtures. Based on these strains, a prototype of a new technological concept for the biocatalytic synthesis of acrylic monomers was developed for the production of water-soluble acrylic heteropolymers containing valuable N-alkylacrylamide units. In addition to the possibility of obtaining mixtures of different compositions, the advantages of the concept are a single starting reagent (acrylamide), more unification of processes (all processes are based on the same type of biocatalyst), and potentially greater safety for personnel and the environment compared to existing chemical technologies.
Collapse
Affiliation(s)
- Konstantin V. Lavrov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Anna O. Shemyakina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Elena G. Grechishnikova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana V. Gerasimova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana I. Kalinina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Andrey D. Novikov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana E. Leonova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Ludmila E. Ryabchenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Telman A. Bayburdov
- Saratov Chemical Plant of Acrylic Polymers “AKRYPOL”, 410059, Saratov, Russia
| | - Alexander S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| |
Collapse
|
4
|
Rutkowska DA, Du Plessis LH, Suleman E, O’Kennedy MM, Thimiri Govinda Raj DB, Lemmer Y. Development of a Plant-Expressed Subunit Vaccine against Brucellosis. Microorganisms 2024; 12:1047. [PMID: 38930429 PMCID: PMC11205566 DOI: 10.3390/microorganisms12061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Brucellosis is an important bacterial disease of livestock and the most common zoonotic disease. The current vaccines are effective but unsafe, as they result in animal abortions and are pathogenic to humans. Virus-like particles are being investigated as molecular scaffolds for foreign antigen presentation to the immune system. Here, we sought to develop a new-generation vaccine by presenting selected Brucella melitensis T cell epitopes on the surface of Orbivirus core-like particles (CLPs) and transiently expressing these chimeric particles in Nicotiana benthamiana plants. We successfully demonstrated the assembly of five chimeric CLPs in N. benthamiana plants, with each CLP presenting a different T cell epitope. The safety and protective efficacy of three of the highest-yielding CLPs was investigated in a mouse model of brucellosis. All three plant-expressed chimeric CLPs were safe when inoculated into BALB/c mice at specific antigen doses. However, only one chimeric CLP induced protection against the virulent Brucella strain challenge equivalent to the protection induced by the commercial Rev1 vaccine. Here, we have successfully shown the assembly, safety and protective efficacy of plant-expressed chimeric CLPs presenting B. melitensis T cell epitopes. This is the first step in the development of a safe and efficacious subunit vaccine against brucellosis.
Collapse
Affiliation(s)
- Daria A. Rutkowska
- Advanced Agriculture and Food Cluster, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Lissinda H. Du Plessis
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2520, South Africa;
| | - Essa Suleman
- Advanced Agriculture and Food Cluster, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Martha M. O’Kennedy
- Future Production and Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (M.M.O.); (Y.L.)
| | - Deepak B. Thimiri Govinda Raj
- Synthetic Biology and Precision Medicine Centre, Future Production and Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Yolandy Lemmer
- Future Production and Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (M.M.O.); (Y.L.)
| |
Collapse
|
5
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
6
|
O'Kennedy MM, Abolnik C, Smith T, Motlou T, Goosen K, Sepotokele KM, Roth R, du Preez I, Truyts A, Stark HC, Magwaza M, Mahanjana O, Verschoor JA, Moore PL, Lemmer Y. Immunogenicity of adjuvanted plant-produced SARS-CoV-2 Beta spike VLP vaccine in New Zealand white rabbits. Vaccine 2023; 41:2261-2269. [PMID: 36868876 PMCID: PMC9968623 DOI: 10.1016/j.vaccine.2023.02.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The outbreak of the SARS-CoV-2 global pandemic heightened the pace of vaccine development with various vaccines being approved for human use in a span of 24 months. The SARS-CoV-2 trimeric spike (S) surface glycoprotein, which mediates viral entry by binding to ACE2, is a key target for vaccines and therapeutic antibodies. Plant biopharming is recognized for its scalability, speed, versatility, and low production costs and is an increasingly promising molecular pharming vaccine platform for human health. We developed Nicotiana benthamiana-produced SARS-CoV-2 virus-like particle (VLP) vaccine candidates displaying the S-protein of the Beta (B.1.351) variant of concern (VOC), which triggered cross-reactive neutralising antibodies against Delta (B.1.617.2) and Omicron (B.1.1.529) VOCs. In this study, immunogenicity of the VLPs (5 µg per dose) adjuvanted with three independent adjuvants i.e. oil-in-water based adjuvants SEPIVAC SWETM (Seppic, France) and "AS IS" (Afrigen, South Africa) as well as a slow-release synthetic oligodeoxynucleotide (ODN) adjuvant designated NADA (Disease Control Africa, South Africa) were evaluated in New Zealand white rabbits and resulted in robust neutralising antibody responses after booster vaccination, ranging from 1:5341 to as high as 1:18204. Serum neutralising antibodies elicited by the Beta variant VLP vaccine also showed cross-neutralisation against the Delta and Omicron variants with neutralising titres ranging from 1:1702 and 1:971, respectively. Collectively, these data provide support for the development of a plant-produced VLP based candidate vaccine against SARS-CoV-2 based on circulating variants of concern.
Collapse
Affiliation(s)
- Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa.
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | - Tanja Smith
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | - Thopisang Motlou
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Kruger Goosen
- La-Bio Research Animal Laboratory (a Division of Disease Control Africa), 33 Eland Street, Koedoespoort Industrial, Pretoria, South Africa
| | - Kamogelo M Sepotokele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | - Robyn Roth
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Alma Truyts
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Hester C Stark
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | - Martin Magwaza
- Tautomer Pty Ltd., 260 Cradock Avenue, Lyttelton Manor, Centurion 0157, South Africa
| | - Osborn Mahanjana
- 3Sixty Biopharmaceuticals Pty Ltd., 23 Impala Road, Block B, Chislehurston, Sandton, Gauteng 2196, South Africa
| | - Jan A Verschoor
- Emeritus Professor and Consultant, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| |
Collapse
|
7
|
Smith T, O’Kennedy MM, Ross CS, Lewis NS, Abolnik C. The production of Newcastle disease virus-like particles in Nicotiana benthamiana as potential vaccines. FRONTIERS IN PLANT SCIENCE 2023; 14:1130910. [PMID: 36875611 PMCID: PMC9978804 DOI: 10.3389/fpls.2023.1130910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Newcastle disease (ND) is a highly contagious viral respiratory and neurological disease that has a severe impact on poultry production worldwide. In the present study, an expression platform was established for the transient production in N.bethamiana of ND virus-like particles (VLPs) for use as vaccines against ND. The expression of the ND Fusion (F) and/or Hemagglutinin-neuraminidase (HN) proteins of a genotype VII.2 strain formed ND VLPs in planta as visualized under the transmission electron microscope, and HN-containing VLPs agglutinated chicken erythrocytes with hemagglutination (HA) titres of up to 13 log2.The immunogenicity of the partially-purified ND VLPs was confirmed in specific-pathogen-free White leghorn chickens. Birds receiving a single intramuscular immunization with 1024 HA units (10 log2) of the F/HN ND VLPs administered with 20% [v/v] Emulsigen®-P adjuvant, seroconverted after 14 days with F- and HN-specific antibodies at ELISA titres of 5705.17 and HI geometric mean titres (GMTs) of 6.2 log2, respectively. Furthermore, these ND-specific antibodies successfully inhibited viral replication in vitro of two antigenically closely-related ND virus isolates, with virus-neutralization test GMTs of 3.47 and 3.4, respectively. Plant-produced ND VLPs have great potential as antigen-matched vaccines for poultry and other avian species that are highly immunogenic, cost-effective, and facilitate prompt updating to ensure improved protection against emerging ND field viruses.
Collapse
Affiliation(s)
- Tanja Smith
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Martha M. O’Kennedy
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Craig S. Ross
- Avian Virology Department, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, United Kingdom
| | - Nicola S. Lewis
- Avian Virology Department, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Gauteng, Pretoria, South Africa
| |
Collapse
|
8
|
Vaishnav A, Kumar R, Singh HB, Sarma BK. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154170. [PMID: 35227717 DOI: 10.1016/j.scitotenv.2022.154170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, India; Agroecology and Environment, Agroscope (Reckenholz), Zürich 8046, Switzerland
| | - Roshan Kumar
- National Centre for Biological Sciences (TIFR-NCBS), Bengaluru 560065, India
| | | | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221110, India.
| |
Collapse
|
9
|
Juma WP, Nyoni D, Brady D, Bode ML. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives. Chembiochem 2021; 23:e202100527. [PMID: 34822736 DOI: 10.1002/cbic.202100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The Morita-Baylis-Hillman (MBH) reaction affords highly functionalised allylic alcohols containing a new stereogenic centre. These MBH adducts are very versatile and have been transformed into a large range of products, some of which have medicinal potential. Several examples of asymmetric syntheses of MBH adducts have been reported, although a generally applicable method remains to be developed. Biocatalytic approaches for the synthesis and enzymatic kinetic resolution of MBH adducts have been reported, and are discussed in detail in this review. Enzymes able to catalyse the asymmetric MBH reaction have been identified, but selectivity and efficiency have generally been low. Lipases, esterases and nitrile-converting enzymes have all been successfully applied in the resolution of MBH adducts, with excellent selectivity being realised in most cases.
Collapse
Affiliation(s)
- Wanyama Peter Juma
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dubekile Nyoni
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| |
Collapse
|
10
|
Zhang X, Wang C, Ge Y, Meng Q, Zhang Y. Constitutive secretory expression and characterization of nitrilase from Alcaligenes faecalis in Pichia pastoris for production of R-mandelic acid. Biotechnol Appl Biochem 2021; 69:587-595. [PMID: 33650215 DOI: 10.1002/bab.2135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/14/2021] [Indexed: 11/07/2022]
Abstract
Nitrilases can directly hydrolyze nitrile compounds into carboxylic acids and ammonium. To solve the current problems of bioconversions using nitrilases, including the difficult separation of products from the resting cells used as the catalyst and high costs of chemical inducers, a nitrilase from Alcaligenes faecalis was heterologously expressed in Pichia pastoris X33. The stable nitrilase-expressing strain No.39-6-4 was obtained after three rounds of screening based on a combined detection method including dot-blot, SDS-PAGE, and western blot analyses, which confirmed the presence of recombinant nitrilase with a molecular mass of about 50 kDa. The temperature and pH optima of the nitrilase were 45°C and pH 7.5, respectively. Cu2+ , Zn2+ , and Tween 80 strongly inhibited the enzyme activity, but the optical purity of the product R-mandelic acid (R-MA) was stable, with practically 100% enantiomeric excess (ee). The nitrilase-producing P. pastoris strain developed in this study provides a basis for further research on the enzyme.
Collapse
Affiliation(s)
- Xinhong Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Yang Ge
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Qingnan Meng
- Institute of Pharmaceutical Biotechnology, University of Science and Technology of China, Hefei, China
| | - Yi Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| |
Collapse
|
11
|
Mareya TM, Coady TM, O'Reilly C, Kinsella M, Coffey L, Lennon CM. Process Optimisation Studies and Aminonitrile Substrate Evaluation of Rhodococcus erythropolis SET1, A Nitrile Hydrolyzing Bacterium. ChemistryOpen 2020; 9:512-520. [PMID: 32346499 PMCID: PMC7184877 DOI: 10.1002/open.202000088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
A comprehensive series of optimization studies including pH, solvent and temperature were completed on the nitrile hydrolyzing Rhodococcus erythropolis bacterium SET1 with the substrate 3-hydroxybutyronitrile. These identified temperature of 25 °C and pH of 7 as the best conditions to retain enantioselectivity and activity. The effect of the addition of organic solvents to the biotransformation mixture was also determined. The results of the study suggested that SET1 is suitable for use in selected organo-aqueous media at specific ratios only. The functional group tolerance of the isolate with unprotected and protected β-aminonitriles, structural analogues of β-hydroxynitriles was also investigated with disappointingly poor isolated yields and selectivity obtained. The isolate was further evaluated with the α- aminonitrile phenylglycinonitrile generating acid in excellent yield and ee (>99 % (S) - isomer and 50 % yield). A series of pH studies with this substrate indicated pH 7 to be the optimum pH to avoid product and substrate degradation.
Collapse
Affiliation(s)
- Tatenda M. Mareya
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Tracey M. Coady
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Catherine O'Reilly
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Michael Kinsella
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Lee Coffey
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Claire M. Lennon
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| |
Collapse
|
12
|
Smith T, O'Kennedy MM, Wandrag DB, Adeyemi M, Abolnik C. Efficacy of a plant-produced virus-like particle vaccine in chickens challenged with Influenza A H6N2 virus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:502-512. [PMID: 31350931 PMCID: PMC6953208 DOI: 10.1111/pbi.13219] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
The efficacy, safety, speed, scalability and cost-effectiveness of producing hemagglutinin-based virus-like particle (VLP) vaccines in plants are well-established for human influenza, but untested for the massive poultry influenza vaccine market that remains dominated by traditional egg-grown oil-emulsion whole inactivated virus vaccines. For optimal efficacy, a vaccine should be closely antigenically matched to the field strain, requiring that influenza A vaccines be updated regularly. In this study, an H6 subtype VLP transiently expressed in Nicotiana benthamiana was formulated into a vaccine and evaluated for efficacy in chickens against challenge with a heterologous H6N2 virus. A single dose of the plant-produced H6 VLP vaccine elicited an immune response comparable to two doses of a commercial inactivated H6N2 vaccine, with mean hemagglutination inhibition titres of 9.3 log2 and 8.8 log2 , respectively. Compared to the non-vaccinated control, the H6 VLP vaccine significantly reduced the proportion of shedders and the magnitude of viral shedding by >100-fold in the oropharynx and >6-fold in the cloaca, and shortened oropharyngeal viral shedding by at least a week. Despite its potency, the cost of the antigenic mismatch between the inactivated H6N2 vaccine and challenge strain was evident not only in this vaccine's failure to reduce viral shedding compared to the non-vaccinated group, but its apparent exacerbation of oropharyngeal viral shedding until 21 days post-challenge. We estimate that a kilogram of plant leaf material can produce H6 VLP vaccines sufficient for between 5000 and 30 000 chickens, depending on the effective dose and whether one or two immunizations are administered.
Collapse
Affiliation(s)
- Tanja Smith
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- BiosciencesCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Martha M. O'Kennedy
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- BiosciencesCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
| | - Daniel B.R. Wandrag
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Modupeore Adeyemi
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Celia Abolnik
- Department of Production Animal StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
13
|
Frederick J, Hennessy F, Horn U, de la Torre Cortés P, van den Broek M, Strych U, Willson R, Hefer CA, Daran JMG, Sewell T, Otten LG, Brady D. The complete genome sequence of the nitrile biocatalyst Rhodocccus rhodochrous ATCC BAA-870. BMC Genomics 2020; 21:3. [PMID: 31898479 PMCID: PMC6941271 DOI: 10.1186/s12864-019-6405-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nitriles and amides. The genome of the organism was sequenced and analysed in order to better understand this whole cell biocatalyst. RESULTS The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid, that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and secondary metabolite gene clusters, several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene cluster, including a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase. Although there are fewer biotechnologically relevant enzymes compared to those found in rhodococci with larger genomes, such as the well-known Rhodococcus jostii RHA1, the abundance of transporters in combination with the myriad of enzymes found in strain BAA-870 might make it more suitable for use in industrially relevant processes than other rhodococci. CONCLUSIONS The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities supporting potential applications in biotechnology, including nitrilases, nitrile hydratase, monooxygenases, cytochrome P450s, reductases, proteases, lipases, and transaminases.
Collapse
Affiliation(s)
- Joni Frederick
- Protein Technologies, CSIR Biosciences, Meiring Naude Road, Brummeria, Pretoria, South Africa
- Electron Microscope Unit, University of Cape Town, Rondebosch, 7701 South Africa
- Present Address: LadHyx, UMR CNRS 7646, École Polytechnique, 91128 Palaiseau, France
| | - Fritha Hennessy
- Protein Technologies, CSIR Biosciences, Meiring Naude Road, Brummeria, Pretoria, South Africa
| | - Uli Horn
- Meraka, CSIR, Meiring Naude Road, Brummeria, 0091 South Africa
| | - Pilar de la Torre Cortés
- Industrial Microbiology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marcel van den Broek
- Industrial Microbiology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ulrich Strych
- Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204 USA
- Present Address: Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX 77030 USA
| | - Richard Willson
- Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204 USA
- Chemical and Biomolecular Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 USA
| | - Charles A. Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002 South Africa
- Present Address: AgResearch Limited, Lincoln Research Centre, Private Bag 4749, Christchurch, 8140 New Zealand
| | - Jean-Marc G. Daran
- Industrial Microbiology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Trevor Sewell
- Electron Microscope Unit, University of Cape Town, Rondebosch, 7701 South Africa
| | - Linda G. Otten
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dean Brady
- Protein Technologies, CSIR Biosciences, Meiring Naude Road, Brummeria, Pretoria, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO, Wits, 2050 South Africa
| |
Collapse
|
14
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
15
|
Chhiba-Govindjee VP, van der Westhuyzen CW, Bode ML, Brady D. Bacterial nitrilases and their regulation. Appl Microbiol Biotechnol 2019; 103:4679-4692. [DOI: 10.1007/s00253-019-09776-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
|