1
|
Wang L, Wang J, Zhang K, Zhang J, Cui D, Wang J, Ji P, Wei Y, Li J. Linalool as a potential agent for inhibiting Escherichia coli biofilm formation and exopolysaccharide production. BMC Vet Res 2025; 21:235. [PMID: 40169959 PMCID: PMC11963439 DOI: 10.1186/s12917-025-04681-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Escherichia coli (E. coli) is one of the most common pathogens causing endometritis in dairy cows. The presence of genes encoding extended-spectrum β-lactamase (ESBL) and biofilm formation are important factors contributing to bacterial resistance, which poses a significant challenge to the treatment of endometritis in dairy cows. Essential oils containing linalool have been shown to improve the cure rate of bovine endometritis, but whether linalool can inhibit E. coli biofilm has not yet been reported. We proposed to ascertain the linalool implications on the development of E. coli biofilm and its extracellular polysaccharides, as well as to assess the impacts of linalool on E. coli in both planktonic and biofilm states. We discovered that the minimum biofilm inhibitory concentrations (MBICs) of linalool against E. coli were twice as high as the minimum inhibitory concentrations. Linalool exhibited a strong bactericidal effect on clinical E. coli strain producing ESBL and forming strong biofilm, regardless of whether they were in a planktonic or biofilm condition. Linalool suppressed the biofilm development in a way that was dependent on the dosage, with an MBIC 4 µL/mL. This was verified by the use of crystal violet test and scanning electron microscopy. Moreover, the CCK-8 assay and confocal laser scanning microscopy (CLSM) manifested significant reductions in live bacteria within the biofilm. The concentrations of extracellular polymeric compounds in the E. coli biofilm were also reduced. Furthermore, CLSM and RT-qPCR analysis confirmed that linalool (2 µL/mL) significantly suppressed exopolysaccharide (EPS) and the pgaABCD gene expression, regulating an essential exopolysaccharide expression in biofilm formation. These findings revealed that linalool effectively suppressed viable bacteria, EPS production, and E. coli biofilm formation, providing a theoretical foundation for alternative antibiotic therapy in endometritis in dairy cows and as a potential agent for preventing E. coli biofilm-related infections.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou, Gansu Province, 730070, P. R. China
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China
| | - Jiamian Wang
- College of Veterinary Medicine, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou, Gansu Province, 730070, P. R. China
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China
| | - Kang Zhang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China
| | - Jingyan Zhang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China
| | - Dongan Cui
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China
| | - Junyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou, Gansu Province, 730070, P. R. China
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou, Gansu Province, 730070, P. R. China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou, Gansu Province, 730070, P. R. China.
| | - Jianxi Li
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P. R. China.
| |
Collapse
|
2
|
Wei Y, Lei L, Jiang H, Du Q, Liu D, Chen L, Shi X, Wang Y, Li J, Hu Y, Xia X, Tu J. Antibacterial and antibiofilm activities and mechanisms of Toona sinensis extracts against Bacillus cereus and its application in milk. Curr Res Food Sci 2025; 10:101045. [PMID: 40270522 PMCID: PMC12018029 DOI: 10.1016/j.crfs.2025.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Bacillus cereus, a well-known foodborne pathogen, poses an increased risk because of its ability to form biofilms. In this study, we evaluated the antibacterial and antibiofilm activities of Toona sinensis extracts against B. cereus. All tested T. sinensis varieties demonstrated significant antibacterial activity against B. cereus, with inhibition zone diameters exceeding 11 mm (P < 0.05). Notably, the extracts from Sichuan Dazhu exhibited strong antibacterial effects, even against antibiotic-resistant B. cereus strains. 239 compounds were identified in Sichuan Dazhu extracts by LC-MS. The MIC and MBC of the extracts against strain ATCC 11778, BCL043 and BCL047 were 0.195 and 0.391 mg/mL, respectively. These findings were corroborated by growth curve experiments, live/dead cell staining, and scanning electron microscopy observations. Moreover, the extracts demonstrated remarkable antibiofilm activity against B. cereus, reducing biofilm biomass to less than 40 % (P < 0.05). Transcriptome analysis revealed its antibacterial and antibiofilm mechanisms. Additionally, the extracts exhibited potent antibacterial activity against B. cereus in skim milk. Collectively, these results underscore the significant antibacterial and antibiofilm potential of T. sinensis extracts, highlighting their potential applications in food safety. This report provides the first evidence of both antibacterial and antibiofilm activities in T. sinensis extract against B. cereus, while also elucidating the associated mechanisms.
Collapse
Affiliation(s)
- Yuru Wei
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Lei Lei
- Huangshi City Center for Disease Prevention and Control, Huangshi, 435000, PR China
| | - Honglin Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, PR China
| | - Qingquan Du
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Decheng Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Lu Chen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, 100081, PR China
| | - Xiaoshan Shi
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Yanxiang Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Jingjing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, PR China
| |
Collapse
|
3
|
Aslam MN, Khaliq H, Zhao H, Moosa A, Maqsood A, Farooqi MA, Bilal MS, Mahmood T, Mukhtar T. Thymol as a Novel Plant-Derived Antibacterial Agent for Suppressing Xanthomonas citri pv. malvacearum in Cotton. Curr Microbiol 2025; 82:99. [PMID: 39836298 DOI: 10.1007/s00284-025-04077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety. Thymol is a monoterpene phenol present in the essential oils of plants belonging to Lamiaceae family. In this study the antimicrobial activity of thymol was evaluated against Xcm. The minimum inhibitory concentration (MIC) and 99.9% bactericidal concentration (MBC) of thymol against Xcm were 2 and 4 mg/mL, respectively. The effect of MIC and MBC of thymol against Xcm was assessed on the Luria-Bertani medium. The effect of thymol on intercellular ATP levels, membrane potential, and motility in Xcm was assessed using fluorescence spectrometry for membrane potential and firefly luciferase-based assay for ATP levels. Thymol ruptured the cellular membrane of Xcm, resulting in decreased intracellular ATP concentrations, intracellular leakage of genetic material, and changes in membrane potential. Scanning electron microscopy images supported the impact of thymol on the cell membrane of Xcm. Moreover, thymol inhibited the swimming motility and biofilm formation of Xcm at concentrations equal to or above the MIC and MBC. In contrast, sub-MIC concentrations of thymol had little to no impact on the virulence of Xcm. In conclusion, thymol demonstrated the potential as a strong bactericidal compound against Xcm.
Collapse
Affiliation(s)
- Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Khaliq
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ambreen Maqsood
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Aslam Farooqi
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Saqib Bilal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Tahir Mahmood
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| |
Collapse
|
4
|
Sun Y, Jia Y, Wang K, Wang S, Cui B, Mao C, Guo X, Feng Y, Fu H, Chen X, Wang Y, Zhang Z, Wang Y. The exploration of pasteurization processes and mechanisms of inactivation of Bacillus cereus ATCC 14579 using radio frequency energy. Int J Food Microbiol 2025; 426:110919. [PMID: 39321599 DOI: 10.1016/j.ijfoodmicro.2024.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Radio frequency (RF) heating has been utilized to investigate sterilization techniques, but the mechanism of sterilization via RF heating, particularly on Bacillus cereus (B. cereus), has not been thoroughly examined. In this paper, sterilization processes and potential bactericidal mechanisms of B. cereus using RF were investigated. The best heating and sterilization efficiency was achieved at (Electrode gap 130 mm, conductivity of bacterial suspension 0.1 S/m, volume of bacterial suspension 40 mL). Heating a suspension of B. cereus to 90 °C in 80 s using RF reduced the number of viable bacteria by 4.87 logarithms. At the cellular level, there was a significant leakage of nucleic acids and proteins from the bacterial cells. Additionally, the integrity of the cell membrane was severely damaged, with a decrease in ATP concentration of 2.08 mM, Na, K-ATPase activity to 10.7 (U/109 cells), and Ca, Mg-ATPase activity to 11.6 (U/109 cells). At the molecular level, transcriptomics analysis showed that RF heating of B. cereus to 65 °C produced 650 more differentially expressed genes (DEGs) compared with RF heating to 45 °C. The GO annotation analysis indicated that the majority of differentially expressed genes (DEGs) were predominantly associated with cellular components. KEGG metabolic analysis showed enrichment in microbial metabolism in diverse environments, etc. This study investigated the potential bactericidal mechanism of B. cereus using RF, and provided some theoretical basis for the research of the sterilization of B. cereus.
Collapse
Affiliation(s)
- Yanan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Yiming Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ke Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Baozhong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Chao Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoying Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuxin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhenna Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
5
|
Xia RF, Wei YR, Zhang CQ, Huang Y, Chen MS, Yuan XY, Zha HJ, Lai KD, Xia X, Wan LS. Structurally diverse triterpenoids with antibacterial activities from Euphorbia humifusa. Bioorg Chem 2024; 153:107915. [PMID: 39471543 DOI: 10.1016/j.bioorg.2024.107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
An exploration of antibacterial components from the whole plant of Euphorbia humifusa led to the isolation of 14 new triterpenoids, euphohumifusoids A-N (1-7 and 9-15), as well as four known analogues (8 and 16-18). Their structures were elucidated by extensively analysis of the spectroscopic data and X-ray crystallography using Cu Kα radiation. Among them, euphohumifusoid A (1) bears an unique 6(7 → 8)abeo scaffold originated from a D:C-friedo-oleanane skeleton for the first time, euphohumifusoids H and I (9 and 10) possess a rare α,β-unsaturated-γ-lactone chain originated from 25,26,27-trinordammaranes, and euphohumifusoid L (13) is a highly modified 3,4-seco-25,26,27-trinorcycloartane. Notably, in antibacterial bioassay, compound 1 displayed excellent antibacterial activities against Bacillus cereus, Staphylococcus aureus, and S.epidermidis with MIC of 12.5, 25, and 25 μg/mL, comparable to the positive controls. Upon exposure to 1 and 2 MIC of 1, B.cereus underwent drastic morphological changes, resulting in complete disruption of the cells. Meanwhile, compound 1 also exhibited remarkable antibiofilm activity against B.cereus at 1 MIC and 2 MIC.
Collapse
Affiliation(s)
- Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yu-Ru Wei
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, PR China
| | - Cheng-Qi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yan Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, PR China
| | - Ming-Sheng Chen
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, PR China
| | - Xiao-Yu Yuan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hong-Jing Zha
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ke-Dao Lai
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, PR China.
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, PR China.
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
6
|
María Bonilla-Luque O, Nunes Silva B, Ezzaky Y, Possas A, Achemchem F, Cadavez V, Gonzales-Barron Ú, Valero A. Meta-analysis of antimicrobial activity of Allium, Ocimum, and Thymus spp. confirms their promising application for increasing food safety. Food Res Int 2024; 188:114408. [PMID: 38823853 DOI: 10.1016/j.foodres.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
Biopreservation strategies such as the use of Mediterranean plant extracts to ensure food safety are promising to deal with the emergence of antimicrobial resistances and the overreliance on food chemical additives. In the last few decades, antimicrobial susceptibility testing (AST) for evaluating the in vitro antibacterial potential of plant extracts against the most relevant foodborne pathogens has been widely reported in the literature. The current meta-analysis aimed to summarise and analyse the extensive evidence available in the literature regarding the in vitro antimicrobial capability of Allium, Ocimum and Thymus spp. extracts against foodborne pathogens. A systematic review was carried out to gather data on AST results of these extracts against Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli and Bacillus cereus, including inhibition diameters (ID) and minimum inhibitory concentrations (MIC). A total of 742 records were gathered from a raw collection of 2,065 articles. Weighted mixed-effect linear models were adjusted to data to obtain pooled ID, pooled MIC and the relationship between both model estimations and observations. The pooled results revealed B. cereus as the most susceptible bacteria to Allium sativum (pooled ID = 20.64 ± 0.61 mm) by diffusion methods and S. aureus (pooled MIC = 0.146 mg/mL) by dilution methods. Diffusion methods did not yield conclusive results for Ocimum spp. extracts; however, the lowest pooled MIC was obtained for S. aureus (0.263 mg/mL). Among the foodborne pathogens evaluated, B. cereus showed the highest sensitivity to Thymus spp. extracts by both diffusion and dilution methods (pooled ID = 28.90 ± 2.34 mm and MIC = 0.075 mg/mL). The methodology used for plant extraction was found to not significantly affect MIC values (p > 0.05). Overall, the antimicrobial effectiveness of the studied extracts against Gram-positive and Gram-negative bacteria was demonstrated. Finally, the robustness of the meta-regression model was confirmed, also revealing an inversely proportional correlation between the ID and MIC measurements (p < 0.0001). These results provide a robust scientific basis on the factors affecting the in vitro antimicrobial efficacy of extracts from Mediterranean plants. They also provide valuable information for stakeholders involved in their industrial application in food, including producers, regulatory agencies and consumers which demand green-labelled foods.
Collapse
Affiliation(s)
- Olga María Bonilla-Luque
- Departamento de Bromatología y Tecnología de los Alimentos, Grupo de Investigación en Higiene Bromatológica (HIBRO), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), International Agrifood Campus of Excellence (CeiA3), Universidad de Córdoba, 14014 Córdoba, Spain.
| | - Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, 80150 Agadir, Morocco.
| | - Arícia Possas
- Departamento de Bromatología y Tecnología de los Alimentos, Grupo de Investigación en Higiene Bromatológica (HIBRO), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), International Agrifood Campus of Excellence (CeiA3), Universidad de Córdoba, 14014 Córdoba, Spain.
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, 80150 Agadir, Morocco.
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Úrsula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Antonio Valero
- Departamento de Bromatología y Tecnología de los Alimentos, Grupo de Investigación en Higiene Bromatológica (HIBRO), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), International Agrifood Campus of Excellence (CeiA3), Universidad de Córdoba, 14014 Córdoba, Spain.
| |
Collapse
|
7
|
Wang Y, Rui W, Li Y, Han Y, Zhan X, Cheng S, Song L, Yang H, Jiang T, Liu G, Shi C. Inhibition and Mechanism of Citral on Bacillus cereus Vegetative Cells, Spores, and Biofilms. Foodborne Pathog Dis 2024; 21:447-457. [PMID: 38985570 DOI: 10.1089/fpd.2023.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 μg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 μg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 μg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 μg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.
Collapse
Affiliation(s)
- Yihong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yilin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Yuan H, Xun H, Wang J, Wang J, Yao X, Tang F. Integrated Metabolomic and Transcriptomic Analysis Reveals the Underlying Antibacterial Mechanisms of the Phytonutrient Quercetin-Induced Fatty Acids Alteration in Staphylococcus aureus ATCC 27217. Molecules 2024; 29:2266. [PMID: 38792126 PMCID: PMC11123838 DOI: 10.3390/molecules29102266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane functionality; however, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of quercetin on the cell membrane permeability of Staphylococcus aureus ATCC 27217. A combined metabolomic and transcriptomic approach was adopted to examine the regulatory mechanism of quercetin with respect to the fatty acid composition and associated genes. Kinetic analysis and molecular docking simulations were conducted to assess quercetin's inhibition of β-ketoacyl-acyl carrier protein reductase (FabG), a potential target in the bacterial fatty acid biosynthesis pathway. Metabolomic and transcriptomic results showed that quercetin increased the ratio of unsaturated to saturated fatty acids and the levels of membrane phospholipids. The bacteria reacted to quercetin-induced stress by attempting to enhance fatty acid biosynthesis; however, quercetin directly inhibited FabG activity, thereby disrupting bacterial fatty acid biosynthesis. These findings provide new insights into the mechanism of quercetin's effects on bacterial cell membranes and suggest potential applications for quercetin in bacterial inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; (H.Y.); (H.X.); (J.W.); (J.W.); (X.Y.)
| |
Collapse
|
9
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Kuley E, Kazgan N, Sakarya Y, Balıkcı E, Ozogul Y, Yazgan H, Özyurt G. Bioactivity of Microencapsulated Cell-Free Supernatant of Streptococcus thermophilus in Combination with Thyme Extract on Food-Related Bacteria. Foods 2024; 13:329. [PMID: 38275696 PMCID: PMC10815193 DOI: 10.3390/foods13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The bioactive properties of the combination of microencapsulated cell-free supernatant (CFS) from Streptococcus thermophilus and thyme extract on food-related bacteria (Photobacterium damselae, Proteus mirabilis, Vibrio vulnificus, Staphylococcus aureus ATCC29213, Enterococcus faecalis ATCC29212, and Salmonella Paratyphi A NCTC13) were investigated. The microencapsulated CFS of S. thermophilus, in combination with ethanolic thyme extract, had a particle size in the range of 1.11 to 11.39 µm. The microencapsulated CFS of S. thermophilus had a wrinkled, spherical form. In the supernatant, especially at 2% (v/w), the thyme extract additive caused a decrease in the wrinkled form and a completely spherical structure. A total of 11 compounds were determined in the cell-free supernatant of S. thermophilus, and acetic acid (39.64%) and methyl-d3 1-dideuterio-2-propenyl ether (10.87%) were the main components. Thyme extract contained seven components, the main component being carvacrol at 67.96% and 1,2,3-propanetriol at 25.77%. Significant differences (p < 0.05) were observed in the inhibition zones of the extracts on bacteria. The inhibitory effect of thyme extract on bacteria varied between 25.00 (P. damselae) and 41.67 mm (V. vulnificus). Less antibacterial activity was shown by the microencapsulated CFS from S. thermophilus compared to their pure form. (p < 0.05). As a result, it was found that microencapsulated forms of CFS from S. thermophilus, especially those prepared in combination with 2% (v/w) thyme extract, generally showed higher bioactive effects on bacteria.
Collapse
Affiliation(s)
- Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (E.K.); (N.K.); (Y.S.)
| | - Nagihan Kazgan
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (E.K.); (N.K.); (Y.S.)
| | - Yetkin Sakarya
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (E.K.); (N.K.); (Y.S.)
| | - Esra Balıkcı
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Yozgat Bozok University, 66900 Yozgat, Turkey;
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (E.K.); (N.K.); (Y.S.)
| | - Hatice Yazgan
- Department of Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01960 Adana, Turkey;
| | - Gülsün Özyurt
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; (E.K.); (N.K.); (Y.S.)
| |
Collapse
|
11
|
Souza ZN, Córdula CR, Cavalcanti IMF. The potential usage of Caatinga natural products against multi-drug-resistant bacteria. Fitoterapia 2024; 172:105752. [PMID: 37981022 DOI: 10.1016/j.fitote.2023.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
New sources of antibacterial drugs have become urgent with increasing bacterial resistance. Medicinal plants are attractive sources for antimicrobial compounds with fewer side effects and cheaper obtention. Brazil contains six biomes, including Caatinga, a semi-arid tropical vegetation exclusively from Brazil that contains over thousand vascular plant species. This review presents the potential of using Caatinga plant products to treat multidrug-resistant bacteria. This review used the keywords of antimicrobial resistance, resistance profile, multidrug resistance, Caatinga biome, and pathogenic bacteria to search in Scientific Electronic Library Online, the U.S. National Library of Medicine, and Google Scholar. Plant species as Schinopsis brasiliensis Engl., Annona vepretorum Mart., Croton pulegioides Baill., Myracrondruon urundeuva Allemo, Cereus jamacaru DC., Opuntia ficus-indica L., Bauhinia forficata L., Eucalyptus globulus, Croton sonderianus Muell. Arg., Campomanesia pubescens, and Abarema cochliacarpos showed bacteriostatic activity. Encholirium spectabile Mart., Hymenaea courbaril L., Neoglaziovia variegata Mez, Selaginella convoluta Spring, Encholirium spectabile Mart., Bromelia laciniosa Mart., Hymenaea martiana, Commiphora leptophloeos, and Mimosa tenuiflora presented bactericidal activity. Those extracts inhibited clinical-importance bacteria, such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Therefore, Caatinga biome plants are a valuable source of active biomolecules against pathogenic bacteria, and their therapeutic potential must be further explored.
Collapse
Affiliation(s)
- Zion N Souza
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | - Carolina R Córdula
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | - Isabella M F Cavalcanti
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
12
|
Wang L, Li W, Li X, Liu J, Chen Y. Antimicrobial Activity and Mechanisms of Walnut Green Husk Extract. Molecules 2023; 28:7981. [PMID: 38138470 PMCID: PMC10745604 DOI: 10.3390/molecules28247981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Walnut green husks (WGHs), by-products of walnut production, are believed to possess antimicrobial properties, making them a potential alternative to antibiotics. In this study, the antibacterial activities of three extracts, derived from WGH, against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli were investigated, and the antibacterial mechanisms of an anhydrous ethanol extract of WGH (WGHa) were examined. The results showed that WGHa exhibited inhibitory effects on all tested bacteria. The ultrahigh-performance liquid chromatography-tandem mass spectrometry analysis revealed that the major active compounds present in WGHa were terpenoids, phenols, and flavonoids. Treatment with WGHa resulted in the leakage of intracellular ions and alkaline phosphatase; a reduction in intracellular ATP content, ATPase activity, and nucleic acid content; as well as cellular metabolic viability. The transmission electron microscopy images showed varying degrees of cell deformation and membrane damage following WGHa treatment. The transcriptome sequencing and differentially expressed gene enrichment analyses revealed an up-regulation in pathways associated with RNA degradation, translation, protein export, and oxidative phosphorylation. Conversely, pathways involved in cell movement and localization, as well as cell wall organization and carbohydrate transport, were found to be down-regulated. These findings suggest that WGHa alters cell membrane permeability and causes damage to the cell wall. Additionally, WGHa interferes with cellular energy metabolism, compromises RNA integrity, and induces DNA replication stress, consequently inhibiting the normal growth and proliferation of bacteria. These findings unveiled the antimicrobial mechanisms of WGHa, highlighting its potential application as an antibiotic alternative.
Collapse
Affiliation(s)
| | | | | | | | - Yong Chen
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (L.W.); (W.L.); (X.L.); (J.L.)
| |
Collapse
|
13
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
14
|
Antibacterial and Antibiofilm Efficacy of Thyme (Thymus vulgaris L.) Essential Oil against Foodborne Illness Pathogens, Salmonella enterica subsp. enterica Serovar Typhimurium and Bacillus cereus. Antibiotics (Basel) 2023; 12:antibiotics12030485. [PMID: 36978352 PMCID: PMC10044538 DOI: 10.3390/antibiotics12030485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nowadays, the wide spread of foodborne illness and the growing concerns about the use of synthetic food additives have shifted the focus of researchers towards essential oils (EOs) as possible antimicrobials and preservatives of natural origin. Thanks to their antimicrobial properties against pathogenic and food spoilage microorganisms, EOs have shown good potential for use as alternative food additives, also to counteract biofilm-forming bacterial strains, the spread of which is considered to be among the main causes of the increase in foodborne illness outbreaks. In this context, the aim of this study has been to define the antibacterial and antibiofilm profile of thyme (Thymus vulgaris L.) essential oil (TEO) against widespread foodborne pathogens, Salmonella enterica subsp. enterica serovar Typhimurium and Bacillus cereus. TEO chemical composition was analyzed through gas chromatography-mass spectrometry (GC-MS). Preliminary in vitro antibacterial tests allowed to qualitatively verify TEO efficacy against the tested foodborne pathogens. The subsequent determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values allowed to quantitatively define the bacteriostatic and bactericidal effects of TEO. To evaluate the ability of essential oils to inhibit biofilm formation, a microplate assay was performed for the bacterial biofilm biomass measurement. Results suggest that TEO, rich in bioactive compounds, is able to inhibit the growth of tested foodborne bacteria. In addition, the highlighted in vitro anti-biofilm properties of TEO suggest the use of this natural agent as a promising food preservative to counteract biofilm-related infections in the food industry.
Collapse
|
15
|
Qin K, Gui Y, Li Y, Li X, Meng F, Han D, Du L, Li S, Wang Y, Zhou H, Yan H, Peng Y, Gao Z. Biodegradable Microneedle Array-Mediated Transdermal Delivery of Dimethyloxalylglycine-Functionalized Zeolitic Imidazolate Framework-8 Nanoparticles for Bacteria-Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6338-6353. [PMID: 36701257 DOI: 10.1021/acsami.2c17328] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacteria-infected skin wounds caused by external injuries remain a serious challenge to the whole society. Wound healing dressings, with excellent antibacterial activities and potent regeneration capability, are increasingly needed clinically. Here, we reported a novel functional microneedle (MN) array comprising methacrylated hyaluronic acid (MeHA) embedded with pH-responsive functionalized zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to treat bacteria-infected cutaneous wounds. Antibacterial activity was introduced into Zn-ZIF-8 to achieve sterilization through releasing Zn ions, as well as increased angiogenesis by dimethyloxalylglycine (DMOG) molecules that were distributed within its framework. Furthermore, biodegradable MeHA was chosen as a substrate material carrier to fabricate DMOG@ZIF-8 MN arrays. By such design, DMOG@ZIF-8 MN arrays would not only exhibit excellent antibacterial activity against pathogenic bacteria but also enhance angiogenesis within wound bed by upregulating the expression of HIF-1α, leading to a significant therapeutic efficiency on bacteria-infected cutaneous wound healing. Based on these results, we conclude that this new treatment strategy can provide a promising alternative for accelerating infected wound healing via effective antibacterial activity and ameliorative angiogenesis.
Collapse
Affiliation(s)
- Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuan Gui
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Yanchun Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinyi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Fei Meng
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
16
|
Zhou H, Chen L, Ouyang K, Zhang Q, Wang W. Antibacterial activity and mechanism of flavonoids from Chimonanthus salicifolius S. Y. Hu. and its transcriptome analysis against Staphylococcus aureus. Front Microbiol 2023; 13:1103476. [PMID: 36704556 PMCID: PMC9871464 DOI: 10.3389/fmicb.2022.1103476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Chimonanthus salicifolius S. Y. Hu. (FCS) possess many biological activities, but the antibacterial activity and underlying mechanisms of flavonoids from Chimonanthus salicifolius S. Y. Hu. (FCS) is still unknown. Method Maximum diameter of inhibition zone (DIZ), maximum diameter of inhibition zone (DIZ), the lowest minimum inhibition concentration (MIC), and the lowest minimum bactericide concentration (MBC) were used to detect the antibacterial activity. Meanwhile, related enzyme activities, the transcriptome analysis and quantitative RT-PCR were used to investigate the antibacterial activity mechanisms. Results The results showed that FCS (with a purity of 84.2 ± 2.0%) has potential effects on tested strains with the maximum diameter of inhibition zone (DIZ) was 15.93 ± 2.63 mm, the lowest minimum inhibition concentration (MIC) was 1.56 mg/ml and the lowest minimum bactericide concentration (MBC) was 6.25 mg/ml. In addition, the bacterial growth curve test, release of extracellular alkaline phosphatase (AKP), loss of intracellular components, DNA damage and transmission electron microscope (TEM) suggested that FCS could destroy the cell wall and membrane, cause the loss of intracellular substance, cause DNA damage and even lead to cell death. Moreover, the antibacterial mechanism of FCS against Staphylococcus aureus (S. aureus, Gram-positive bacteria) was further confirmed by the transcriptome analysis and quantitative RT-PCR at the molecular level for the first time. A total of 671 differentially expressed genes (DEGs) were identified after treated with FCS (1/2 MIC), with 338 and 333 genes showing up-regulation and down-regulation, respectively. The highlighted changes were those related to the biosynthesis of bacteria wall and membrane, DNA replication and repair, and energy metabolism. Discussion Overall, our research provides theoretical guidance for the application of FCS, which is expected to be potentially used as a natural antimicrobial agent in food safety.
Collapse
Affiliation(s)
- Huan Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China,*Correspondence: Wenjun Wang, ✉
| |
Collapse
|
17
|
Hao Y, Guo X, Zhang W, Xia F, Sun M, Li H, Bai H, Cui H, Shi L. 1H NMR–based metabolomics reveals the antimicrobial action of oregano essential oil against Escherichia coli and Staphylococcus aureus in broth, milk, and beef. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Su R, Bai X, Liu X, Song L, Liu X, Zhan X, Guo D, Wang Y, Chang Y, Shi C. Antibacterial Mechanism of Eugenol Against Shigella sonnei and Its Antibacterial Application in Lettuce Juice. Foodborne Pathog Dis 2022; 19:779-786. [PMID: 36367551 DOI: 10.1089/fpd.2022.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shigella sonnei is a species of Shigella, and the infection rate of S. sonnei is increasing year by year. Eugenol is an active ingredient in clove essential oil and is a generally recognized as safe (GRAS)-certified food ingredient. The mechanism of inhibition of S. sonnei by eugenol has been investigated in this study. The minimum inhibitory concentration of eugenol against both S. sonnei ATCC 25931 and S. sonnei CMCC 51592 was 0.5 mg/mL and minimum bactericidal concentration (MBC) for both strains was 0.8 mg/mL. The inhibition effect of eugenol against S. sonnei was due to increased levels of reactive oxygen species in cells, changed cell membrane permeability, and induced cell membrane dysfunction, for instance, cell membrane hyperpolarization and intracellular ATP concentration drops. The results of confocal laser scanning microscope and field emission scanning electron microscopy showed that eugenol leads to decreased cell membrane integrity, resulting in changed cell morphology. Moreover, eugenol inactivated S. sonnei in Luria-Bertani (LB) broth and lettuce juice. These results indicated that eugenol could inactivate S. sonnei and has the potential to control S. sonnei in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Zhang Y, Wang F, Wu H, Fan L, Wang Y, Liu X, Zhang H. Sterilising effect of high power pulse microwave on Listeria monocytogenes. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present work, Listeria monocytogenes was used as the target strain to investigate the sterilising potential and mechanism of high power pulse microwave (HPPM). Results showed that the inactivation was positively correlated with the pulse frequencies and operating times. The count of Listeria monocytogenes was decreased by 5.09 log CFU/mL under 200 Hz for 9 min, which was used as the optimised condition to further explore the sterilisation mechanism. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the L. monocytogenes cells of untreated group presented intact surfaces, clear boundary, and its intracellular contents distributed uniformly in the cytoplasm. Following treatment, the cell wall surfaces began to deform in small areas, and cell membranes were severely ruptured, thus resulting in the appearance of electron transmission areas. Extracellular protein and nucleic acid contents, represented by OD260 nm and OD280 nm, increased with the increase in operating time significantly. After treatment, SDS-PAGE profiles of whole-cell proteins displayed that the protein bands became lighter or even disappeared. Na+ K+-ATPase activities and intracellular ATP content decreased by 72.97 and 79.09%, respectively. This was consistent with the cell viability of L. monocytogenes observed by confocal laser scanning microscopy. Overall, the sterilisation mechanism of HPPM on L. monocytogenes may be caused by membrane damage, intracellular component leakage, and energy metabolism hindrance.
Collapse
|
20
|
Comparison of Origanum Essential Oil Chemical Compounds and Their Antibacterial Activity against Cronobacter sakazakii. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196702. [PMID: 36235238 PMCID: PMC9571376 DOI: 10.3390/molecules27196702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Origanum vulgare L. (oregano) is an aromatic plant with wide applications in the food and pharmaceutical industries. Cronobacter sakazakii, which has a high detection rate in powdered infant formula, adversely impacts susceptible individuals. Oregano essential oil (OEO) is a natural antibacterial agent that can be used to fight bacterial contamination. Here, OEO chemical compounds from eight oregano varieties were analyzed by gas chromatography–mass spectrometry and their antibacterial properties were assessed. The eight OEOs were clustered into two groups and were more diverse in group 2 than in group 1. Six compounds, including p-cymene, 3-thujene, γ-terpinene, thymol, carvacrol, and caryophyllene, were shared by eight OEOs. Among the eight oregano varieties, OEOs from O. vulgare sc2 had the strongest antibacterial activity against C. sakazaki, with the inhibition zone of 18.22mm. OEOs from O. vulgare jx, O. ‘Nvying’, O. vulgare ‘Ehuang’, and O. vulgare ssp. virens were also potent. Moreover, the antibacterial activity of OEOs was positively correlated with the relative content of thymol. As the main OEO antibacterial compound, thymol affected the normal growth and metabolism of C. sakazakii cells by destroying the bacterial membrane and decreasing the intracellular ATP concentration. Thus, in light of the antibacterial activity detected in the OEOs from the eight oregano varieties, this study provides a theoretical foundation for oregano cultivar management and development.
Collapse
|
21
|
Posgay M, Greff B, Kapcsándi V, Lakatos E. Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review. Heliyon 2022; 8:e10812. [PMID: 36247140 PMCID: PMC9562244 DOI: 10.1016/j.heliyon.2022.e10812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023] Open
Abstract
Since foodborne diseases are often considered as one of the biggest public health threats worldwide, effective preservation strategies are needed to inhibit the growth of undesirable microorganisms in food commodities. Up to now, several techniques have been adopted for the production of safe and high-quality products. Although the traditional methods can improve the reliability, safety, and shelf-life of food, some of them cannot be applied without rising health concerns. Thereby, the addition of various phytochemicals has gained much attention during the last decades, especially for meat products that may be contaminated with pathogenic and spoilage organisms. Thyme (Thymus vulgaris L.), as an important medicinal and culinary herb, is a promising source of bioactive compounds that have a great impact on the microbiological stability of meat by suppressing the undesirable microflora. However, the use of these antimicrobials is still facing difficulties due to their aromatic properties and variable efficacy against targeted species. In this paper, we provide an overview on the potential effects of thyme essential oil (EO) and thymol as bio-preservative agents in meat products. Furthermore, this paper provides insights into the limitations and current challenges of the addition of EOs and their constituents to meat commodities and suggests viable solutions that can improve the applicability of these phytochemicals.
Collapse
Affiliation(s)
- Miklós Posgay
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Viktória Kapcsándi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
22
|
Wang L, Liu L, Liu Y, Wang F, Zhou X. Antimicrobial performance of novel glutathione-conjugated silver nanoclusters (GSH@AgNCs) against Escherichia coli and Staphylococcus aureus by membrane-damage and biofilm-inhibition mechanisms. Food Res Int 2022; 160:111680. [DOI: 10.1016/j.foodres.2022.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
|
23
|
Bacillus cereus in Dairy Products and Production Plants. Foods 2022; 11:foods11172572. [PMID: 36076758 PMCID: PMC9455733 DOI: 10.3390/foods11172572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Spore-forming Bacillus cereus is a common contaminant of dairy products. As the microorganism is widespread in the environment, it can contaminate milk at the time of milking, but it can also reach the dairy products in each phase of production, storage and ripening. Milk pasteurization treatment is not effective in reducing contamination and can instead act as an activator of spore germination, and a potential associated risk still exists with the consumption of some processed foods. Prevalences and concentrations of B. cereus in milk and dairy products are extremely variable worldwide: in pasteurized milk, prevalences from 2% to 65.3% were reported, with concentrations of up to 3 × 105 cfu/g, whereas prevalences in cheeses ranged from 0 to 95%, with concentrations of up to 4.2 × 106 cfu/g. Bacillus cereus is also well known to produce biofilms, a serious concern for the dairy industry, with up to 90% of spores that are resistant to cleaning and are easily transferred. As the contamination of raw materials is not completely avoidable, and the application of decontamination treatments is only possible for some ingredients and is limited by both commercial and regulatory reasons, it is clear that the correct application of hygienic procedures is extremely important in order to avoid and manage the circulation of B. cereus along the dairy supply chain. Future developments in interventions must consider the synergic application of different mild technologies to prevent biofilm formation and to remove or inactivate the microorganism on the equipment.
Collapse
|
24
|
Four temporin-derived peptides exhibit antimicrobial and antibiofilm activities against methicillin-resistant. Acta Biochim Biophys Sin (Shanghai) 2022; 54:350-360. [PMID: 35538042 PMCID: PMC9828137 DOI: 10.3724/abbs.2022013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Temporin-GHa (GHa) was cloned from , showing a weak antimicrobial activity. In order to improve its bactericidal efficacy, GHaR6R, GHaR7R, GHaR8R and GHaR9W were designed and synthesized. Compared to the parent peptide, the GHa-derived peptides show potent antimicrobial activities against methicillin-resistant (MRSA), which is the main pathogen with high morbidity and mortality that causes various infections in humans. These peptides exert bactericidal actions on MRSA by permeabilizing the cytoplasmic membranes and damaging membrane integrity. All of the four peptides exhibit excellent stability under harsh conditions, including extreme temperature and salts. Furthermore, they inhibit the formation of biofilm and eradicate mature biofilm of MRSA. The GHa-derived peptides decrease bacterial surface hydrophobicity, autoaggregation and polysaccharide intercellular adhesion synthesis in concentration-dependent manner. Real-time quantitative reverse transcription PCR analysis revealed that the peptides downregulate the expression of adhesion genes involved in biofilm formation. Except for GHaR7R, the other three peptides have low hemolytic toxicity against human erythrocytes. In the presence of human erythrocytes, GHaR7R, GHaR8R and GHaR9W interact with MRSA preferentially. GHaR6R, GHaR8R and GHaR9W show less toxicity toward normal cells HL-7702 and hFOB1.19. These results suggest that the GHa-derived peptides may be promising antimicrobial candidates against MRSA infections.
Collapse
|
25
|
Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Encapsulation of Tunisian thyme essential oil in O/W nanoemulsions: Application for meat preservation. Meat Sci 2022; 188:108785. [DOI: 10.1016/j.meatsci.2022.108785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
27
|
Wu M, Tian L, Fu J, Liao S, Li H, Gai Z, Gong G. Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Xu Z, Wu J, Dai S, Jiang Y, Zhang L. Antimicrobial activity of combined essential oils of
Origanum vulgare
L. and
Houttuynia cordata
T. against
Salmonella
Enteritidis and
Salmonella
Paratyphi β. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhihong Xu
- College of Science Xihua University Chengdu 610039 China
| | - Jinyong Wu
- College of Science Sichuan Agricultural University Ya’an 625014 China
| | - Shuang Dai
- College of Science Xihua University Chengdu 610039 China
| | - Yuanyuan Jiang
- College of Science Sichuan Agricultural University Ya’an 625014 China
| | - Li Zhang
- College of Science Sichuan Agricultural University Ya’an 625014 China
| |
Collapse
|
29
|
He Y, Sang S, Tang H, Ou C. In vitro
mechanism of antibacterial activity of eucalyptus essential oil against specific spoilage organisms in aquatic products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidan He
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Shangyuan Sang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| | - Haiqing Tang
- Department of Food Science Zhejiang Pharmaceutical Colleges Ningbo China
| | - Changrong Ou
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| |
Collapse
|
30
|
TABAN BMERCANOGLU, STAVROPOULOU E, WINKELSTRÖTER LKRETLI, BEZIRTZOGLOU E. Value-added effects of using aromatic plants in foods and human therapy. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.43121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Wang S, Deng H, Wang Y, Rui W, Zhao P, Yong Q, Guo D, Liu J, Guo X, Wang Y, Shi C. Antimicrobial Activity and Action Mechanism of Thymoquinone against Bacillus cereus and Its Spores. Foods 2021; 10:foods10123048. [PMID: 34945598 PMCID: PMC8701015 DOI: 10.3390/foods10123048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, thymoquinone (TQ), a natural active substance, was investigated for its antibacterial activity against Bacillus cereus, and its inhibitory effect on B. cereus in reconstituted infant formula (RIF) was evaluated. In addition, the inhibitory effect of TQ on B. cereus spore germination was explored. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of TQ against eight B. cereus strains ranged from 4.0 to 8.0 μg/mL, whereas B. cereus treated with TQ displayed a longer lag phase than the untreated control. TQ exerted a good bactericidal effect on B. cereus in Luria–Bertani broth. In addition, TQ obviously reduced the intracellular ATP concentration of B. cereus, which caused depolarization of the cell membrane, increased the intracellular reactive oxygen species level, impaired the cell morphology, and destroyed proteins or inhibited proteins synthesis. This provides a mechanism for its bacteriostatic effect. TQ also inactivated B. cereus growth in RIF. Moreover, reverse transcription–quantitative polymerase chain reaction illustrated that TQ downregulated the transcription of genes related to hemolysin, non-hemolytic enterotoxin, enterotoxin, and cytotoxin K. Meanwhile, TQ displayed the ability to inhibit the germination of B. cereus spores. These findings indicate that TQ, as an effective natural antimicrobial preservative, has potential applications in controlling food contamination and foodborne diseases caused by B. cereus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chao Shi
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
32
|
Hao Y, Li J, Shi L. A Carvacrol-Rich Essential Oil Extracted From Oregano ( Origanum vulgare "Hot & Spicy") Exerts Potent Antibacterial Effects Against Staphylococcus aureus. Front Microbiol 2021; 12:741861. [PMID: 34803958 PMCID: PMC8602913 DOI: 10.3389/fmicb.2021.741861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 01/16/2023] Open
Abstract
Oregano essential oil (OEO), as a natural antimicrobial, has gained increased interest from food researchers and manufacturers. However, a few studies have investigated its possible antibacterial effects against Staphylococcus aureus using the proteomic tool. The present study aimed to explore the antibacterial effect and mechanism of a carvacrol-rich OEO extracted from Origanum vulgare “Hot & Spicy” on the inactivation of S. aureus. The gas chromatography–mass spectrometry analysis of the OEO allowed the detection of 27 compounds; the major constituent was carvacrol (84.38% of total compounds). The average diameter of the inhibitory zone (DIZ) value was 29.10 mm, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of OEO against S. aureus were 0.125 and 0.25 mg/mL, respectively. The growth curve assay indicated that the OEO prolonged the lag phase of S. aureus. The decrease in cell viability, changes in the integrity of cell membrane, and abnormal cell morphology further reflected the cell damage of S. aureus caused by the OEO. In addition, a label-free proteomic analysis was applied to analyze the regulatory networks of S. aureus in response to 1/2 MIC OEO-treatment stress. Of the 56 differentially expressed proteins (DEPs) identified, 26 were significantly upregulated and 30 downregulated. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEPs were mainly involved in pathways of ribosomes; valine, leucine, and isoleucine biosynthesis; and phenylalanine, tyrosine, and tryptophan biosynthesis, which suggested that the growth inhibition of S. aureus might be due to the disordered effect of the OEO on protein synthesis and amino acid metabolism. These findings deepened our understanding regarding S. aureus survival and metabolism responses to the OEO treatment and suggested that the carvacrol-rich OEO could be used in food production environments to effectively control S. aureus.
Collapse
Affiliation(s)
- Yuanpeng Hao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Hao Y, Kang J, Yang R, Li H, Cui H, Bai H, Tsitsilin A, Li J, Shi L. Multidimensional exploration of essential oils generated via eight oregano cultivars: Compositions, chemodiversities, and antibacterial capacities. Food Chem 2021; 374:131629. [PMID: 34865929 DOI: 10.1016/j.foodchem.2021.131629] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022]
Abstract
Numerous species of Origanum (Lamiaceae) have been widely used as spices to extend the shelf life of foods. Essential oils extracted from this genus have attracted much attention owing to their potential applications as bactericides. Here, we evaluated the chemical compositions of eight oregano essential oils (OEOs) using gas chromatography-mass spectrometry and assessed their antibacterial activities. The chemical compositions of OEOs were affected by the cultivar factor, and seven common compounds, including carvacrol, were identified among eight OEOs. Partial least squares discriminant analysis enabled the distinction of three groups among these OEOs, as characterized by the proportions of carvacrol, thymol, and sesquiterpenes. OEOs effectively inhibited Escherichia coli and Staphylococcus aureus with varying antibacterial activities. Spearman correlation network highlighted core antibacterial contributors in the chemical profiles of OEOs. Our results revealed that the bacteriostatic effects of OEOs could be explained by core compounds and their synergistic effects.
Collapse
Affiliation(s)
- Yuanpeng Hao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiamu Kang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Rui Yang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Hongxia Cui
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Andrey Tsitsilin
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow 117216, Russia
| | - Jingyi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
34
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Han Q, Yan X, Zhang R, Wang G, Zhang Y. Juglone Inactivates Pseudomonas aeruginosa through Cell Membrane Damage, Biofilm Blockage, and Inhibition of Gene Expression. Molecules 2021; 26:molecules26195854. [PMID: 34641398 PMCID: PMC8510502 DOI: 10.3390/molecules26195854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the strong drug resistance of Pseudomonas aeruginosa (P. aeruginosa), the inhibition effects of conventional disinfectants and antibiotics are not obvious. Juglone extracted from discarded walnut husk, as a kind of plant-derived antimicrobial agent, has the advantages of naturalness, high efficiency, and low residue, with a potential role in the inhibition of P. aeruginosa. This study elucidated the inhibitory effect of juglone on the growth of plankton and the formation of P. aeruginosa biofilm. The results showed that juglone (35 μg/mL) had an irreversible inhibitory effect on P. aeruginosa colony formation (about 107 CFU/mL). The integrity and permeability of the cell membrane were effectively destroyed, accompanied by disorder of the membrane permeability, mass leakage of the cytoplasm, and ATP consumption. Further studies manifested that juglone could induce the abnormal accumulation of ROS in cells and block the formation of the cell membrane. In addition, RT-qPCR showed that juglone could effectively block the expression of five virulence genes and two genes involved in the production of extracellular polymers, thereby reducing the toxicity and infection of P. aeruginosa and preventing the production of extracellular polymers. This study can provide support for the innovation of antibacterial technology toward P. aeruginosa in food.
Collapse
Affiliation(s)
| | | | | | - Guoliang Wang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| | - Youlin Zhang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| |
Collapse
|
36
|
Antimicrobial Activity of Natural Plant Compound Carvacrol Against Soft Rot Disease Agent Dickeya zeae. Curr Microbiol 2021; 78:3453-3463. [PMID: 34263355 DOI: 10.1007/s00284-021-02609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Dickeya zeae is a globally important bacterial pathogen that has been reported to cause severe soft rot diseases in several essential food crops, including bananas, rice, maize, and potatoes. Carvacrol, a hydrophobic terpene component, is found in aromatic plants of the Labiatae family and various essential oils. However, little work has been done on its antimicrobial potential against D. zeae. This study aimed to evaluate the antimicrobial activity and the functional mechanism of carvacrol against D. zeae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against D. zeae were 0.1 mg/mL and 0.2 mg/mL, respectively. Carvacrol affected the cell membrane of D. zeae, as revealed by decreased intracellular ATP concentration, nucleic acid leakage, and decreased membrane potential. Scanning electron microscopy (SEM) micrographs confirmed that D. zeae cell membranes were damaged by carvacrol. Furthermore, a significant inhibition of D. zeae swimming motility and biofilm formation was observed following treatments with carvacrol at sub-inhibitory concentrations, indicating a significantly negative effect on these virulence factors. Accordingly, the tissue infection test revealed that carvacrol significantly reduced the pathogenicity of D. zeae. In a pot experiment, inoculated banana seedlings displayed remarkably lesser disease symptoms following treatment with carvacrol, and the control efficiency for banana soft rot was 32.0% at 14 days post-inoculation. To summarize, carvacrol exhibits strong antimicrobial activity against D. zeae and great potential applications in the control of D. zeae-associated crop diseases.
Collapse
|
37
|
Fan Q, Yuan Y, Jia H, Zeng X, Wang Z, Hu Z, Gao Z, Yue T. Antimicrobial and anti-biofilm activity of thymoquinone against Shigella flexneri. Appl Microbiol Biotechnol 2021; 105:4709-4718. [PMID: 34014346 DOI: 10.1007/s00253-021-11295-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Shigella flexneri (Sh. flexneri), a common foodborne pathogen, has become one of the main threats to food safety and human health due to its high pathogenicity and persistent infection. The objective of this study was to explore the antimicrobial and anti-biofilm activities and the possible mechanism of thymoquinone (TQ) against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of TQ against Sh. flexneri were 0.4 and 0.5 mg/mL, respectively. TQ showed bactericidal activity against Sh. flexneri in culture medium and milk system. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations demonstrated that TQ could induce abnormal cell morphology and destroy cell membrane. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis suggested that TQ could inhibit protein synthesis in Sh. flexneri. Also, at sub-inhibitory concentrations (SICs), TQ exhibited an inhibitory effect on Sh. flexneri biofilm formation, which was confirmed by crystal violet quantitative analysis and SEM observation. Real-time quantitative PCR (RT-qPCR) analyses revealed that TQ downregulated the expression of genes involved in Sh. flexneri biofilm formation. Thus, TQ has potential as a natural antimicrobial and anti-biofilm agent to address the contamination and infection caused by Sh. flexneri. KEY POINTS: • Antimicrobial and anti-biofilm activity of TQ on Shigella flexneri were investigated. • TQ inhibited biofilm formation by Shigella flexneri. • TQ provided a new strategy for Shigella flexneri control.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China. .,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China. .,College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
38
|
Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Alam A, Rehman NU, Ansari MN, Palla AH. Effects of Essential Oils of Elettaria cardamomum Grown in India and Guatemala on Gram-Negative Bacteria and Gastrointestinal Disorders. Molecules 2021; 26:molecules26092546. [PMID: 33925478 PMCID: PMC8123808 DOI: 10.3390/molecules26092546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The present study examined the chemical composition and antimicrobial and gastrointestinal activity of the essential oils of Elettaria cardamomum (L.) Maton harvested in India (EC-I) and Guatemala (EC-G). Monoterpenes were present in higher concentration in EC-I (83.24%) than in EC-G (73.03%), whereas sesquiterpenes were present in a higher concentration in EC-G (18.35%) than in EC-I (9.27%). Minimum inhibitory concentrations (MICs) of 0.5 and 0.25 mg/mL were demonstrated against Pseudomonas aeruginosa in EC-G and EC-I, respectively, whereas MICs of 1 and 0.5 mg/mL were demonstrated against Escherichia coli in EC-G and EC-I, respectively. The treatment with control had the highest kill-time potential, whereas the treatment with oils had shorter kill-time. EC-I was observed to be more potent in the castor oil-induced diarrhea model than EC-G. At 100 and 200 mg/kg, P.O., EC-I exhibited 40% and 80% protection, respectively, and EC-G exhibited 20% and 60% protection, respectively, in mice, whereas loperamide (10 mg/kg, i.p., positive control) exhibited 100% protection. In the in vitro experiments, EC-I inhibited both carbachol (CCh, 1 µM) and high K+ (80 mM)-induced contractions at significantly lower concentrations than EC-G. Thus, EC-I significantly inhibited P. aeruginosa and E. coli and exhibited more potent antidiarrheal and antispasmodic effects than EC-G.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: ; Tel.: +966-509790901
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.U.R.); (M.N.A.)
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.U.R.); (M.N.A.)
| | - Amber Hanif Palla
- Department of Basic Medical Sciences (Pharmacology), Salim Habib University, Deh Dih, Korangi Creek, Karachi 74900, Pakistan;
| |
Collapse
|
40
|
Recombinant Paraprobiotics as a New Paradigm for Treating Gastrointestinal Nematode Parasites of Humans. Antimicrob Agents Chemother 2021; 65:AAC.01469-20. [PMID: 33318013 PMCID: PMC8092541 DOI: 10.1128/aac.01469-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. However, benzimidazole efficacy against GINs is suboptimal, and reduced/low efficacy has been seen. Developing an anthelmintic for human MDA is daunting: it must be safe, effective, inexpensive, stable without a cold chain, and massively scalable. Bacillus thuringiensis crystal protein 5B (Cry5B) has anthelmintic properties that could fill this void. Here, we developed an active pharmaceutical ingredient (API) containing B. thuringiensis Cry5B compatible with MDA. We expressed Cry5B in asporogenous B. thuringiensis during vegetative phase, forming cytosolic crystals. These bacteria with cytosolic crystals (BaCC) were rendered inviable (inactivated BaCC [IBaCC]) with food-grade essential oils. IBaCC potency was validated in vitro against nematodes. IBaCC was also potent in vivo against human hookworm infections in hamsters. IBaCC production was successfully scaled to 350 liters at a contract manufacturing facility. A simple fit-for-purpose formulation to protect against stomach digestion and powdered IBaCC were successfully made and used against GINs in hamsters and mice. A pilot histopathology study and blood chemistry workup showed that five daily consecutive doses of 200 mg/kg body weight Cry5B IBaCC (the curative single dose is 40 mg/kg) was nontoxic to hamsters and completely safe. IBaCC is a safe, inexpensive, highly effective, easy-to-manufacture, and scalable anthelmintic that is practical for MDA and represents a new paradigm for treating human GINs.
Collapse
|
41
|
Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110354] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Wang L, Zhang K, Zhang K, Zhang J, Fu J, Li J, Wang G, Qiu Z, Wang X, Li J. Antibacterial Activity of Cinnamomum camphora Essential Oil on Escherichia coli During Planktonic Growth and Biofilm Formation. Front Microbiol 2020; 11:561002. [PMID: 33304322 PMCID: PMC7693543 DOI: 10.3389/fmicb.2020.561002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial biofilms are believed to be principal virulence factors for many localized chronic infectious diseases. Escherichia coli is one of the most common microbial pathogens and frequently causes biofilm-associated opportunistic infections, such as diarrhea, endometritis and mastitis. Cinnamomum camphora essential oil (CCEO) has shown potential in treating intractable chronic endometritis in dairy cows. There is little scientific evidence regarding the effect of CCEO on bacterial biofilms. The objective of this study was to investigate the effect of CCEO on E. coli biofilm formation and how CCEO affects E. coli in suspension and in a biofilm. CCEO killed all clinical E. coli strains in either planktonic or biofilm state isolated from dairy cows with clinical endometritis. The minimum inhibitory concentration (MIC) for 90% of the organisms was 4.297 μL/mL, the minimum bactericidal concentration for 90% of the organisms was 6.378 μL/mL, the minimum biofilm inhibitory concentration for 90% of the organisms was 6.850 μL/mL, and the minimum biofilm eradication concentration (MBEC) for 90% of the organisms was 8.467 μL/mL. The MBECs were generally two times higher than the MICs. Flow cytometry analysis confirmed that significant bacterial killing occurred during the first 1 h after exposure to subinhibitory concentrations of CCEO. In addition, CCEO exerted a significant inhibitory effect on E. coli biofilm formation, and bacterial killing occurred during the first 30 min of exposure to subinhibitory biofilm concentrations of CCEO. The biofilm yield of E. coli was significantly reduced after CCEO treatment, along with an increased dead/live microbial ratio in biofilms compared with that in the non-treated control, as confirmed by scanning electron microscopy images and confocal laser scanning microscopy images. These data revealed that CCEO efficiently kills E. coli during planktonic growth and biofilm formation.
Collapse
Affiliation(s)
- Lei Wang
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kang Zhang
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kai Zhang
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingyan Zhang
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Fu
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Li
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guibo Wang
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengying Qiu
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Wang
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxi Li
- Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine, Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
43
|
Liu T, Liu L. Fabrication and characterization of chitosan nanoemulsions loading thymol or thyme essential oil for the preservation of refrigerated pork. Int J Biol Macromol 2020; 162:1509-1515. [DOI: 10.1016/j.ijbiomac.2020.07.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
|
44
|
Antibacterial Effects and Mechanism of Mandarin ( Citrus reticulata L.) Essential Oil against Staphylococcus aureus. Molecules 2020; 25:molecules25214956. [PMID: 33114746 PMCID: PMC7663016 DOI: 10.3390/molecules25214956] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) creates an array of challenges for the food industry and causes foodborne diseases in people, largely due to its strong antibiotic resistance. Mandarin (Citrus reticulata L.) essential oil (MEO) is recognized as a natural and safe preservative; however, the antibacterial effects and mechanism of MEO to combat S. aureus are not yet clearly understood. This study will examine the inhibitory effects of MEO against S. aureus and explore the antibacterial mechanism thereof from the perspective of membrane destruction. The antibacterial activity of MEO on planktonic S. aureus was examined to determine the minimal inhibitory concentration (MIC). Scanning electron microscope (SEM) images revealed the direct impacts of MEO treatment on the cell structure of S. aureus. The cell membrane was observed to be depolarized, the determination of extracellular nucleic acids, proteins and intracellular adenosine triphosphate (ATP) confirmed the increased permeability of the cell membrane, its integrity was destroyed and the cellular constituents had leaked. These results, thus, provided conclusive evidence that MEO constrains the growth of planktonic S. aureus by affecting the permeability and integrity of its cell membrane. Our study provides a basis for the further development and utilization of MEO as a natural antibacterial agent in the food industry.
Collapse
|
45
|
Kang J, Liu L, Liu Y, Wang X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7121-7131. [PMID: 32588628 DOI: 10.1021/acs.jafc.0c01901] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance and capacity for biofilm formation of Shigella flexneri render previous prevention and control strategies minimally effective. Ferulic acid (FA) has been demonstrated to be useful due to its application in foods as an alternative natural preservative. However, information regarding the S. flexneri phenotype and molecular responses to FA exposure is limited. The present study investigated the effects of FA on S. flexneri planktonic growth and biofilm formation. The results demonstrated that the cell membrane of S. flexneri in planktonic growth mode exhibited irreversible destruction after FA exposure, as characterized by decreased cell viability, leakage of cytoplasmic constituents, accelerated adenosine triphosphate (ATP) consumption, cell membrane depolarization, and cellular morphological changes. FA significantly inhibited S. flexneri adhesion and biofilm formation at a working concentration (1/8 MIC) that almost did not inhibit planktonic growth. Transcriptomics profiling showed that the exposure to a subinhibitory concentration of FA dramatically altered gene expression in the S. flexneri biofilm, as a total of 169 differentially expressed genes (DEGs) were upregulated and 533 DEGs were downregulated, compared to the intact biofilm. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly involved in pathways of ribosomes, ABC transporters, and the citrate cycle. Furthermore, we show that FA altered the transcription of S. flexneri genes associated with adhesion, transcriptional regulation, and the synthesis and transport of extracellular polymeric substances that contribute to biofilm formation. These data provide novel insights into S. flexneri behavioral responses to FA exposure and suggest that FA could effectively constrain S. flexneri and its biofilm formation.
Collapse
Affiliation(s)
- Jiamu Kang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
46
|
Liu T, Wang J, Gong X, Wu X, Liu L, Chi F. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro against Staphylococcus aureus and Escherichia coli. J Food Prot 2020; 83:1261-1267. [PMID: 32577759 DOI: 10.4315/0362-028x.jfp-19-337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography-mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS
Collapse
Affiliation(s)
- Ting Liu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Jingfan Wang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xiaoman Gong
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xiaoxia Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Liu Liu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Fumin Chi
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, People's Republic of China
| |
Collapse
|
47
|
Che J, Chen X, Ouyang Q, Tao N. p-Anisaldehyde Exerts Its Antifungal Activity Against Penicillium digitatum and Penicillium italicum by Disrupting the Cell Wall Integrity and Membrane Permeability. J Microbiol Biotechnol 2020; 30:878-884. [PMID: 32160698 PMCID: PMC9728335 DOI: 10.4014/jmb.1911.11032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
Penicillium digitatum and P. italicum are the two important postharvest pathogens in citrus, causing about 90% of the total loss of citrus fruit during storage and transportation. Natural fungicides such as essential oils have been widely used instead of chemical fungicides for preventing and controlling postharvest diseases. In this research, p-anisaldehyde exhibited a strong inhibitory effect on P. digitatum and P. italicum, with the minimum inhibitory concentration and minimum fungicidal concentration values of both being 2.00 μl/ml. Additionally, p-anisaldehyde visibly inhibited both the green mold and blue mold development of citrus fruits inoculated with P. digitatum and P. italicum. The mycelia morphologies of these pathogens were greatly altered, and the membrane permeability and cell wall integrity of mycelia were severely disrupted under p-anisaldehyde treatment. These results suggest that the antifungal activity of p-anisaldehyde against P. digitatum and P. italicum can be attributed to the disruption of the cell wall integrity.
Collapse
Affiliation(s)
- Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan 405, Hunan, P.R. China,Postdoctoral Station of Chemical Engineering and Technology, Xiangtan University, Xiangtan 411105, Hunan, P.R. China
| | - Xiumei Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 405, Hunan, P.R. China
| | - Qiuli Ouyang
- School of Chemical Engineering, Xiangtan University, Xiangtan 405, Hunan, P.R. China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 405, Hunan, P.R. China,Corresponding author Phone: +86-731-58298173 Fax: +86-731-58293549 E-mail:
| |
Collapse
|
48
|
Du B, Gu Y, Chen G, Wang G, Liu L. Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110340. [PMID: 32135377 DOI: 10.1016/j.ecoenv.2020.110340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Flagellar motility enables resource acquisition and noxious substance evasion, underpinning imperative ecological processes in aquatic environments. Yet the underlying mechanism that links flagellar motility with surface attachment and thereby biofilm formation, especially in conditions of limited resource availability, remains elusive. Here, we present experimental and modeling evidence to unveil bacterial motility and biofilm formation under nutrient-limited stresses with Pseudomonas aeruginosa (WT) and its nonflagellated isogenic mutant (ΔfliC) as model bacteria. Results revealed that boosted flagellar motility of WT strain promoted biofilm initialization to a peak value of 0.99 × 107 cells/cm2 at 1/50 dilution after 20 min incubation. We hypothesized that bacteria can invoke instant motility acceleration for survival confronting nutrient-limited stress, accompanied by optimized chemotactic foraging through sensing ambient chemical gradients. Accordingly, accelerated cell motility in oligotrophic environment created increased cell-cell and cell-surface interactions and thereof facilitated biofilm initialization. It was confirmed by the consistence of modeling predictions and experimental results of cell velocity and surface attachment. With the development of biofilm, promotion effect of flagellar motility responding to nutrient deprivation-stress faded out. Instead, loss of motility profiting increased growth rates and extracellular protein excretion, associated with an enhancement of biofilm development for the mutant in oligotrophic aquatic environment. For both strains, nutrient limitation evidently reduced planktonic cell propagation as expected. Our results offer new insights into the mechanical understanding of biofilm formation shaped by environmental stresses and associating biological responses.
Collapse
Affiliation(s)
- Bang Du
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Gu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
49
|
Bezerra Filho CM, da Silva LCN, da Silva MV, Løbner-Olesen A, Struve C, Krogfelt KA, Correia MTDS, Vilela Oliva ML. Antimicrobial and Antivirulence Action of Eugenia brejoensis Essential Oil in vitro and in vivo Invertebrate Models. Front Microbiol 2020; 11:424. [PMID: 32265869 PMCID: PMC7096383 DOI: 10.3389/fmicb.2020.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
Eugenia brejoensis L. (Myrtaceae) is an endemic plant from caatinga ecosystem (brazilian semi-arid) which have an E. brejoensis essential oil (EbEO) with reported antimicrobial activity. In this work, in vitro and in vivo models were used to characterize the inhibitory effects of EbEO in relation to Staphylococcus aureus. EbEO inhibited the growth of all tested S. aureus strains (including multidrug resistance isolates) with values ranging from 8 to 516 μg/mL. EbEO also synergistically increased the action of ampicillim, chloramphenicol, and kanamycin. The treatment with subinhibitory concentrations (Sub-MIC) of EbEO decreased S. aureus hemolytic activity and its ability to survive in human blood. EbEO strongly reduced the levels of staphyloxanthin (STX), an effect related to increased susceptibility of S. aureus to hydrogen peroxide. The efficacy of EbEO against S. aureus was further demonstrated using Caenorhabditis elegans and Galleria mellonella. EbEO increased the lifespan of both organisms infected by S. aureus, reducing the bacterial load. In addition, EbEO reduced the severity of S. aureus infection in G. mellonella, as shown by lower levels of melanin production in those larvae. In summary, our data suggest that EbEO is a potential source of lead molecules for development of new therapeutic alternatives against S. aureus.
Collapse
Affiliation(s)
- Clovis Macêdo Bezerra Filho
- Biochemistry Department, Federal University of Pernambuco, Recife, Brazil.,Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
50
|
Napoli E, Siracusa L, Ruberto G. New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family. Chem Biodivers 2020; 17:e1900677. [PMID: 31967708 DOI: 10.1002/cbdv.201900677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lamiaceae is one of the largest families of flowering plants comprising about 250 genera and over 7,000 species. Most of the plants of this family are aromatic and therefore important source of essential oils. Lamiaceae are widely used as culinary herbs and reported as medicinal plants in several folk traditions. In the Mediterranean area oregano, sage, rosemary, thyme and lavender stand out for geographical diffusion and variety of uses. The aim of this review is to provide recent data dealing with the phytochemical and pharmacological studies, and the more recent applications of the essential oils and the non-volatile phytocomplexes. This literature survey suggests how the deeper understanding of biomolecular processes in the health and food sectors as per as pest control bioremediation of cultural heritage, or interaction with human microbiome, fields, leads to the rediscovery and new potential applications of well-known plants.
Collapse
Affiliation(s)
- Edoardo Napoli
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Laura Siracusa
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Giuseppe Ruberto
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| |
Collapse
|