1
|
Chen Y, Sun H, Chen H, Wu J, Huang J, Jiang X, Qin L. Enhancing cellulase production in Neurospora crassa through combined deletion of the phospholipase D-encoding gene pla-7 and modulation of transcription factor CLR-2 expression. Int J Biol Macromol 2025; 307:141944. [PMID: 40074114 DOI: 10.1016/j.ijbiomac.2025.141944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Neurospora crassa, a saprophytic fungus, naturally secretes plant cell wall-degrading enzymes, demonstrating strong cellulases production. Despite its century-long use as a model organism, its industrial applications are underexplored. We compared N. crassa with Trichoderma reesei, an industrial workhorse, for cellulases production and lignocellulose degradation. The extracellular protein secretion level of N. crassa WT is significantly higher than that of T. reesei QM6a, indicating industrial potential. However, its mycelial morphology and dependence on insoluble substrates like lignocellulose pose bioreactor challenges. Deleting the phospholipase D gene pla-7 in N. crassa resulted in shorter aerial hyphae, increased branching, and improved biomass on sucrose. Although pla-7 deletion hindered cellulase induction on cellulose in shake flasks, mis-expressing clr-2 restored cellulase production in Δpla-7 strains. Additionally, protein secretion levels in Δpla-7::Mclr-2 strains were approximately doubled on both sucrose and cellulose carbon sources compared to WT::Mclr-2 strains in shake flasks. Furthermore, Δpla-7::Mclr-2 strains demonstrated enhanced fermentation properties in bioreactors using sucrose. These results highlight N. crassa' s industrial promise and provide insights for enhancing production of cellulases in other fungi.
Collapse
Affiliation(s)
- Yifan Chen
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Haowen Sun
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Huizhen Chen
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Jiaming Wu
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Jianzhong Huang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Xianzhang Jiang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China.
| | - Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
2
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Guo X, Jiang L, An Y, Lu F, Liu F, Wang B. Construction and characterization of a Myceliophthora thermophila lytic polysaccharide monooxygenase mutant S174C/A93C with improved thermostability. Enzyme Microb Technol 2023; 168:110255. [PMID: 37178549 DOI: 10.1016/j.enzmictec.2023.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can oxidatively cleave the glycosidic bonds of crystalline polysaccharides, providing more accessible sites for polysaccharide hydrolases and promoting efficient conversion of biomass. In order to promote industrial applications of LPMOs, the stability of an LPMO of Myceliophthora thermophila C1 (MtC1LPMO) was improved by adding disulfide bonds in this study. Firstly, the structural changes of wild-type (WT) MtC1LPMO at different temperatures were explored using molecular dynamics simulations, and eight mutants were selected by combining the predicted results from Disulfide by Design (DBD), Multi agent stability prediction upon point mutations (Maestro) and Bridge disulfide (BridgeD) websites. Then, the enzymatic properties of the different mutants were determined after their expression and purification, and the mutant S174C/A93C with the highest thermal stability was obtained. The specific activities of unheated S174C/A93C and WT were 160.6 ± 1.7 U/g and 174.8 ± 7.5 U/g, respectively, while those of S174C/A93C and WT treated at 70 °C for 4 h were 77.7 ± 3.4 U/g and 46.1 ± 0.4 U/g, respectively. The transition midpoint temperature of S174C/A93C was 2.7 °C higher than that of WT. The conversion efficiency of S174C/A93C for both microcrystalline cellulose and corn straw was about 1.5 times higher than that of WT. Finally, molecular dynamics simulations revealed that the introduction of disulfide bonds increased the β-sheet content of the H1-E34 region, thus improving the rigidity of the protein. Therefore, the overall structural stability of S174C/A93C was improved, which in turn improved its thermal stability.
Collapse
Affiliation(s)
- Xiao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Yajing An
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
4
|
Liu Y, Ma W, Fang X. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases. Int J Mol Sci 2023; 24:ijms24098300. [PMID: 37176008 PMCID: PMC10179388 DOI: 10.3390/ijms24098300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
AA9 lytic polysaccharide monooxygenases (LPMOs) are copper-dependent metalloenzymes that play a major role in cellulose degradation and plant infection. Understanding the AA9 LPMO mechanism would facilitate the improvement of plant pathogen control and the industrial application of LPMOs. Herein, via point mutation, we investigated the role of glycine 2 residue in cellulose degradation by Thermoascus aurantiacus AA9 LPMOs (TaAA9). A computational simulation showed that increasing the steric properties of this residue by replacing glycine with threonine or tyrosine altered the H-bonding network of the copper center and copper coordination geometry, decreased the surface charge of the catalytic center, weakened the TaAA9-substrate interaction, and enhanced TaAA9-product binding. Compared with wild-type TaAA9, G2T-TaAA9 and G2Y-TaAA9 variants showed attenuated copper affinity, reduced oxidative product diversity and decreased substrate Avicel binding, as determined using ITC, MALDI-TOF/TOF MS and cellulose binding analyses, respectively. Consistently, the enzymatic activity and synergy with cellulase of the G2T-TaAA9 and G2Y-TaAA9 variants were lower than those of TaAA9. Hence, the investigated residue crucially affects the catalytic activity of AA9 LPMOs, and we propose that the electropositivity of copper may correlate with AA9 LPMO activity. Thus, the relationship among the amino acid at position 2, surface charge and catalytic activity may facilitate an understanding of the proteins in AA9 LPMOs.
Collapse
Affiliation(s)
- Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Sun XB, Gao DY, Cao JW, Liu Y, Rong ZT, Wang JK, Wang Q. BsLPMO10A from Bacillus subtilis boosts the depolymerization of diverse polysaccharides linked via β-1,4-glycosidic bonds. Int J Biol Macromol 2023; 230:123133. [PMID: 36621733 DOI: 10.1016/j.ijbiomac.2023.123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is known as an oxidatively cleaving enzyme in recalcitrant polysaccharide deconstruction. Herein, we report a novel AA10 LPMO derived from Bacillus subtilis (BsLPMO10A). A substrate specificity study revealed that the enzyme exhibited an extensive active-substrate spectrum, particularly for polysaccharides linked via β-1,4 glycosidic bonds, such as β-(Man1 → 4Man), β-(Glc1 → 4Glc) and β-(Xyl1 → 4Xyl). HPAEC-PAD and MALDI-TOF-MS analyses indicated that BsLPMO10A dominantly liberated native oligosaccharides with a degree of polymerization (DP) of 3-6 and C1-oxidized oligosaccharides ranging from DP3ox to DP6ox from mixed linkage glucans and beechwood xylan. Due to its synergistic action with a variety of glycoside hydrolases, including glucanase IDSGLUC5-38, xylanase TfXYN11-1, cellulase IDSGLUC5-11 and chitinase BtCHI18-1, BsLPMO10A dramatically accelerated glucan, xylan, cellulose and chitin saccharification. After co-reaction for 72 h, the reducing sugars in Icelandic moss lichenan, beechwood xylan, phosphoric acid swollen cellulose and chitin yielded 3176 ± 97, 7436 ± 165, 649 ± 44, and 2604 ± 130 μmol/L, which were 1.47-, 1.56-, 1.44- and 1.25-fold higher than those in the GHs alone groups, respectively (P < 0.001). In addition, the synergy of BsLPMO10A and GHs was further validated by the degradation of natural feedstuffs, the co-operation of BsLPMO10A and GHs released 3266 ± 182 and 1725 ± 107 μmol/L of reducing sugars from Oryza sativa L. and Arachis hypogaea L. straws, respectively, which were significantly higher than those produced by GHs alone (P < 0.001). Furthermore, BsLPMO10A also accelerated the liberation of reducing sugars from Celluclast® 1.5 L, a commercial cellulase cocktail, on filter paper, A. hypogaea L. and O. sativa L. straws by 49.58 % (P < 0.05), 72.19 % (P < 0.001) and 54.36 % (P < 0.05), respectively. This work has characterized BsLPMO10A with a broad active-substrate scope, providing a promising candidate for lignocellulosic biomass biorefinery.
Collapse
Affiliation(s)
- Xiao-Bao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - De-Ying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Wen Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou-Ting Rong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Guo X, An Y, Liu F, Lu F, Wang B. Lytic polysaccharide monooxygenase - A new driving force for lignocellulosic biomass degradation. BIORESOURCE TECHNOLOGY 2022; 362:127803. [PMID: 35995343 DOI: 10.1016/j.biortech.2022.127803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can catalyze polysaccharides by oxidative cleavage of glycosidic bonds and have catalytic activity for cellulose, hemicellulose, chitin, starch and pectin, thus playing an important role in the biomass conversion of lignocellulose. The catalytic substrates of LPMOs are different and the specific catalytic mechanism has not been fully elucidated. Although there have been many studies related to LPMOs, few have actually been put into industrial biomass conversion, which poses a challenge for their expression, regulation and application. In this review, the origin, substrate specificity, structural features, and the relationship between structure and function of LPMOs are described. Additionally, the catalytic mechanism and electron donor of LPMOs and their heterologous expression and regulation are discussed. Finally, the synergistic degradation of biomass by LPMOs with other polysaccharide hydrolases is reviewed, and their current problems and future research directions are pointed out.
Collapse
Affiliation(s)
- Xiao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Yajing An
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
7
|
Antoniêto ACC, Nogueira KMV, Mendes V, Maués DB, Oshiquiri LH, Zenaide-Neto H, de Paula RG, Gaffey J, Tabatabaei M, Gupta VK, Silva RN. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Int J Biol Macromol 2022; 221:456-471. [PMID: 36070819 DOI: 10.1016/j.ijbiomac.2022.08.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Vanessa Mendes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Hermano Zenaide-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES 29047-105, Brazil
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland; BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
8
|
Moon M, Lee JP, Park GW, Lee JS, Park HJ, Min K. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 359:127501. [PMID: 35753567 DOI: 10.1016/j.biortech.2022.127501] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Given that traditional biorefineries have been based on microbial fermentation to produce useful fuels, materials, and chemicals as metabolites, saccharification is an important step to obtain fermentable sugars from biomass. It is well-known that glycosidic hydrolases (GHs) are responsible for the saccharification of recalcitrant polysaccharides through hydrolysis, but the discovery of lytic polysaccharide monooxygenase (LPMO), which is a kind of oxidative enzyme involved in cleaving polysaccharides and boosting GH performance, has profoundly changed the understanding of enzyme-based saccharification. This review briefly introduces the classification, structural information, and catalytic mechanism of LPMOs. In addition to recombinant expression strategies, synergistic effects with GH are comprehensively discussed. Challenges and perspectives for LPMO-based saccharification on a large scale are also briefly mentioned. Ultimately, this review can provide insights for constructing an economically viable lignocellulose-based biorefinery system and a closed-carbon loop to cope with climate change.
Collapse
Affiliation(s)
- Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
9
|
Luo X, Li R, Feng JX, Qin X. Disruption of vacuolar protein sorting receptor gene Poxvps10 improves cellulolytic enzyme production by Penicillium oxalicum. Enzyme Microb Technol 2022; 160:110098. [PMID: 35863188 DOI: 10.1016/j.enzmictec.2022.110098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Penicillium oxalicum can secrete numerous of plant biomass-degrading enzymes, but limited information is available regarding the mechanisms associated with their secretion. In the Golgi-to-vacuole pathway, the type I transmembrane receptor Vps10p is involved in the sorting of the soluble vacuolar proteins and can also target recombinant and aberrant proteins from the Golgi to the vacuole for degradation. Here, we used the combination of phenotypic characterization and comparative secretome analysis to explore the effect of disruption of the vps10 gene in P. oxalicum (Poxvps10) on endogenous cellulolytic enzyme secretion. The study found that PoxVps10p is required for the targeting and delivery of vacuolar PoxCpyA to the vacuole in P. oxalicum. Poxvps10p deletion enhances extracellular protein and cellulase production by P. oxalicum when the cells are grown on a cellulosic substrate (wheat bran and Avicel). Furthermore, secretome analysis revealed higher relative amount of cellulases, lytic polysaccharide monooxygenase and post-translational modification-related proteins in the ΔPoxvps10 mutant than in the wild-type (WT) strain, which may explain the higher cellulase production by the ΔPoxvps10 than the WT strain. This study thus provides a new target for manipulating the secretory pathway to enhance the cellulolytic enzyme production.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ruijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiulin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
10
|
Li F, Liu Y, Liu Y, Li Y, Yu H. Heterologous expression and characterization of a novel lytic polysaccharide monooxygenase from Natrialbaceae archaeon and its application for chitin biodegradation. BIORESOURCE TECHNOLOGY 2022; 354:127174. [PMID: 35436543 DOI: 10.1016/j.biortech.2022.127174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Lytic polysaccharide monooxygenases could enhance the enzymatic conversion of recalcitrant polysaccharides by glycoside hydrolases. This study reports the expression and identification of a novel AA10 LPMO from Natrialbaceae archaeon, named NaLPMO10A, as a C1 oxidizer of chitin. The optimal temperature and pH for NaLPMO10A activity were 40 °C and 9.0, respectively, and NaLPMO10A exhibited high thermostability and pH stability under alkaline conditions. NaLPMO10A was also highly tolerant and stable when treated with high concentration of metal ions (1 M). Moreover, metal ions (Na+, K+, Ca2+ and Mg2+) significantly promoted NaLPMO10A activity and improved the saccharification efficiency of chitin by 22.6%, 45.9%, 36.7% and 53.9%, respectively, compared to commercial chitinase alone. Together, the findings of this study fill a gap in archaeal LPMO research, and for the first time demonstrate that archaeal NaLPMO10A could be a promising enzyme for improving saccharification under extreme condition, with potential applications in biorefineries.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanjun Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Liu N, Yu W, Guo X, Chen J, Xia D, Yu J, Li D. Oxidative cleavage of cellulose in the horse gut. Microb Cell Fact 2022; 21:38. [PMID: 35279161 PMCID: PMC8917663 DOI: 10.1186/s12934-022-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lytic polysaccharide monooxygenases (LPMOs) belonging to the auxiliary activity 9 family (AA9) are widely found in aerobic fungi. These enzymes are O2-dependent copper oxidoreductases that catalyze the oxidative cleavage of cellulose. However, studies that have investigated AA9 LPMOs of aerobic fungi in the herbivore gut are scare. To date, whether oxidative cleavage of cellulose occurs in the herbivore gut is unknown.
Results
We report for the first time experimental evidence that AA9 LPMOs from aerobic thermophilic fungi catalyze the oxidative cleavage of cellulose present in the horse gut to C1-oxidized cellulose and C1- and C4-oxidized cello-oligosaccharides. We isolated and identified three thermophilic fungi and measured their growth and AA9 LPMO expression at 37 °C in vitro. We also assessed the expression and the presence of AA9 LPMOs from thermophilic fungi in situ. Finally, we used two recombinant AA9 LPMOs and a native AA9 LPMO from thermophilic fungi to cleave cellulose to yield C1-oxidized products at 37 °C in vitro.
Conclusions
The oxidative cleavage of cellulose occurs in the horse gut. This finding will broaden the known the biological functions of the ubiquitous LPMOs and aid in determining biological significance of aerobic thermophilic fungi.
Collapse
|
12
|
Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol Res 2022; 259:127011. [DOI: 10.1016/j.micres.2022.127011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
|
13
|
Karnaouri A, Chorozian K, Zouraris D, Karantonis A, Topakas E, Rova U, Christakopoulos P. Lytic polysaccharide monooxygenases as powerful tools in enzymatically assisted preparation of nano-scaled cellulose from lignocellulose: A review. BIORESOURCE TECHNOLOGY 2022; 345:126491. [PMID: 34871721 DOI: 10.1016/j.biortech.2021.126491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Nanocellulose, either in the form of fibers or crystals, constitutes a renewable, biobased, biocompatible material with advantageous mechanical properties that can be isolated from lignocellulosic biomass. Enzyme-assisted isolation of nanocellulose is an attractive, environmentally friendly approach that leads to products of higher quality compared to their chemically prepared counterparts. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively cleave the β-1,4-glycosidic bond of polysaccharides upon activation of O2 or H2O2 and presence of an electron donor. Their use for treatment of cellulose fibers towards the preparation of nano-scaled cellulose is related to the ability of LPMOs to create nicking points on the fiber surface, thus facilitating fiber disruption and separation. The aim of this review is to describe the mode of action of LPMOs on cellulose fibers towards the isolation of nanostructures, thus highlighting their great potential for the production of nanocellulose as a novel value added product from lignocellulose.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Koar Chorozian
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Dimitrios Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | - Antonis Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
14
|
Purification and Structural Characterization of the Auxiliary Activity 9 Native Lytic Polysaccharide Monooxygenase from Thermoascus aurantiacus and Identification of Its C1- and C4-Oxidized Reaction Products. Catalysts 2022. [DOI: 10.3390/catal12020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) are copper-dependent oxidoreductases that use O2 or H2O2 to perform oxidative cleavage of cellulose in the presence of an electron donor. Combined with cellulases, they can assist in a more efficient cleavage of cellulose. AA9 LPMOs have therefore attracted considerable attention in recent years for use in biotechnological applications. Here, a native AA9 LPMO (nTaAA9A) from the thermophilic fungus Thermoascus aurantiacus was purified and characterized. The enzyme was shown to be active and able to cleave cellulose and xylan to produce C1- and C4-oxidized products. It was also found to retain about 84.3, 63.7, and 35.3% of its activity after incubation for 30 min at 60, 70, and 80 °C, respectively, using quantitative activity determination. The structure was determined to 1.36 Å resolution and compared with that of the recombinant enzyme expressed in Aspergillus oryzae. Structural differences in the glycosylated Asn138 and in solvent-exposed loops were identified.
Collapse
|
15
|
Méndez-Líter JA, Ayuso-Fernández I, Csarman F, de Eugenio LI, Míguez N, Plou FJ, Prieto A, Ludwig R, Martínez MJ. Lytic Polysaccharide Monooxygenase from Talaromyces amestolkiae with an Enigmatic Linker-like Region: The Role of This Enzyme on Cellulose Saccharification. Int J Mol Sci 2021; 22:13611. [PMID: 34948409 PMCID: PMC8703934 DOI: 10.3390/ijms222413611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
The first lytic polysaccharide monooxygenase (LPMO) detected in the genome of the widespread ascomycete Talaromyces amestolkiae (TamAA9A) has been successfully expressed in Pichia pastoris and characterized. Molecular modeling of TamAA9A showed a structure similar to those from other AA9 LPMOs. Although fungal LPMOs belonging to the genera Penicillium or Talaromyces have not been analyzed in terms of regioselectivity, phylogenetic analyses suggested C1/C4 oxidation which was confirmed by HPAEC. To ascertain the function of a C-terminal linker-like region present in the wild-type sequence of the LPMO, two variants of the wild-type enzyme, one without this sequence and one with an additional C-terminal carbohydrate binding domain (CBM), were designed. The three enzymes (native, without linker and chimeric variant with a CBM) were purified in two chromatographic steps and were thermostable and active in the presence of H2O2. The transition midpoint temperature of the wild-type LPMO (Tm = 67.7 °C) and its variant with only the catalytic domain (Tm = 67.6 °C) showed the highest thermostability, whereas the presence of a CBM reduced it (Tm = 57.8 °C) and indicates an adverse effect on the enzyme structure. Besides, the potential of the different T. amestolkiae LPMO variants for their application in the saccharification of cellulosic and lignocellulosic materials was corroborated.
Collapse
Affiliation(s)
- Juan Antonio Méndez-Líter
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.); (A.P.)
| | - Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1462 Ås, Norway;
| | - Florian Csarman
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (F.C.); (R.L.)
| | - Laura Isabel de Eugenio
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.); (A.P.)
| | - Noa Míguez
- Instituto de Catálisis y Petroleoquímica, Spanish National Research Council (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.M.); (F.J.P.)
| | - Francisco J. Plou
- Instituto de Catálisis y Petroleoquímica, Spanish National Research Council (CSIC), Marie Curie 2, 28049 Madrid, Spain; (N.M.); (F.J.P.)
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.); (A.P.)
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (F.C.); (R.L.)
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.); (A.P.)
| |
Collapse
|
16
|
Fungal cellulases: protein engineering and post-translational modifications. Appl Microbiol Biotechnol 2021; 106:1-24. [PMID: 34889986 DOI: 10.1007/s00253-021-11723-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.
Collapse
|
17
|
Zhang X, Chen K, Long L, Ding S. Two C1-oxidizing AA9 lytic polysaccharide monooxygenases from Sordaria brevicollis differ in thermostability, activity, and synergy with cellulase. Appl Microbiol Biotechnol 2021; 105:8739-8759. [PMID: 34748039 DOI: 10.1007/s00253-021-11677-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Cellulolytic fungi usually have multiple genes for C1-oxidizing auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) in their genomes, but their potential functional differences are less understood. In this study, two C1-oxidizing AA9 LPMOs, SbLPMO9A and SbLPMO9B, were identified from Sordaria brevicollis, and their differences, particularly in terms of thermostability, reducing agent specificity, and synergy with cellulase, were explored. The two enzymes exhibited weak binding to cellulose and intolerance to hydrogen peroxide. Their oxidative activity was influenced by cellulose crystallinity and surface morphology, and both enzymes tended to oxidize celluloses of lower crystallinity and high surface area. Comparably, SbLPMO9A had much better thermostability than SbLPMO9B, which may be attributed to the presence of a carbohydrate binding module 1 (CBM1)-like sequence at its C-terminus. In addition, the two enzymes exhibited different specificities and responsivities toward electron donors. SbLPMO9A and SbLPMO9B were able to boost the catalytic efficiency of endoglucanase I (EGI) on physically and chemically pretreated substrates but with different degrees of synergy. Substrate- and enzyme-specific synergism was observed by comparing the synergistic action of SbLPMO9A or SbLPMO9B with commercial Celluclast 1.5L on three kinds of cellulosic substrates. On regenerated amorphous cellulose and PFI (Papirindustriens Forskningsinstitut)-fibrillated bleached eucalyptus pulp, SbLPMO9B showed a higher synergistic effect than SbLPMO9A, while on delignified wheat straw, the synergistic effect of SbLPMO9A was higher than that of SbLPMO9B. On account of its excellent thermostability and boosting effect on the enzymatic hydrolysis of delignified wheat straw, SbLPMO9A may have high application potential in biorefineries for lignocellulosic biomass. KEY POINTS: • C1-oxidizing SbLPMO9A displayed higher thermostability than SbLPMO9B, probably due to the presence of a CBM1-like module. • The oxidative activity of the two SbLPMO9s on celluloses increased with decreasing cellulose crystallinity or increasing beating degree. • The two SbLPMO9s boosted the catalytic efficiency of cellulase, but the synergistic effect was substrate- and enzyme-specific.
Collapse
Affiliation(s)
- Xi Zhang
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kaixiang Chen
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Liangkun Long
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
18
|
Rani Singhania R, Dixit P, Kumar Patel A, Shekher Giri B, Kuo CH, Chen CW, Di Dong C. Role and significance of lytic polysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. BIORESOURCE TECHNOLOGY 2021; 335:125261. [PMID: 34000697 DOI: 10.1016/j.biortech.2021.125261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) emerged a decade ago and have been described as biomass deconstruction boosters as they play an extremely important role in unravelling the enzymatic biomass hydrolysis scheme. These are oxidative enzymes requiring partners to donate electrons during catalytic action on cellulose backbone. Commercial cellulase preparations are mostly from the robust fungal sources, hence LPMOs from fungi (AA9) have been discussed. Characterisation of LPMOs suffers due to multiple complications which has been discussed and challenges in detection of LPMOs in secretomes has also been highlighted. This review focuses on the significance of LPMOs on biomass hydrolysis due to which it has become a key component of cellulolytic cocktail available commercially for biomass deconstruction and its routine analysis challenge has also been discussed. It has also outlined a few key points that help in expressing catalytic active recombinant AA9 LPMOs.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pooja Dixit
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Balendu Shekher Giri
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039 India
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
19
|
Calderaro F, Bevers LE, van den Berg MA. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Biomolecules 2021; 11:biom11081098. [PMID: 34439765 PMCID: PMC8391687 DOI: 10.3390/biom11081098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have sparked a lot of research regarding their fascinating mode-of-action. Particularly, their boosting effect on top of the well-known cellulolytic enzymes in lignocellulosic hydrolysis makes them industrially relevant targets. As more characteristics of LPMO and its key role have been elucidated, the need for fast and reliable methods to assess its activity have become clear. Several aspects such as its co-substrates, electron donors, inhibiting factors, and the inhomogeneity of lignocellulose had to be considered during experimental design and data interpretation, as they can impact and often hamper outcomes. This review provides an overview of the currently available methods to measure LPMO activity, including their potential and limitations, and it is illustrated with practical examples.
Collapse
Affiliation(s)
- Federica Calderaro
- DSM Biotechnology Center, 2613 AX Delft, The Netherlands; (L.E.B.); (M.A.v.d.B.)
- Molecular Enzymolog y Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: ; Tel.: +31-6-36028569
| | - Loes E. Bevers
- DSM Biotechnology Center, 2613 AX Delft, The Netherlands; (L.E.B.); (M.A.v.d.B.)
| | | |
Collapse
|
20
|
Bhatia S, Yadav SK. Novel catalytic potential of a hyperthermostable mono‑copper oxidase (LPMO-AOAA17) for the oxidation of lignin monomers and depolymerisation of lignin dimer in aqueous media. Int J Biol Macromol 2021; 186:563-573. [PMID: 34273339 DOI: 10.1016/j.ijbiomac.2021.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Lytic polysaccharide monooxygenase (LPMO) are mono‑copper enzymes known for the oxidative cleavage of recalcitrant polysaccharides with their intriguing and unique catalytic chemistry. Such impeccable oxidation potential has made them highly valuable in the enzymatic consortia for the degradation of ligno-cellulosic biomass. Bioinformatic analysis has revealed an unannotated LPMO gene in the genome of A. oryzae. Multiple sequence alignment showed the presence of conserved "histidine brace" of LPMO in the amino acid sequence of the enzyme. The enzyme, named as LPMO-AOAA17 was recombinantly expressed in E. coli BL21 and characterised for its substrate specificity. Recombinant enzyme did not show any characteristic cleavage of polysaccharides. However, it was found to be oxidising broad range of phenolic and non-phenolic monomers of lignin. Biochemical study revealed the optimum activity of LPMO-AOAA17 at pH 7 and was highly stable and active at 100 °C. The enzyme LPMO-AOAA17 was also observed to be stable after autoclaving at 121 °C and 15 psi. Thermal stability of the LPMO-AOAA17 was further confirmed through differential scanning calorimetry. GC-MS analysis has confirmed the catalysis of LPMO-AOAA17 for the depolymerisation of lignin dimer, guaicyl glycerol β-guaicyl ether into guaiacol. This study has first time documented the identification of a hyperthermostable LPMO for oxidative cleavage of β-O-4 linkage of lignin compounds to form aromatic products in aqueous media.
Collapse
Affiliation(s)
- Simran Bhatia
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
21
|
Sethupathy S, Morales GM, Li Y, Wang Y, Jiang J, Sun J, Zhu D. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:154. [PMID: 34225772 PMCID: PMC8256616 DOI: 10.1186/s13068-021-02006-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
The recalcitrance of lignocellulosic biomass is a major constraint to its high-value use at industrial scale. In nature, microbes play a crucial role in biomass degradation, nutrient recycling and ecosystem functioning. Therefore, the use of microbes is an attractive way to transform biomass to produce clean energy and high-value compounds. The microbial degradation of lignocelluloses is a complex process which is dependent upon multiple secreted enzymes and their synergistic activities. The availability of the cutting edge proteomics and highly sensitive mass spectrometry tools make possible for researchers to probe the secretome of microbes and microbial consortia grown on different lignocelluloses for the identification of hydrolytic enzymes of industrial interest and their substrate-dependent expression. This review summarizes the role of secretomics in identifying enzymes involved in lignocelluloses deconstruction, the development of enzyme cocktails and the construction of synthetic microbial consortia for biomass valorization, providing our perspectives to address the current challenges.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Gabriel Murillo Morales
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixuan Li
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yongli Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
22
|
|
23
|
Wei H, Wu M, Fan A, Su H. Recombinant protein production in the filamentous fungus Trichoderma. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Li J, Solhi L, Goddard-Borger ED, Mathieu Y, Wakarchuk WW, Withers SG, Brumer H. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:29. [PMID: 33485381 PMCID: PMC7828015 DOI: 10.1186/s13068-020-01860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/13/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally changed our understanding of microbial lignocellulose degradation. Cellulomonas bacteria have a rich history of study due to their ability to degrade recalcitrant cellulose, yet little is known about the predicted LPMOs that they encode from Auxiliary Activity Family 10 (AA10). RESULTS Here, we present the comprehensive biochemical characterization of three AA10 LPMOs from Cellulomonas flavigena (CflaLPMO10A, CflaLPMO10B, and CflaLPMO10C) and one LPMO from Cellulomonas fimi (CfiLPMO10). We demonstrate that these four enzymes oxidize insoluble cellulose with C1 regioselectivity and show a preference for substrates with high surface area. In addition, CflaLPMO10B, CflaLPMO10C, and CfiLPMO10 exhibit limited capacity to perform mixed C1/C4 regioselective oxidative cleavage. Thermostability analysis indicates that these LPMOs can refold spontaneously following denaturation dependent on the presence of copper coordination. Scanning and transmission electron microscopy revealed substrate-specific surface and structural morphological changes following LPMO action on Avicel and phosphoric acid-swollen cellulose (PASC). Further, we demonstrate that the LPMOs encoded by Cellulomonas flavigena exhibit synergy in cellulose degradation, which is due in part to decreased autoinactivation. CONCLUSIONS Together, these results advance understanding of the cellulose utilization machinery of historically important Cellulomonas species beyond hydrolytic enzymes to include lytic cleavage. This work also contributes to the broader mapping of enzyme activity in Auxiliary Activity Family 10 and provides new biocatalysts for potential applications in biomass modification.
Collapse
Affiliation(s)
- James Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Laleh Solhi
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ethan D Goddard-Borger
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephen G Withers
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Department of Botany, University of British Columbia, 3200 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
25
|
Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes (Basel) 2021. [DOI: 10.3390/pr9020206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of so-called advanced bioethanol offers several advantages compared to traditional bioethanol production processes in terms of sustainability criteria. This includes, for instance, the use of nonfood crops or residual biomass as raw material and a higher potential for reducing greenhouse gas emissions. The present review focuses on the recent progress related to the production of advanced bioethanol, (i) highlighting current results from using novel biomass sources such as the organic fraction of municipal solid waste and certain industrial residues (e.g., residues from the paper, food, and beverage industries); (ii) describing new developments in pretreatment technologies for the fractionation and conversion of lignocellulosic biomass, such as the bioextrusion process or the use of novel ionic liquids; (iii) listing the use of new enzyme catalysts and microbial strains during saccharification and fermentation processes. Furthermore, the most promising biorefinery approaches that will contribute to the cost-competitiveness of advanced bioethanol production processes are also discussed, focusing on innovative technologies and applications that can contribute to achieve a more sustainable and effective utilization of all biomass fractions. Special attention is given to integrated strategies such as lignocellulose-based biorefineries for the simultaneous production of bioethanol and other high added value bioproducts.
Collapse
|
26
|
Velasco J, de Oliveira Arnoldi Pellegrini V, Sepulchro AGV, Kadowaki MAS, Santo MCE, Polikarpov I, Segato F. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Enzyme Microb Technol 2021; 144:109746. [PMID: 33541573 DOI: 10.1016/j.enzmictec.2021.109746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have been introduced into industrial cocktails used for biomass saccharification due to their capacity to boost enzymatic conversion of recalcitrant cellulose. The genome of the thermotolerant ascomycete Aspergillus fumigatus encodes 7 genes for LPMOs that belong to auxiliary activity family 9 (AA9). Here, we cloned, successfully expressed and performed biochemical evaluation of two CBM-less A. fumigatus LPMOs (AfAA9A and AfAA9B). A high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis demonstrated that AfAA9A and AfAA9B are able to oxide cellulose at C1 and C1/C4 positions, respectively. Synergic effects of LPMOs (separately and in combination) with cellulases were investigated. Supplementation of Celluclast 1.5 L with a low concentration of AfAA9B improved in 20 % the saccharification of sugarcane bagasse pretreated by steam explosion (SEB), while AfAA9A did not improvethe saccharification. Analysis of the hydrolyzed biomass by confocal laser scanning microscopy (CLSM) showed the LPMOs are promoting lignin oxidation in the lignocellulosic material. This study complements the available results concerning the utilization of LPMOs in the enzymatic saccharification of lignocellulosic biomass.
Collapse
Affiliation(s)
- Josman Velasco
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | | | | | | | | | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil.
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
27
|
Zhou X, Xu Z, He J, Li Y, Pan C, Wang C, Deng MR, Zhu H. A myxobacterial LPMO10 has oxidizing cellulose activity for promoting biomass enzymatic saccharification of agricultural crop straws. BIORESOURCE TECHNOLOGY 2020; 318:124217. [PMID: 33096440 DOI: 10.1016/j.biortech.2020.124217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Myxobacteria are soil microorganisms with the ability to break down biological macromolecules due to the secretion of a large number of extracellular enzymes, but there has been no research report on myxobacterial lytic polysaccharide monooxygenases (LPMOs). In this study, two LPMO10s, ViLPMO10A and ViLPMO10B, from myxobacterium Vitiosangium sp. GDMCC 1.1324 were characterized. Of which, ViLPMO10B is a C1-oxidizing cellulose-active LPMO. Moreover, ViLPMO10B could decrease the degree of polymerization of crop straws cellulose and synergize with commercial cellulase to promote the saccharification. When the weight ratio of commercial cellulase to ViLPMO10B was 9:1, the conversion efficiency of corn stalk, sugarcane bagasse, and rice straw into reducing sugar was improved by 17%, 16%, and 22%, respectively, compared with commercial cellulase without ViLPMO10B. These results indicate that ViLPMO10B has the potential to be a component of a high-efficient cellulase cocktail and has application value in the saccharification of agricultural residual biomasses.
Collapse
Affiliation(s)
- Xiaoli Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiqiang Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jia He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yueqiu Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chengxiang Pan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ming-Rong Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
28
|
Dodge N, Russo DA, Blossom BM, Singh RK, van Oort B, Croce R, Bjerrum MJ, Jensen PE. Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:192. [PMID: 33292428 PMCID: PMC7708235 DOI: 10.1186/s13068-020-01832-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP-Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. RESULTS We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP-Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP-Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP-Chl a shows increased cellulose oxidation under low light conditions, and the WSCP-Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP-Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. CONCLUSION With WSCP-Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP-Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.
Collapse
Affiliation(s)
- N Dodge
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - D A Russo
- Department of Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - B M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - R K Singh
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - B van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - P E Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark.
| |
Collapse
|
29
|
Gaber Y, Rashad B, Hussein R, Abdelgawad M, Ali NS, Dishisha T, Várnai A. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Adv 2020; 43:107583. [DOI: 10.1016/j.biotechadv.2020.107583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022]
|
30
|
Guo X, Sang J, Chai C, An Y, Wei Z, Zhang H, Ma L, Dai Y, Lu F, Liu F. A lytic polysaccharide monooxygenase from Myceliophthora thermophila C1 and its characterization in cleavage of glycosidic chain of cellulose. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Tandrup T, Tryfona T, Frandsen KEH, Johansen KS, Dupree P, Lo Leggio L. Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases. Biochemistry 2020; 59:3347-3358. [PMID: 32818374 DOI: 10.1021/acs.biochem.0c00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharide substrates oxidatively. First discovered because of their action on recalcitrant crystalline substrates (chitin and cellulose), a number of LPMOs are now reported to act on soluble substrates, including oligosaccharides. However, crystallographic complexes with oligosaccharides have been reported for only a single LPMO so far, an enzyme from the basidiomycete fungus Lentinus similis (LsAA9_A). Here we present a more detailed comparative study of LsAA9_A and an LPMO from the ascomycete fungus Collariella virescens (CvAA9_A) with which it shares 41.5% sequence identity. LsAA9_A is considerably more thermostable than CvAA9_A, and the structural basis for the difference has been investigated. We have compared the patterns of oligosaccharide cleavage and the patterns of binding in several new crystal structures explaining the basis for the product preferences of the two enzymes. Obtaining structural information about complexes of LPMOs with carbohydrates has proven to be very difficult in general judging from the structures reported in the literature thus far, and this can be attributed only partly to the low affinity for small substrates. We have thus evaluated the use of differential scanning fluorimetry as a guide to obtaining complex structures. Furthermore, an analysis of crystal packing of LPMOs and glycoside hydrolases corroborates the hypothesis that active site occlusion is a very significant problem for LPMO-substrate interaction analysis by crystallography, due to their relatively flat and extended substrate binding sites.
Collapse
Affiliation(s)
- Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK Copenhagen, Denmark
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Kristian Erik Høpfner Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK Copenhagen, Denmark.,INRAE, Aix-Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13288 Marseille, France
| | - Katja Salomon Johansen
- Department for Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK Frederiksberg, Denmark
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK Copenhagen, Denmark
| |
Collapse
|
32
|
Han L, Tan Y, Ma W, Niu K, Hou S, Guo W, Liu Y, Fang X. Precision Engineering of the Transcription Factor Cre1 in Hypocrea jecorina ( Trichoderma reesei) for Efficient Cellulase Production in the Presence of Glucose. Front Bioeng Biotechnol 2020; 8:852. [PMID: 32850722 PMCID: PMC7399057 DOI: 10.3389/fbioe.2020.00852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
In Trichoderma reesei, carbon catabolite repression (CCR) significantly downregulates the transcription of cellulolytic enzymes, which is usually mediated by the zinc finger protein Cre1. It was found that there is a conserved region at the C-terminus of Cre1/CreA in several cellulase-producing fungi that contains up to three continuous S/T phosphorylation sites. Here, S387, S388, T389, and T390 at the C-terminus of Cre1 in T. reesei were mutated to valine for mimicking an unphosphorylated state, thereby generating the transformants Tr_Cre1S387V, Tr_Cre1S388V, Tr_Cre1T389V, and Tr_Cre1T390V, respectively. Transcription of cel7a in Tr_ Cre1S388V was markedly higher than that of the parent strain when grown in glucose-containing media. Under these conditions, both filter paperase (FPase) and p-nitrophenyl-β-D-cellobioside (pNPCase) activities, as well as soluble proteins from Tr_Cre1S388V were significantly increased by up to 2- to 3-fold compared with that of other transformants and the parent strain. The results suggested that S388 is critical site of phosphorylation for triggering CCR at the terminus of Cre1. To our knowledge, this is the first report demonstrating an improvement of cellulase production in T. reesei under CCR by mimicking dephosphorylation at the C-terminus of Cre1. Taken together, we developed a precision engineering strategy based on the modification of phosphorylation sites of Cre1 transcription factor to enhance the production of cellulase in T. reesei under CCR.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinshuang Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shaoli Hou
- Shandong Henglu Biological Technology Co., Ltd., Jinan, China
| | - Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
33
|
Agrawal D, Kaur B, Kaur Brar K, Chadha BS. An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process. BIORESOURCE TECHNOLOGY 2020; 308:123257. [PMID: 32244131 DOI: 10.1016/j.biortech.2020.123257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Two Lytic polysaccharide Mono-Oxygenases (LPMOs), non-modular (PMO_08942) and modular (PMO_07920), from thermotolerant fungus Aspergillus terreus 9DR cloned and expressed in Pichia pastoris X33 and purified to homogeneity using ion-exchange chromatography were found to be of ~29 and ~40 kDa, respectively. Both LPMOs were optimally active at 50 °C; PMO_08942 was active under acidic condition (pH 5.0) and PMO_07920 at pH 7.0. Modular LPMO (PMO_07920) tethered to CBM-1 was found to be versatile as it showed appreciable activity on complex polysaccharide (both cellulose and xylans) as compared to non-modular (PMO_08942). The t1/2 of PMO_08942 (~192 h, pH 5.0) and PMO_0792 (~192 h, pH 7.0) at 50 °C, suggests highly stable nature of these LPMOs. Fluorescently tagged modular AA9 was studied microscopically to understand interaction with pretreated biomass. Priming of biomass for up to 6 h with LPMOs prior to initiating hydrolysis with core cellulase enzyme resulted in significantly higher saccharification.
Collapse
Affiliation(s)
- Dhruv Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kamalpreet Kaur Brar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | |
Collapse
|
34
|
Enzymatic degradation of algal 1,3-xylan: from synergism of lytic polysaccharide monooxygenases with β-1,3-xylanases to their intelligent immobilization on biomimetic silica nanoparticles. Appl Microbiol Biotechnol 2020; 104:5347-5360. [PMID: 32318768 DOI: 10.1007/s00253-020-10624-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) with synergistic effect on polysaccharide hydrolase represent a revolution in biotechnology, which may accelerate the conversion of biomass to the second-generation biofuels. Discovering more hydrolases that have synergism with LPMOs will considerably expand the knowledge and application of biomass degradation. The LPMOs named CgAA9 were verified to exhibit 1.52-fold synergism when incubated with β-1,3-xylanase at a molar ratio of 3:1. The ion chromatography results proved that CgAA9 did not alter the endogenous hydrolysis mode of β-1,3-xylanase. Meanwhile, to decrease the operational cost of enzymes, a novel strategy for immobilizing LPMOs and β-1,3-xylanases based on the biomimetic silica nanoparticles was developed. It enabled preparation of immobilized enzymes directly from the cell lysate. The immobilization efficiency and activity recovery reached 84.6 and 81.4%. They showed excellent reusability for 12 cycles by retaining 68% of initial activity. The optimum temperature for both free and immobilized biocatalyst were 40 and 37 °C, indicating they were ideal candidates for typical simultaneous saccharification and fermentation (SSF) in ethanol production from algea biomass. This was the first report on the synergy between LPMOs and β-1,3-xylanase, and the strategy for enzyme self-immobilization was simple, timesaving, and efficient, which might have great potentials in algae biomass hydrolysis. KEY POINTS: • The lytic polysaccharide monooxygenases (LPMOs) from Chaetomium globosum were firstly verified to boost the hydrolysis of β-1,3-xylanases for β-1,3-xylan. • A novel strategy for simple preparation of SpyCather-modifed silica nanopartilcles and intelligent immobilization of target enzymes from the cell lysate was proposed. • The immobilized LPMOs and β-1,3-xylanases could be reasonable alternatives for typical simultaneous saccharification and fermentation (SSF) in manipulation of algae biomass.
Collapse
|
35
|
Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0300-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractRenewable biomass such as cellulose and chitin are the most abundant sustainable sources of energy and materials. However, due to the low degradation efficiency of these recalcitrant substrates by conventional hydrolases, these biomass resources cannot be utilized efficiently. In 2010, the discovery of lytic polysaccharide monooxygenases (LPMOs) led to a major breakthrough. Currently, LPMOs are distributed in 7 families in CAZy database, including AA9–11 and AA13–16, with different species origins, substrate specificity and oxidative regioselectivity. Effective application of LPMOs in the biotransformation of biomass resources needs the elucidation of the molecular basis of their function. Since the discovery of LPMOs, great advances have been made in the study of their substrate specificity and regioselectivity, as well as their structural basis, which will be reviewed below.
Collapse
|
36
|
Zhang R. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation. Appl Microbiol Biotechnol 2020; 104:3229-3243. [PMID: 32076777 DOI: 10.1007/s00253-020-10467-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 12/25/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023]
Abstract
Cellulose-degrading auxiliary activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) are known to be widely distributed among filamentous fungi and participate in the degradation of lignocellulose via the oxidative cleavage of celluloses, cello-oligosaccharides, or hemicelluloses. AA9 LPMOs have been reported to have extensive interactions with not only cellulases but also oxidases. The addition of AA9 LPMOs can greatly reduce the amount of cellulase needed for saccharification and increase the yield of glucose. The discovery of AA9 LPMOs has greatly changed our understanding of how fungi degrade cellulose. In this review, apart from summarizing the recent discoveries related to their catalytic reaction, functional diversity, and practical applications, the stability, expression system, and protein engineering of AA9 LPMOs are reviewed for the first time. This review may provide a reference value to further broaden the substrate range of AA9 LPMOs, expand the scope of their practical applications, and realize their customization for industrial utilization.Key Points• The stability and expression system of AA9 LPMOs are reviewed for the first time.• The protein engineering of AA9 LPMOs is systematically summarized for the first time.• The latest research results on the catalytic mechanism of AA9 LPMOs are summarized.• The application of AA9 LPMOs and their relationship with other enzymes are reviewed.
Collapse
Affiliation(s)
- Ruiqin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
- Department of Bioengineering, Huainan Normal University, No. 278 Xueyuannan Road, Huainan, 232038, China.
| |
Collapse
|
37
|
Breslmayr E, Daly S, Požgajčić A, Chang H, Rezić T, Oostenbrink C, Ludwig R. Improved spectrophotometric assay for lytic polysaccharide monooxygenase. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:283. [PMID: 31827611 PMCID: PMC6894463 DOI: 10.1186/s13068-019-1624-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/28/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND The availability of a sensitive and robust activity assay is a prerequisite for efficient enzyme production, purification, and characterization. Here we report on a spectrophotometric assay for lytic polysaccharide monooxygenase (LPMO), which is an advancement of the previously published 2,6-dimethoxyphenol (2,6-DMP)-based LPMO assay. The new assay is based on hydrocoerulignone as substrate and hydrogen peroxide as cosubstrate and aims toward a higher sensitivity at acidic pH and a more reliable detection of LPMO in complex matrices like culture media. RESULTS An LPMO activity assay following the colorimetric oxidation of hydrocoerulignone to coerulignone was developed. This peroxidase activity of LPMO in the presence of hydrogen peroxide can be detected in various buffers between pH 4-8. By reducing the substrate and cosubstrate concentration, the assay has been optimized for minimal autoxidation and enzyme deactivation while maintaining sensitivity. Finally, the optimized and validated LPMO assay was used to follow the recombinant expression of an LPMO in Pichia pastoris and to screen for interfering substances in fermentation media suppressing the assayed reaction. CONCLUSIONS The biphenol hydrocoerulignone is a better substrate for LPMO than the monophenol 2,6-DMP, because of a ~ 30 times lower apparent K M value and a 160 mV lower oxidation potential. This greatly increases the measured LPMO activity when using hydrocoerulignone instead of 2,6-DMP under otherwise similar assay conditions. The improved activity allows the adaptation of the LPMO assay toward a higher sensitivity, different buffers and pH values, more stable assay conditions or to overcome low concentrations of inhibiting substances. The developed assay protocol and optimization guidelines increase the adaptability and applicability of the hydrocoerulignone assay for the production, purification, and characterization of LPMOs.
Collapse
Affiliation(s)
- Erik Breslmayr
- Biocatalysis and Biosensor Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Sarah Daly
- Biocatalysis and Biosensor Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alen Požgajčić
- Biocatalysis and Biosensor Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Hucheng Chang
- Biocatalysis and Biosensor Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Tonči Rezić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis and Biosensor Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
38
|
Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails. Appl Biochem Biotechnol 2019; 191:463-481. [DOI: 10.1007/s12010-019-03198-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/23/2019] [Indexed: 01/18/2023]
|
39
|
Zhou H, Li T, Yu Z, Ju J, Zhang H, Tan H, Li K, Yin H. A lytic polysaccharide monooxygenase from Myceliophthora thermophila and its synergism with cellobiohydrolases in cellulose hydrolysis. Int J Biol Macromol 2019; 139:570-576. [PMID: 31381927 DOI: 10.1016/j.ijbiomac.2019.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/22/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have attracted vast attention because of their unique mechanism of oxidative degradation of carbohydrate polymers and the potential application in biorefineries. This study characterized a novel LPMO from Myceliophthora thermophila, denoted MtLPMO9L. The structure model of the enzyme indicated that it belongs to the C1-oxidizing LPMO, which has neither an extra helix in the L3 loop nor extra loop region in the L2 loop. This was confirmed subsequently by the enzymatic assays since MtLPMO9L only acts on cellulose and generates C1-oxidized cello-oligosaccharides. Moreover, synergetic experiments showed that MtLPMO9L significantly improves the efficiency of cellobiohydrolase (CBH) II. In contrast, the inhibitory rather than synergetic effect was observed when combining used MtLPMO9L and CBHI. Changing the incubation time and concentration ratio of MtLPMO9L and CBHI could attenuate the inhibitory effects. This discovery suggests a different synergy detail between MtLPMO9L and two CBHs, which implies that the composition of cellulase cocktails may need reconsideration.
Collapse
Affiliation(s)
- Haichuan Zhou
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Tang Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zuochen Yu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiu Ju
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiyan Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian 116023, China.
| |
Collapse
|