1
|
Yamada M. Molecular basis and functional development of membrane-based microbial metabolism. Biosci Biotechnol Biochem 2024; 88:461-474. [PMID: 38366612 DOI: 10.1093/bbb/zbae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
My research interest has so far been focused on metabolisms related to the "membrane" of microorganisms, such as the respiratory chain, membrane proteins, sugar uptake, membrane stress and cell lysis, and fermentation. These basic metabolisms are important for the growth and survival of cell, and their knowledge can be used for efficient production of useful materials. Notable achievements in research on metabolisms are elucidation of the structure and function of membrane-bound glucose dehydrogenase as a primary enzyme in the respiratory chain, elucidation of ingenious expression regulation of several operons or by divergent promoters, elucidation of stress-induced programed-cell lysis and its requirement for survival during a long-term stationary phase, elucidation of molecular mechanism of survival at a critical high temperature, elucidation of thermal adaptation and its limit, isolation of thermotolerant fermenting yeast strains, and development of high-temperature fermentation and green energy production technologies. These achievements are described together in this review.
Collapse
Affiliation(s)
- Mamoru Yamada
- Graduate School of Sciences and Technology for Innovation, and Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Pal U, Pal S, Vij S. Kluyveromyces marxianus MTCC 1389 Augments Multi-stress Tolerance After Adaptation to Ethanol Stress. Indian J Microbiol 2023; 63:483-493. [PMID: 38031616 PMCID: PMC10682345 DOI: 10.1007/s12088-023-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
During fermentation, yeast cells undergo various stresses that inhibit cell growth and ethanol production. Therefore, the ability to tolerate multiple stresses during fermentation is one of the important characteristics for yeast cells that can be used for commercial ethanol production. In the present study, we evaluated the multi-stress tolerance of parent and ethanol adapted Kluyveromyces marxianus MTCC1389 and their relative gene expression analysis. Multi-stress tolerance was confirmed by determining its cell viability, growth, and spot assay under oxidative, osmotic, thermal, and ethanol stress. During oxidative (0.8% H2O2) and osmotic stress (2 M NaCl), there was significant cell viability of 90% and 50%, respectively, by adapted strain. On the other hand, under 45 °C of thermal stress, the adapted strain was 80% viable while the parent strain was 60%. In gene expression analysis, the ethanol stress responsive gene ETP1 was significantly upregulated by 3.5 folds, the osmotic stress gene SLN1 was expressed by 3 folds, and the thermal stress responsive gene MSN2 was expressed by 7 folds. This study shows adaptive evolution for ethanol stress can develop other stress tolerances by changing relative gene expression of osmotic, oxidative, and thermal stress responsive genes.
Collapse
Affiliation(s)
- Upma Pal
- Dairy Microbiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana India
| | - Sumit Pal
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Shilpa Vij
- Dairy Microbiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana India
| |
Collapse
|
3
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
4
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
5
|
Albonico F, B. E, G PH, B. D. New Saccharomyces cerevisiae-Kluyveromyces marxianus fusant shows enhanced alcoholic fermentation performance. World J Microbiol Biotechnol 2022; 38:251. [DOI: 10.1007/s11274-022-03422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/24/2022] [Indexed: 12/01/2022]
|
6
|
Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the petroleum-based chemical synthesis of industrial products causes serious environmental and societal issues, biotechnological production using microorganisms is an alternative approach to achieve a more sustainable economy. In particular, the yeast Saccharomyces cerevisiae is widely used as a microbial cell factory to produce biofuels and valuable biomaterials. However, product profiles are often restricted due to the Crabtree-positive nature of S. cerevisiae, and ethanol production from lignocellulose is possibly enhanced by developing alternative stress-resistant microbial platforms. With desirable metabolic pathways and regulation in addition to strong resistance to diverse stress factors, nonconventional yeasts (NCY) may be considered an alternative microbial platform for industrial uses. Irrespective of their high industrial value, the lack of genetic information and useful gene editing tools makes it challenging to develop metabolic engineering-guided scaled-up applications using yeasts. The recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system is a powerful gene editing tool for NCYs. This review describes the current status of and recent advances in promising NCYs in terms of industrial and biotechnological applications, highlighting CRISPR-Cas9 system-based metabolic engineering strategies. This will serve as a basis for the development of novel yeast applications.
Collapse
|
7
|
Capela J, Lagoa D, Rodrigues R, Cunha E, Cruz F, Barbosa A, Bastos J, Lima D, Ferreira EC, Rocha M, Dias O. merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Res 2022; 50:6052-6066. [PMID: 35694833 PMCID: PMC9226533 DOI: 10.1093/nar/gkac459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 01/18/2023] Open
Abstract
Genome-scale metabolic models have been recognised as useful tools for better understanding living organisms' metabolism. merlin (https://www.merlin-sysbio.org/) is an open-source and user-friendly resource that hastens the models' reconstruction process, conjugating manual and automatic procedures, while leveraging the user's expertise with a curation-oriented graphical interface. An updated and redesigned version of merlin is herein presented. Since 2015, several features have been implemented in merlin, along with deep changes in the software architecture, operational flow, and graphical interface. The current version (4.0) includes the implementation of novel algorithms and third-party tools for genome functional annotation, draft assembly, model refinement, and curation. Such updates increased the user base, resulting in multiple published works, including genome metabolic (re-)annotations and model reconstructions of multiple (lower and higher) eukaryotes and prokaryotes. merlin version 4.0 is the only tool able to perform template based and de novo draft reconstructions, while achieving competitive performance compared to state-of-the art tools both for well and less-studied organisms.
Collapse
Affiliation(s)
- João Capela
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Davide Lagoa
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Ruben Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Cunha
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Cruz
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Barbosa
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - José Bastos
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Diogo Lima
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Eugénio C Ferreira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Front Bioeng Biotechnol 2022; 10:851768. [PMID: 35519613 PMCID: PMC9065261 DOI: 10.3389/fbioe.2022.851768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Kluyveromyces marxianus is an emerging non-conventional food-grade yeast that is generally isolated from diverse habitats, like kefir grain, fermented dairy products, sugar industry sewage, plants, and sisal leaves. A unique set of beneficial traits, such as fastest growth, thermotolerance, and broad substrate spectrum (i.e., hemi-cellulose hydrolysates, xylose, l-arabinose, d-mannose, galactose, maltose, sugar syrup molasses, cellobiose, and dairy industry) makes this yeast a particularly attractive host for applications in a variety of food and biotechnology industries. In contrast to Saccharomyces cerevisiae, most of the K. marxianus strains are apparently Crabtree-negative or having aerobic-respiring characteristics, and unlikely to endure aerobic alcoholic fermentation. This is a desirable phenotype for the large-scale biosynthesis of products associated with biomass formation because the formation of ethanol as an undesirable byproduct can be evaded under aerobic conditions. Herein, we discuss the current insight into the potential applications of K. marxianus as a robust yeast cell factory to produce various industrially pertinent enzymes, bioethanol, cell proteins, probiotic, fructose, and fructo-oligosaccharides, and vaccines, with excellent natural features. Moreover, the biotechnological improvement and development of new biotechnological tools, particularly CRISPR-Cas9-assisted precise genome editing in K. marxianus are delineated. Lastly, the ongoing challenges, concluding remarks, and future prospects for expanding the scope of K. marxianus utilization in modern biotechnology, food, feed, and pharmaceutical industries are also thoroughly vetted. In conclusion, it is critical to apprehend knowledge gaps around genes, metabolic pathways, key enzymes, and regulation for gaining a complete insight into the mechanism for producing relevant metabolites by K. marxianus.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Lin
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Evolutionary Adaptation by Repetitive Long-Term Cultivation with Gradual Increase in Temperature for Acquiring Multi-Stress Tolerance and High Ethanol Productivity in Kluyveromyces marxianus DMKU 3-1042. Microorganisms 2022; 10:microorganisms10040798. [PMID: 35456848 PMCID: PMC9032449 DOI: 10.3390/microorganisms10040798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
During ethanol fermentation, yeast cells are exposed to various stresses that have negative effects on cell growth, cell survival, and fermentation ability. This study, therefore, aims to develop Kluyveromyces marxianus-adapted strains that are multi-stress tolerant and to increase ethanol production at high temperatures through a novel evolutionary adaptation procedure. K. marxianus DMKU 3-1042 was subjected to repetitive long-term cultivation with gradual increases in temperature (RLCGT), which exposed cells to various stresses, including high temperatures. In each cultivation step, 1% of the previous culture was inoculated into a medium containing 1% yeast extract, 2% peptone, and 2% glucose, and cultivation was performed under a shaking condition. Four adapted strains showed increased tolerance to ethanol, furfural, hydroxymethylfurfural, and vanillin, and they also showed higher production of ethanol in a medium containing 16% glucose at high temperatures. One showed stronger ethanol tolerance. Others had similar phenotypes, including acetic acid tolerance, though genome analysis revealed that they had different mutations. Based on genome and transcriptome analyses, we discuss possible mechanisms of stress tolerance in adapted strains. All adapted strains gained a useful capacity for ethanol fermentation at high temperatures and improved tolerance to multi-stress. This suggests that RLCGT is a simple and efficient procedure for the development of robust strains.
Collapse
|
10
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
11
|
Montini N, Doughty TW, Domenzain I, Fenton DA, Baranov PV, Harrington R, Nielsen J, Siewers V, Morrissey JP. Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast Kluyveromyces marxianus. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35333706 PMCID: PMC9558357 DOI: 10.1099/mic.0.001148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is important to understand the basis of thermotolerance in yeasts to broaden their application in industrial biotechnology. The capacity to run bioprocesses at temperatures above 40 °C is of great interest but this is beyond the growth range of most of the commonly used yeast species. In contrast, some industrial yeasts such as Kluyveromyces marxianus can grow at temperatures of 45 °C or higher. Such species are valuable for direct use in industrial biotechnology and as a vehicle to study the genetic and physiological basis of yeast thermotolerance. In previous work, we reported that evolutionarily young genes disproportionately changed expression when yeast were growing under stressful conditions and postulated that such genes could be important for long-term adaptation to stress. Here, we tested this hypothesis in K. marxianus by identifying and studying species-specific genes that showed increased expression during high-temperature growth. Twelve such genes were identified and 11 were successfully inactivated using CRISPR-mediated mutagenesis. One gene, KLMX_70384, is required for competitive growth at high temperature, supporting the hypothesis that evolutionary young genes could play roles in adaptation to harsh environments. KLMX_70384 is predicted to encode an 83 aa peptide, and RNA sequencing and ribo-sequencing were used to confirm transcription and translation of the gene. The precise function of KLMX_70384 remains unknown but some features are suggestive of RNA-binding activity. The gene is located in what was previously considered an intergenic region of the genome, which lacks homologues in other yeasts or in databases. Overall, the data support the hypothesis that genes that arose de novo in K. marxianus after the speciation event that separated K. marxianus and K. lactis contribute to some of its unique traits.
Collapse
Affiliation(s)
- Noemi Montini
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Tyler W Doughty
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Darren A Fenton
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Ronan Harrington
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - John P Morrissey
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute and SUSFERM Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
12
|
Rajkumar AS, Morrissey JP. Protocols for marker-free gene knock-out and knock-down in Kluyveromyces marxianus using CRISPR/Cas9. FEMS Yeast Res 2022; 22:foab067. [PMID: 34928332 PMCID: PMC8800938 DOI: 10.1093/femsyr/foab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
There is increased interest in strain engineering in the food and industrial yeast Kluyveromyces marxianus and a number of CRISPR/Cas9 systems have been described and used by different groups. The methods that we developed allow for very rapid and efficient inactivation of target genes using the endogenous DNA repair mechanisms of the cell. The strains and plasmids that we use are freely available, and here we provide a set of integrated protocols to easily inactivate genes and to precisely integrate DNA fragments into the genome, for example for promoter replacement, allelic swaps or introduction of point mutations. The protocols use the Cas9/gRNA expression plasmid pUCC001 and Golden Gate assembly for molecular cloning of targeting sequences. A genome-wide set of target sequences is provided. Using these plasmids in wild-type strains or in strains lacking non-homologous end-joining (NHEJ) DNA repair, the first set of protocols explain how to introduce indels (NHEJ-mediated) or precise deletions (homology-dependent repair (HDR)-mediated) at precise targets. The second set of protocols describe how to swap a promoter or coding sequence to yield a reprogrammed gene. The methods do not require the use of dominant or auxotrophic marker genes and thus the strains generated are marker-free. The protocols have been tested in multiple K. marxianus strains, are straightforward and can be carried out in any molecular biology laboratory without specialized equipment.
Collapse
Affiliation(s)
- Arun S Rajkumar
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, SUSFERM Fermentation Centre, University College Cork, Cork T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, SUSFERM Fermentation Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
13
|
Distinct metabolic flow in response to temperature in thermotolerant Kluyveromyces marxianus. Appl Environ Microbiol 2022; 88:e0200621. [PMID: 35080905 DOI: 10.1128/aem.02006-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsic mechanism of the thermotolerance of Kluyveromyces marxianus was investigated by comparison of its physiological and metabolic properties at high and low temperatures. After glucose consumption, the conversion of ethanol to acetic acid became gradually prominent only at high temperature (45°C) and eventually caused a decline in viability, which was prevented by exogenous glutathione. Distinct levels of reactive oxygen species (ROS), glutathione, and NADPH suggest greater accumulation of ROS and enhanced ROS-scavenging activity at a high temperature. Fusion and fission forms of mitochondria were dominantly observed at 30°C and 45°C, respectively. Consistent results were obtained by temperature up-shift experiments including transcriptomic and enzymatic analyses, suggesting a change of metabolic flow from glycolysis to the pentose phosphate pathway. Results of this study suggest that K. marxianus survives at a high temperature by scavenging ROS via metabolic change for a period until a critical concentration of acetate is reached. IMPORTANCE Kluyveromyces marxianus, a thermotolerant yeast, can grow well at temperatures over 45°C, unlike Kluyveromyces lactis, which belongs to the same genus, or Saccharomyces cerevisiae, which is a closely related yeast. K. marxianus may thus bear an intrinsic mechanism to survive at high temperatures. This study revealed the thermotolerant mechanism of the yeast, including ROS scavenging with NADPH, which is generated by changes in metabolic flow.
Collapse
|
14
|
Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production. Processes (Basel) 2021. [DOI: 10.3390/pr9091583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To mitigate the current global energy and the environmental crisis, biofuels such as bioethanol have progressively gained attention from both scientific and industrial perspectives. However, at present, commercialized bioethanol is mainly derived from edible crops, thus raising serious concerns given its competition with feed production. For this reason, lignocellulosic biomasses (LCBs) have been recognized as important alternatives for bioethanol production. Because LCBs supply is sustainable, abundant, widespread, and cheap, LCBs-derived bioethanol currently represents one of the most viable solutions to meet the global demand for liquid fuel. However, the cost-effective conversion of LCBs into ethanol remains a challenge and its implementation has been hampered by several bottlenecks that must still be tackled. Among other factors related to the challenging and variable nature of LCBs, we highlight: (i) energy-demanding pretreatments, (ii) expensive hydrolytic enzyme blends, and (iii) the need for microorganisms that can ferment mixed sugars. In this regard, thermophiles represent valuable tools to overcome some of these limitations. Thus, the aim of this review is to provide an overview of the state-of-the-art technologies involved, such as the use of thermophilic enzymes and microorganisms in industrial-relevant conditions, and to propose possible means to implement thermophiles into second-generation ethanol biorefineries that are already in operation.
Collapse
|
15
|
Ability of Yeast Metabolic Activity to Reduce Sugars and Stabilize Betalains in Red Beet Juice. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To lower the risk of obesity, diabetes, and other related diseases, the WHO recommends that consumers reduce their consumption of sugars. Here, we propose a microbiological method to reduce the sugar content in red beet juice, while incurring only slight losses in the betalain content and maintaining the correct proportion of the other beet juice components. Several yeast strains with different metabolic activities were investigated for their ability to reduce the sugar content in red beet juice, which resulted in a decrease in the extract level corresponding to sugar content from 49.7% to 58.2%. This strategy was found to have the additional advantage of increasing the chemical and microbial stability of the red beet juice. Only slight losses of betalain pigments were noted, to final concentrations of 5.11% w/v and 2.56% w/v for the red and yellow fractions, respectively.
Collapse
|
16
|
Non-Conventional Yeasts as Alternatives in Modern Baking for Improved Performance and Aroma Enhancement. FERMENTATION 2021. [DOI: 10.3390/fermentation7030102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Saccharomyces cerevisiae remains the baker’s yeast of choice in the baking industry. However, its ability to ferment cereal flour sugars and accumulate CO2 as a principal role of yeast in baking is not as unique as previously thought decades ago. The widely conserved fermentative lifestyle among the Saccharomycotina has increased our interest in the search for non-conventional yeast strains to either augment conventional baker’s yeast or develop robust strains to cater for the now diverse consumer-driven markets. A decade of research on alternative baker’s yeasts has shown that non-conventional yeasts are increasingly becoming important due to their wide carbon fermentation ranges, their novel aromatic flavour generation, and their robust stress tolerance. This review presents the credentials of non-conventional yeasts as attractive yeasts for modern baking. The evolution of the fermentative trait and tolerance to baking-associated stresses as two important attributes of baker’s yeast are discussed besides their contribution to aroma enhancement. The review further discusses the approaches to obtain new strains suitable for baking applications.
Collapse
|
17
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
18
|
Donzella L, Varela JA, Sousa MJ, Morrissey JP. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform. FEMS Yeast Res 2021; 21:6247623. [PMID: 33890624 PMCID: PMC8110514 DOI: 10.1093/femsyr/foab026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
The capacity of yeasts to assimilate xylose or arabinose is strongly dependent on plasma membrane transport proteins. Because pentoses comprise a substantial proportion of available sugars in lignocellulosic hydrolysates, their utilisation is centrally important for the development of second generation biorefineries. Relatively few native pentose transporters have been studied and there is intense interest in expanding the repertoire. To aid the identification of novel transporters, we developed a screening platform in the native pentose-utilising yeast Kluyveromyces marxianus. This involved the targeted deletion of twelve transporters of the major facilitator superfamily (MFS) and application of a synthetic biology pipeline for rapid testing of candidate pentose transporters. Using this K. marxianus ΔPT platform, we identified several K. marxianus putative xylose or arabinose transporter proteins that recovered a null strain's ability to growth on these pentoses. Four proteins of the HGT-family were able to support growth in media with high or low concentrations of either xylose or arabinose, while six HXT-like proteins displayed growth only at high xylose concentrations, indicating solely low affinity transport activity. The study offers new insights into the evolution of sugar transporters in yeast and expands the set of native pentose transporters for future functional and biotechnological studies.
Collapse
Affiliation(s)
- Lorena Donzella
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland.,Centre of Environmental and Molecular Biology, Department of Biology, University of Minho, Campus of Gualtar, R. da Universidade, Braga 4710-057, Portugal
| | - Javier A Varela
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland
| | - Maria João Sousa
- Centre of Environmental and Molecular Biology, Department of Biology, University of Minho, Campus of Gualtar, R. da Universidade, Braga 4710-057, Portugal
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
19
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
20
|
Rajkumar AS, Morrissey JP. Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products. Microb Cell Fact 2020; 19:207. [PMID: 33176787 PMCID: PMC7659061 DOI: 10.1186/s12934-020-01461-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The yeast Kluyveromyces marxianus offers unique potential for industrial biotechnology because of useful features like rapid growth, thermotolerance and a wide substrate range. As an emerging alternative platform, K. marxianus requires the development and validation of metabolic engineering strategies to best utilise its metabolism as a basis for bio-based production. RESULTS To illustrate the synthetic biology strategies to be followed and showcase its potential, we describe a comprehensive approach to rationally engineer a metabolic pathway in K. marxianus. We use the phenylalanine biosynthetic pathway both as a prototype and because phenylalanine is a precursor for commercially valuable secondary metabolites. First, we modify and overexpress the pathway to be resistant to feedback inhibition so as to overproduce phenylalanine de novo from synthetic minimal medium. Second, we assess native and heterologous means to increase precursor supply to the biosynthetic pathway. Finally, we eliminate branch points and competing reactions in the pathway and rebalance precursors to redirect metabolic flux to a specific product, 2-phenylethanol (2-PE). As a result, we are able to construct robust strains capable of producing over 800 mg L-1 2-PE from minimal medium. CONCLUSIONS The strains we constructed are a promising platform for the production of aromatic amino acid-based biochemicals, and our results illustrate challenges with attempting to combine individually beneficial modifications in an integrated platform.
Collapse
Affiliation(s)
- Arun S Rajkumar
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland.
| |
Collapse
|
21
|
Karim A, Gerliani N, Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol 2020; 333:108818. [PMID: 32805574 DOI: 10.1016/j.ijfoodmicro.2020.108818] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Several yeasts, which are eukaryotic microorganisms, have long been used in different industries due to their potential applications, both for fermentation and for the production of specific metabolites. Kluyveromyces marxianus is one of the most auspicious nonconventional yeasts, generally isolated from wide-ranging natural habitats such as fermented traditional dairy products, kefir grain, sewage from sugar industries, sisal leaves, and plants. This is a food-grade yeast with various beneficial traits, such as rapid growth rate and thermotolerance that make it appealing for different industrial food and biotechnological applications. K. marxianus is a respiro-fermentative yeast likely to produce energy by either respiration or fermentation pathways. It generates a wide-ranging specific metabolites and could contribute to a variety of different food and biotechnological industries. Although Saccharomyces cerevisiae is the most widely used dominant representative in all aspects, many applications of K. marxianus in biotechnology, food and environment have only started to emerge nowadays; some of the most promising applications are reviewed here. The general physiology of K. marxianus is outlined, and then the different applications are discussed: first, the applications of K. marxianus in biotechnology, and then the recent advances and possible applications in food, feed and environmental industries. Finally, this review provides a discussion of the main challenges and some perspectives for targeted applications of K. marxianus in the modern food technology and applied biotechnology in order to exploit the full potential of this yeast which can be used as a cell factory with great efficiency.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Natela Gerliani
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Mohammed Aïder
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
22
|
Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2020; 104:7991-8006. [PMID: 32776206 DOI: 10.1007/s00253-020-10808-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023]
Abstract
Glycolysis and the pentose phosphate pathway (PPP) are two basic metabolic pathways that are simultaneously present in yeasts. As the main pathway in most species, the glycolysis provides ATP and NADH for cell metabolism while PPP, as a complementary pathway, supplies NADPH. In this study, the performance of Kluyveromyces marxianus using glycolysis or PPP were studied through the disruption of PGI1 or ZWF1 gene, respectively. K. marxianus using glycolysis as the only pathway showed higher ethanol production ability than that of the Kluyveromyces lactis zwf1Δ mutant; K. marxianus using only PPP showed more robustness than that of Saccharomyces cerevisiae pgi1Δ mutant. Additionally, K. marxianus pgi1Δ strain accumulated much more intracellular NADPH than the wild type strain and co-utilized glucose and xylose more effectively. These findings suggest that phosphoglucose isomerase participates in the regulation of the repression of glucose on xylose utilization in K. marxianus. The NADPH/NADP+ ratio, dependent on the activity of the PPP, regulated the expression of multiple genes related to NADPH metabolism in K. marxianus (including NDE1, NDE2, GLR1, and GDP1). Since K. marxianus is considered a promising host in industrial biotechnology to produce renewable chemicals from plant biomass feedstocks, our research showed the potential of the thermotolerant K. marxianus to produce NADP(H)-dependent chemical synthesis from multiple feedstocks. KEY POINTS: • The function of PGI1 and ZWF1 in K. marxianus has been analyzed in this study. • K. marxianus zwf1Δ strain produced ethanol but with decreased productivity. • K. marxianus pgi1Δ strain grew with glucose and accumulated NADPH. • K. marxianus pgi1Δ strain released glucose repression on xylose utilization.
Collapse
|
23
|
Martins LC, Monteiro CC, Semedo PM, Sá-Correia I. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl Microbiol Biotechnol 2020; 104:6527-6547. [PMID: 32474799 PMCID: PMC7347521 DOI: 10.1007/s00253-020-10697-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Pectin-rich agro-industrial residues are feedstocks with potential for sustainable biorefineries. They are generated in high amounts worldwide from the industrial processing of fruits and vegetables. The challenges posed to the industrial implementation of efficient bioprocesses are however manyfold and thoroughly discussed in this review paper, mainly at the biological level. The most important yeast cell factory platform for advanced biorefineries is currently Saccharomyces cerevisiae, but this yeast species cannot naturally catabolise the main sugars present in pectin-rich agro-industrial residues hydrolysates, in particular D-galacturonic acid and L-arabinose. However, there are non-Saccharomyces species (non-conventional yeasts) considered advantageous alternatives whenever they can express highly interesting metabolic pathways, natively assimilate a wider range of carbon sources or exhibit higher tolerance to relevant bioprocess-related stresses. For this reason, the interest in non-conventional yeasts for biomass-based biorefineries is gaining momentum. This review paper focuses on the valorisation of pectin-rich residues by exploring the potential of yeasts that exhibit vast metabolic versatility for the efficient use of the carbon substrates present in their hydrolysates and high robustness to cope with the multiple stresses encountered. The major challenges and the progresses made related with the isolation, selection, sugar catabolism, metabolic engineering and use of non-conventional yeasts and S. cerevisiae-derived strains for the bioconversion of pectin-rich residue hydrolysates are discussed. The reported examples of value-added products synthesised by different yeasts using pectin-rich residues are reviewed. Key Points • Review of the challenges and progresses made on the bioconversion of pectin-rich residues by yeasts. • Catabolic pathways for the main carbon sources present in pectin-rich residues hydrolysates. • Multiple stresses with potential to affect bioconversion productivity. • Yeast metabolic engineering to improve pectin-rich residues bioconversion. Graphical abstract.
Collapse
Affiliation(s)
- Luís C Martins
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina C Monteiro
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paula M Semedo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
24
|
Nespolo RF, Solano‐Iguaran JJ, Paleo‐López R, Quintero‐Galvis JF, Cubillos FA, Bozinovic F. Performance, genomic rearrangements, and signatures of adaptive evolution: Lessons from fermentative yeasts. Ecol Evol 2020; 10:5240-5250. [PMID: 32607147 PMCID: PMC7319171 DOI: 10.1002/ece3.6208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/20/2020] [Indexed: 01/27/2023] Open
Abstract
The capacity of some yeasts to extract energy from single sugars, generating CO2 and ethanol (=fermentation), even in the presence of oxygen, is known as the Crabtree effect. This phenomenon represents an important adaptation as it allowed the utilization of the ecological niche given by modern fruits, an abundant source of food that emerged in the terrestrial environment in the Cretaceous. However, identifying the evolutionary events that triggered fermentative capacity in Crabtree-positive species is challenging, as microorganisms do not leave fossil evidence. Thus, key innovations should be inferred based only on traits measured under culture conditions. Here, we reanalyzed data from a common garden experiment where several proxies of fermentative capacity were recorded in Crabtree-positive and Crabtree-negative species, representing yeast phylogenetic diversity. In particular, we applied the "lasso-OU" algorithm which detects points of adaptive shifts, using traits that are proxies of fermentative performance. We tested whether multiple events or a single event explains the actual fermentative capacity of yeasts. According to the lasso-OU procedure, evolutionary changes in the three proxies of fermentative capacity that we considered (i.e., glycerol production, ethanol yield, and respiratory quotient) are consistent with a single evolutionary episode (a whole-genomic duplication, WGD), instead of a series of small genomic rearrangements. Thus, the WGD appears as the key event behind the diversification of fermentative yeasts, which by increasing gene dosage, and maximized their capacity of energy extraction for exploiting the new ecological niche provided by single sugars.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES)Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | | | - Rocío Paleo‐López
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de BiologíaFacultad de Química y BiologíaUniversidad de Santiago de 9 ChileSantiagoChile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES)Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
| |
Collapse
|
25
|
Navarrete C, L. Martínez J. Non-conventional yeasts as superior production platforms for sustainable fermentation based bio-manufacturing processes. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|