1
|
Gorczyca M, Korpys-Woźniak P, Celińska E. An Interplay between Transcription Factors and Recombinant Protein Synthesis in Yarrowia lipolytica at Transcriptional and Functional Levels-The Global View. Int J Mol Sci 2024; 25:9450. [PMID: 39273402 PMCID: PMC11395014 DOI: 10.3390/ijms25179450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional regulatory networks (TRNs) associated with recombinant protein (rProt) synthesis in Yarrowia lipolytica are still under-described. Yet, it is foreseen that skillful manipulation with TRNs would enable global fine-tuning of the host strain's metabolism towards a high-level-producing phenotype. Our previous studies investigated the transcriptomes of Y. lipolytica strains overproducing biochemically different rProts and the functional impact of transcription factors (TFs) overexpression (OE) on rProt synthesis capacity in this species. Hence, much knowledge has been accumulated and deposited in public repositories. In this study, we combined both biological datasets and enriched them with further experimental data to investigate an interplay between TFs and rProts synthesis in Y. lipolytica at transcriptional and functional levels. Technically, the RNAseq datasets were extracted and re-analyzed for the TFs' expression profiles. Of the 140 TFs in Y. lipolytica, 87 TF-encoding genes were significantly deregulated in at least one of the strains. The expression profiles were juxtaposed against the rProt amounts from 125 strains co-overexpressing TF and rProt. In addition, several strains bearing knock-outs (KOs) in the TF loci were analyzed to get more insight into their actual involvement in rProt synthesis. Different profiles of the TFs' transcriptional deregulation and the impact of their OE or KO on rProts synthesis were observed, and new engineering targets were pointed.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
2
|
Celińska E, Korpys-Woźniak P, Gorczyca M, Nicaud JM. Using Euf1 transcription factor as a titrator of erythritol-inducible promoters in Yarrowia lipolytica; insight into the structure, splicing, and regulation mechanism. FEMS Yeast Res 2024; 24:foae027. [PMID: 39169472 PMCID: PMC11394100 DOI: 10.1093/femsyr/foae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
Controllable regulatory elements, like inducible, titratable promoters, are highly desired in synthetic biology toolboxes. A set of previously developed erythritol-inducible promoters along with an engineered Yarrowia lipolytica host strain were shown to be a very potent expression platform. In this study, we push the previously encountered limits of the synthetic promoters' titratability (by the number of upstream motifs) by using a compatible transcription factor, Euf1, as the promoter titrator. Overexpression of spliced EUF1 turned out to be very efficient in promoting expression from the compatible promoter, however, the erythritol-inducible character of the promoter was then lost. Analysis of the EUF1's splicing pattern suggests that the intron removal is promoted in the presence of erythritol, but is not dependent on it. The 3D structures of spliced versus unspliced Euf1 were modeled, and ligand-binding strength was calculated and compared. Furthermore, the EUF1-dependent expression profile under different chemical stimulants was investigated. Depletion of carbon source was identified as the significant factor upregulating the expression from the Euf1-dependent promoter (2-10-fold). Considering these findings and transcriptomics data, a new mechanism of the Euf1-regulated promoter action is proposed, involving a 'catabolite repression' transcription factor-Adr1, both acting on the same ERY-inducible promoter.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Zhu X, Li M, Zhu R, Xin Y, Guo Z, Gu Z, Zhang L, Guo Z. Up Front Unfolded Protein Response Combined with Early Protein Secretion Pathway Engineering in Yarrowia lipolytica to Attenuate ER Stress Caused by Enzyme Overproduction. Int J Mol Sci 2023; 24:16426. [PMID: 38003616 PMCID: PMC10670989 DOI: 10.3390/ijms242216426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Engineering the yeast Yarrowia lipolytica as an efficient host to produce recombinant proteins remains a longstanding goal for applied biocatalysis. During the protein overproduction, the accumulation of unfolded and misfolded proteins causes ER stress and cell dysfunction in Y. lipolytica. In this study, we evaluated the effects of several potential ER chaperones and translocation components on relieving ER stress by debottlenecking the protein synthetic machinery during the production of the endogenous lipase 2 and the E. coli β-galactosidase. Our results showed that improving the activities of the non-dominant translocation pathway (SRP-independent) boosted the production of the two proteins. While the impact of ER chaperones is protein dependent, the nucleotide exchange factor Sls1p for protein folding catalyst Kar2p is recognized as a common contributor enhancing the secretion of the two enzymes. With the identified protein translocation components and ER chaperones, we then exemplified how these components can act synergistically with Hac1p to enhance recombinant protein production and relieve the ER stress on cell growth. Specifically, the yeast overexpressing Sls1p and cytosolic heat shock protein Ssa8p and Ssb1p yielded a two-fold increase in Lip2p secretion compared with the control, while co-overexpressing Ssa6p, Ssb1p, Sls1p and Hac1p resulted in a 90% increase in extracellular β-galp activity. More importantly, the cells sustained a maximum specific growth rate (μmax) of 0.38 h-1 and a biomass yield of 0.95 g-DCW/g-glucose, only slightly lower than that was obtained by the wild type strain. This work demonstrated engineering ER chaperones and translocation as useful strategies to facilitate the development of Y. lipolytica as an efficient protein-manufacturing platform.
Collapse
Affiliation(s)
- Xingyu Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Moying Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Rui Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013, China;
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongpeng Guo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
4
|
Gorczyca M, Nicaud JM, Celińska E. Transcription factors enhancing synthesis of recombinant proteins and resistance to stress in Yarrowia lipolytica. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12607-z. [PMID: 37318637 DOI: 10.1007/s00253-023-12607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits. The aim of this study was to examine the potential implications of selected five TFs (HSF1-YALI0E13948g, GZF1-YALI0D20482g, CRF1-YALI0B08206g, SKN7-YALI0D14520g, and YAP-like-YALI0D07744g) in stress resistance and/or r-Prot synthesis in Yarrowia lipolytica. The selected TFs were over-expressed or deleted (OE/KO) in a host strain synthesizing a reporter r-Prot. The strains were subjected to phenotype screening under different environmental conditions (pH, oxygen availability, temperature, and osmolality), and the obtained data processing was assisted by mathematical modeling. The results demonstrated that growth and the r-Prot yields under specific conditions can be significantly increased or decreased due to the TFs' engineering. Environmental factors "awakening" individual TFs were indicated, and their contribution was mathematically described. For example, OE of Yap-like TF was proven to alleviate growth retardation under high pH, while Gzf1 and Hsf1 were shown to serve as universal enhancers of r-Prot production in Y. lipolytica. On the other hand, KO of SKN7 and HSF1 disabled growth under hyperosmotic stress. This research demonstrates the usefulness of the TFs engineering approach in the manipulation of complex traits and evidences newly identified functions of the studied TFs. KEY POINTS: • Function and implication in complex traits of 5 TFs in Y. lipolytica were studied. • Gzf1 and Hsf1 are the universal r-Prots synthesis enhancers in Y. lipolytica. • Yap-like TF's activity is pH-dependent; Skn7 and Hsf1 act in osmostress response.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
5
|
Korpys-Woźniak P, Celińska E. Molecular background of HAC1-driven improvement in the secretion of recombinant protein in Yarrowia lipolytica based on comparative transcriptomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00801. [PMID: 37234569 PMCID: PMC10206436 DOI: 10.1016/j.btre.2023.e00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
While the unfolded protein response (UPR) and its major regulator - transcription factor Hac1 are well-conserved across Eukarya, species-specific variations are repeatedly reported. Here we investigated molecular mechanisms by which co-over-expression of HAC1 improves secretion of a recombinant protein (r-Prot) in Yarrowia lipolytica, using comparative transcriptomics. Co-over-expression of HAC1 caused an >2-fold increase in secreted r-Prot, but its intracellular levels were decreased. The unconventional splicing rate of the HAC1 mRNA was counted through transcript sequencing. Multiple biological processes were affected in the HAC1-and-r-Prot co-over-expressing strain, including ribosome biogenesis, nuclear and mitochondrial events, cell cycle arrest, attenuation of gene expression by RNA polymerase III and II, as well as modulation of proteolysis and RNA metabolism; but whether the HAC1 co-over-expression/induction was the actual causative agent for these changes, was not always clear. We settled that the expression of the "conventional" HAC1 targets (KAR2 and PDI1) is not affected by its over-expression.
Collapse
|
6
|
Gessler NN, Ivanova NO, Kokoreva AS, Klein OI, Isakova EP, Deryabina YI. The Physiological Adaptation Features of the Poly-Extremophilic Yeast Yarrowia lipolytica W29 During Long-Term Cultivation. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Celińska E. "Fight-flight-or-freeze" - how Yarrowia lipolytica responds to stress at molecular level? Appl Microbiol Biotechnol 2022; 106:3369-3395. [PMID: 35488934 PMCID: PMC9151528 DOI: 10.1007/s00253-022-11934-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Yarrowia lipolytica is a popular yeast species employed in multiple biotechnological production processes. High resistance to extreme environmental conditions or metabolic burden triggered by synthetically forced over-synthesis of a target metabolite has its practical consequences. The proud status of an “industrial workhorse” that Y. lipolytica has gained is directly related to such a quality of this species. With the increasing amount of knowledge coming from detailed functional studies and comprehensive omics analyses, it is now possible to start painting the landscape of the molecular background behind stress response and adaptation in Y. lipolytica. This review summarizes the current state-of-art of a global effort in revealing how Y. lipolytica responds to both environmental threats and the intrinsic burden caused by the overproduction of recombinant secretory proteins at the molecular level. Detailed lists of genes, proteins, molecules, and biological processes deregulated upon exposure to external stress factors or affected by over-synthesis of heterologous proteins are provided. Specificities and universalities of Y. lipolytica cellular response to different extrinsic and intrinsic threats are highlighted. Key points • Y. lipolytica as an industrial workhorse is subjected to multiple stress factors. • Cellular responses together with involved genes, proteins, and molecules are reviewed. • Native stress response mechanisms are studied and inspire engineering strategies.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland.
| |
Collapse
|
8
|
Synthesis of Secretory Proteins in Yarrowia lipolytica: Effect of Combined Stress Factors and Metabolic Load. Int J Mol Sci 2022; 23:ijms23073602. [PMID: 35408958 PMCID: PMC8998316 DOI: 10.3390/ijms23073602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
While overproduction of recombinant secretory proteins (rs-Prots) triggers multiple changes in the physiology of the producer cell, exposure to suboptimal growth conditions may further increase that biological response. The environmental conditions may modulate the efficiency of both the rs-Prot gene transcription and translation but also the polypeptide folding. Insights into responses elicited by different environmental stresses on the rs-Prots synthesis and host yeast physiology might contribute to a better understanding of fundamental biology processes, thus providing some clues to further optimise bioprocesses. Herein, a series of batch cultivations of Yarrowia lipolytica strains differentially metabolically burdened by the rs-Prots overproduction have been conducted. Combinations of different stress factors, namely pH (3/7) and oxygen availability (kLa 28/110 h-1), have been considered for their impact on cell growth and morphology, substrate consumption, metabolic activity, genes expression, and secretion of the rs-Prots. Amongst others, our data demonstrate that a highly metabolically burdened cell has a higher demand for the carbon source, although presenting a compromised cell growth. Moreover, the observed decrease in rs-Prot production under adverse environmental conditions rather results from the emergence of a less-producing cell subpopulation than from the decrease of the synthetic capacity of the whole cell population.
Collapse
|
9
|
Hyperosmolarity adversely impacts recombinant protein synthesis by Yarrowia lipolytica-molecular background revealed by quantitative proteomics. Appl Microbiol Biotechnol 2021; 106:349-367. [PMID: 34913994 PMCID: PMC8720085 DOI: 10.1007/s00253-021-11731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022]
Abstract
Abstract In this research, we were interested in answering a question whether subjecting a Yarrowia lipolytica strain overproducing a recombinant secretory protein (rs-Prot) to pre-optimized stress factors may enhance synthesis of the rs-Prot. Increased osmolarity (3 Osm kg−1) was the primary stress factor implemented alone or in combination with decreased temperature (20 °C), known to promote synthesis of rs-Prots. The treatments were executed in batch bioreactor cultures, and the cellular response was studied in terms of culture progression, gene expression and global proteomics, to get insight into molecular bases underlying an awaken reaction. Primarily, we observed that hyperosmolarity executed by high sorbitol concentration does not enhance synthesis of the rs-Prot but increases its transcription. Expectedly, hyperosmolarity induced synthesis of polyols at the expense of citric acid synthesis and growth, which was severely limited. A number of stress-related proteins were upregulated, including heat-shock proteins (HSPs) and aldo–keto reductases, as observed at transcriptomics and proteomics levels. Concerted downregulation of central carbon metabolism, including glycolysis, tricarboxylic acid cycle and fatty acid synthesis, highlighted redirection of carbon fluxes. Elevated abundance of HSPs and osmolytes did not outbalance the severe limitation of protein synthesis, marked by orchestrated downregulation of translation (elongation factors, several aa-tRNA synthetases), amino acid biosynthesis and ribosome biogenesis in response to the hyperosmolarity. Altogether we settled that increased osmolarity is not beneficial for rs-Prots synthesis in Y. lipolytica, even though some elements of the response could assist this process. Insight into global changes in the yeast proteome under the treatments is provided. Key points • Temp enhances, but Osm decreases rs-Prots synthesis by Y. lipolytica. • Enhanced abundance of HSPs and osmolytes is overweighted by limited translation. • Global proteome under Osm, Temp and Osm Temp treatments was studied. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11731-y.
Collapse
|
10
|
Secretory helpers for enhanced production of heterologous proteins in Yarrowia lipolytica. BIOTECHNOLOGY REPORTS 2021; 32:e00669. [PMID: 34584852 PMCID: PMC8455373 DOI: 10.1016/j.btre.2021.e00669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022]
Abstract
Transcriptomics-identified HSs were co-overexpressed with a reporter protein. The highest improvement in the secreted reporter level was due to ↑RPL3 and ↑SSA8. For superior performance, “synthesis-involved” HSs require lowered temperature. From “trafficking-involved” HSs, ↑SSO1 was most beneficial for enhanced secretion. ↑ of “trafficking-involved” HSs, maintains secretory capacity under unfavorable t °C.
Depending on the suboptimal factor, the target protein secretion can be over 1000-fold below the theoretical maximum. The bottlenecks may be alleviated by co-overexpression of “secretory helpers” (SHs). Here we proposed twelve SHs, functionally spanning the whole transcription-translation-translocation-folding-maturation-excretion pipeline. The genes were co-transformed with an easy-to-track reporter, and tested less than two temperatures. Our results indicated a clear distinction in the effects triggered by SHs involved in either synthesis or trafficking of the heterologous polypeptides. For superior operation of synthesis-related SHs, namely RPL3, SSA5 and SSA8, the secretory pathway's capacity must be released by applying decreased temperature (25 °C). The other SHs considered (e.g. SSO1, CWP11) did not give such spectacular results in the amounts of the target heterologous polypeptide, but allowed to maintain secretory capacity under unfavorable thermal conditions. This study provides generalizable guidelines for cloning/culturing strategies aiming at enhancement of heterologous protein secretion in Y. lipolytica.
Collapse
|
11
|
Kubiak M, Białas W, Celińska E. Thermal treatment improves a process of crude glycerol valorization for the production of a heterologous enzyme by Yarrowia lipolytica. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00648. [PMID: 34221911 PMCID: PMC8243353 DOI: 10.1016/j.btre.2021.e00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
A crude glycerol valorization process to enzymatic preparation was developed. Impact of thermal treatment on the protein production by Y. lipolytica is studied. Pilot-scale processes with laboratory and technical substrates were simulated. Techno-economic analysis of a pilot-scale waste-free process was conducted. Comprehensive stream analysis and identification of bottlenecks is provided.
Valorization of crude glycerol requires a potent bifunctional biocatalyst, such as Yarrowia lipolytica, capable of high-density growth on this substrate, and having i.a. high propensity for heterologous protein synthesis. Increasing evidence suggests that controlled administration of stress, i.a. thermal treatment, has a positive impact on bioprocess performance. In this study, we systematically adjusted thermal treatment conditions (20 to 42 °C) in order to maximize heterologous protein production by Y. lipolytica growing in crude glycerol-based medium. Our results showed nearly 30% enhancement in the enzyme production triggered by temporary exposure to decreased temperature. Here developed mathematical model indicated optimal treatment conditions (20 °C, 153′) that were later applied to a process with biodiesel-derived glycerol and technical substrates. Techno-economic analysis of a pilot-scale-waste-free process was conducted. Quantitative description of the associated costs and economic gain due to exploitation of industrial substrates, as well as indication of current bottlenecks of the process, are also provided.
Collapse
Affiliation(s)
- Monika Kubiak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| |
Collapse
|
12
|
Kubiak-Szymendera M, Pryszcz LP, Białas W, Celińska E. Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms 2021; 9:microorganisms9091798. [PMID: 34576693 PMCID: PMC8471669 DOI: 10.3390/microorganisms9091798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, Yarrowia lipolytica, is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of Y. lipolytica subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of Y. lipolytica subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in Y. lipolytica’s genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of Y. lipolytica to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in Y. lipolytica’s genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by Y. lipolytica, it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in Y. lipolytica genome, are contradicted with the results of the immunoassay.
Collapse
Affiliation(s)
- Monika Kubiak-Szymendera
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Leszek P. Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
- Correspondence:
| |
Collapse
|
13
|
Korpys-Woźniak P, Celińska E. Global transcriptome profiling reveals genes responding to overproduction of a small secretory, a high cysteine- and a high glycosylation-bearing protein in Yarrowia lipolytica. ACTA ACUST UNITED AC 2021; 31:e00646. [PMID: 34189064 PMCID: PMC8220174 DOI: 10.1016/j.btre.2021.e00646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
Secretion of a protein results in > 10-fold higher titer compared to its retention. Overproduction of rs-Prots induces oxidative stress and detoxification response. Excessive vacuolar protein degradation limits rs-Prot production in Y. lipolytica. Non-classical export protein NCE102 is upregulated upon rs-Prot overloading. Downregulation of cyclin CLN1 marks growth arrest in G1 under rs-Prot synthesis.
Investigation of the yeast cell’s response to recombinant secretory protein (rs-Prot) overproduction is relevant for both basic and applied research. Imbalance, overloading or stress within this process impacts the whole cell. In the present study, by using steady-state cultures and transcriptomics, we investigated the cellular response of Yarrowia lipolytica challenged with high-level expression of genes encoding proteins with significantly different biochemical characteristics: a small protein retained within the cell i) or secreted ii), a medium size secretory protein with a high number of disulfide bonds iii), or glycosylation sites iv). Extensive analysis of omics data, supported by careful manual curation, led to some anticipated observations on oxidative and unfolded protein stress (CTT1, PXMP2/4, HAC1), glycosylation (ALGs, KTRs, MNTs, MNNs), folding and translocation (SSAs, SSEs) but also generated new exciting knowledge on non-conventional protein secretion (NCE102), transcriptional regulators (FLO11, MHY1, D01353 g, RSFA, E23925g or MAF1), vacuolar proteolysis targets in Y. lipolytica (ATGs, VPSs, HSE1, PRB1, PRC1, PEP4) or growth arrest (CLN1) upon rs-Prots overproduction.
Collapse
|