1
|
Lin Z, Fang Y, Wang J, Sun N, Shen Y, Cheng H, Liu W, Xie Q, Miao W, Jin P. YcsE-mediated dephosphorylation of ComP regulates surfactin and iturin synthesis in Bacillus velezensis HN-1. Int J Biol Macromol 2025; 315:144509. [PMID: 40409654 DOI: 10.1016/j.ijbiomac.2025.144509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Antifungal lipopeptides are crucial bioactive compounds produced by Bacillus velezensis through non-ribosomal peptide synthase (NRPS). However, the roles of phosphatases and histidine kinases in regulating lipopeptides synthesis in Bacillus species remain understudied. Here, we investigate the regulatory mechanisms of the phosphatase YcsE and the histidine kinase ComP in lipopeptides synthesis in B. velezensis. Physiological and biochemical indices, bacteriostatic activity, protein interaction and in vitro dephosphorylation were performed to study the roles of the YcsE mediated ComP dephosphorylation in B. velezensis lipopeptides synthesis. The EC50 and MIC50 assays revealed that the ycsE::TnYLB-1 and comP::TnYLB-1 exhibited only 3.48 % and 6.05 % against Colletotrichum fructicola HD-1 compared to the wild-type strain HN-1. Furthermore, inhibitory activity against Xanthomonas oryzae pv. oryzae decreased by 48.34 % and 75 %, respectively. In the ycsE::TnYLB-1 mutant, the concentrations of Bacillomycin D and Surfactin A were reduced to 0.65 mg/mL and 2.24 mg/mL, representing a decrease of 90.37 % and 62.16 %, respectively. Similarly, in the comP::TnYLB-1 mutant, Bacillomycin D and Surfactin A levels were 0.61 mg/mL and 2.82 mg/mL, corresponding to reductions of 90.96 % and 52.36 %, respectively. Notably, there were significant reductions in swimming, biofilm, oil-draining, and hemolytic activity. GST pull-down confirmed that YcsE interacts with SrfAA and Sfp, while ComP interacts with genes involved in lipopeptides synthesis. In vitro dephosphorylation experiments showed that YcsE-mediated the dephosphorylation of ComP. In summary, this study identifies a novel histidine kinase in regulating lipopeptides synthesis, through dephosphorylation by phosphatase YcsE, providing a theoretical foundation for improving high-yield B. velezensis.
Collapse
Affiliation(s)
- Zheng Lin
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Yukai Fang
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Jiatong Wang
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Nan Sun
- School of Tropical Agriculture and Forestry, University, Haikou, China
| | - Yuying Shen
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Haotian Cheng
- School of Natural Resources and the Environment, University of Arizona, Tucson, USA
| | - Wenbo Liu
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Qingbiao Xie
- School of Tropical Agriculture and Forestry, University, Haikou, China.
| | - Weiguo Miao
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China.
| | - Pengfei Jin
- School of Tropical Agriculture and Forestry, University, Haikou, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China.
| |
Collapse
|
2
|
Pan X, Lin W, Shen Y, Wang Y, Liu W, Miao W, Xie Q, Jin P. Hydrolase P1 in Bacillus velezensis HN-2 confers tobacco resistance by delaying TMV infection. PEST MANAGEMENT SCIENCE 2025. [PMID: 40353315 DOI: 10.1002/ps.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Tobacco is a critical cash crop globally, contributing significantly to government revenues. However, its production is severely threatened by tobacco mosaic virus (TMV), which causes substantial yield and quality losses, leading to economic damage. Given the limited efficacy of chemical controls, biological control methods have gained prominence. Bacillus spp. are recognized as effective agents for plant disease management. In prior research, Bacillus velezensis HN-2 demonstrated promising traits for inducing plant resistance. RESULTS This study revealed that the total protein extract from B. velezensis HN-2 triggers the production of reactive oxygen species, upregulates antioxidant enzymes, activates immune-related protein genes, and induces systemic resistance in plants. Its effectiveness surpassed that of benzothiadiazole and Dufulin in delaying TMV invasion. Further analysis identified a specific hydrolase protein within the total protein extract that plays a key role in the observed antiviral activity. Exogenous expression and functional assays confirmed that this hydrolase, designated P1, is the primary active protein in B. velezensis HN-2 responsible for delaying TMV infection. CONCLUSION Hydrolase protein P1 acts as an elicitor to induce systemic resistance in the tobacco plant against TMV Infection. These findings provide an experimental foundation for the application of B. velezensis HN-2 in biological control strategies and offer theoretical insights into the use of Bacillus-derived proteins for TMV management. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Pan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| | - Weihong Lin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| | - Yuying Shen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| | - Yu Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| | - Wenbo Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| | - Weiguo Miao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| | - Qingbiao Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Pengfei Jin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou, China
| |
Collapse
|
3
|
Yu X, Lv H, Luo H, Zhu X, Wu J, Zhang K. High level food-grade expression of maltogenic amylase in Bacillus subtilis through genomic integration and comA overexpression. Int J Biol Macromol 2025; 309:143060. [PMID: 40220825 DOI: 10.1016/j.ijbiomac.2025.143060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/20/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Maltogenic amylase AmyM can improve softness retention and extend shelf life of baked foods, while the low copy number of genomic integration and the limited, non-universal enhancement provided by existing heterologous protein synthesis-associated genes are the main constraints on achieving high food-grade expression levels of AmyM. In this study, we constructed a food-grade Bacillus subtilis strain that efficiently expressed AmyM by genomic multicopy integration and synthesis enhancer genes overexpression. Specifically, amyM (encoding AmyM) was sequentially integrated into 7 different sites of B. subtilis WS9C genome, yielding strain WS9C7. Then, transcriptome analysis of strains WS9C1 and WS9C7 was performed, and results showed that genes involved in iron ion homeostasis and amino acid metabolism were significantly changed. Twenty-six significant differentially expressed genes were chosen to be modified, and results showed that 9 genes had positive effect on AmyM expression. The best one, encoding the quorum-sensing regulator ComA, improved AmyM expression level by 1.55-fold reaching 10847 U/mL, which is currently the highest reported AmyM activity, and has been a novel modification target for higher recombinant expression.
Collapse
Affiliation(s)
- Xinrui Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huihui Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hui Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xuyang Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
4
|
Gao X, Luo Y, Adinkra EK, Chen Y, Tao W, Liu Y, Guo M, Wu J, Wu C, Liu Y. Engineering a PhrC-RapC-SinR quorum sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. Microb Cell Fact 2025; 24:88. [PMID: 40259323 PMCID: PMC12010548 DOI: 10.1186/s12934-025-02714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Menaquinone-7 (MK-7) is a valuable vitamin K2 produced by Bacillus subtilis. Although many strategies have been adopted to increase the yield of MK-7 in B. subtilis, the effectiveness of these common approaches is not high because long metabolic synthesis pathways and numerous bypass pathways competing for precursors with MK-7 synthesis. Regarding the modification of bypass pathways, studies of common static metabolic engineering method such as knocking out genes involved in side pathway have been reported previously. Since byproductsphenylalanine(Phe), tyrosine (Tyr), tryptophan (Trp), folic acid, dihydroxybenzoate, hydroxybutanone in the MK-7 synthesis pathway are indispensable for cell growth, the complete knockout of the bypass pathway restricts cell growth, resulting in limited increase in MK-7 synthesis. Dynamic regulation via quorum sensing (QS) provides a cost-effective strategy to harmonize cell growth and product synthesis, eliminating the need for pricey inducers. SinR, a transcriptional repressor, is crucial in suppressing biofilm formation, a process closely intertwined with MK-7 biosynthesis. Given this link, we targeted SinR to construct a dynamic regulatory system, aiming to modulate MK-7 production by leveraging SinR's regulatory influence. RESULTS A modular PhrC-RapC-SinR QS system is developed to dynamic regulate side pathway of MK-7. In this study, first, we analyzed the SinR-based gene expression regulation system in B. subtilis 168 (BS168). We constructed a promoter library of different abilities, selected suitable promoters from the library, and performed mutation screening on the selected promoters. Furthermore, we constructed a PhrC-RapC-SinR QS system to dynamically control the synthesis of Phe, Tyr, Trp, folic acid, dihydroxybenzoate, hydroxybutanone in MK-7 synthesis in BS168. Cell growth and efficient synthesis of the MK-7 production can be dynamically balanced by this QS system. Using this system to balance cell growth and product fermentation, the MK-7 yield was ultimately increased by 6.27-fold, from 13.95 mg/L to 87.52 mg/L. CONCLUSION In summary, the PhrC-RapC-SinR QS system has been successfully integrated with biocatalytic functions to achieve dynamic metabolic pathway control in BS168, which has potential applicability to a large number of microorganisms to fine-tune gene expression and enhance the production of metabolites.
Collapse
Affiliation(s)
- Xuli Gao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yani Luo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Elvis Kwame Adinkra
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd, Wuhu, 238300, China
| | - Wei Tao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yongyuan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Mingyu Guo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jing Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Chuanchao Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
- Wuhu Green Food Industry Research Institute Co., Ltd, Wuhu, 238300, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Yan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
- Wuhu Green Food Industry Research Institute Co., Ltd, Wuhu, 238300, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| |
Collapse
|
5
|
Liang Z, Ali Q, Wu H, Gu Q, Liu X, Sun H, Gao X. Biocontrol Mechanism of Bacillus thuringiensis GBAC46 Against Diseases and Pests Caused by Fusarium verticillioides and Spodoptera frugiperda. Biomolecules 2025; 15:519. [PMID: 40305259 PMCID: PMC12025000 DOI: 10.3390/biom15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Bacillus thuringiensis (Bt) is widely recognized as the most important microbial pesticide controlling various insect pests and diseases due to its insecticidal crystal proteins (ICPs) and antimicrobial metabolites. The current study investigates the biocontrol potential of B. thuringiensis GBAC46 against the fungal pathogen Fusarium verticillioides and the insect pest Spodoptera frugiperda through multiple mechanisms. Phenotypic experiments revealed that GBAC46 effectively inhibited F. verticillioides growth by inducing reactive oxygen species (ROS) accumulation and showed enhanced larvicidal activity against second instar S. frugiperda larvae. Pot experiments showed that feeding by S. frugiperda enhanced F. verticillioides infection in maize. The Bt strain GBAC46 effectively controlled both pests and diseases in greenhouse maize seedlings. Applying the Bt strain GBAC46 reduced feeding damage from S. frugiperda, decreased leaf yellowing and wilting caused by F. verticillioides, and improved growth indicators such as plant height, fresh weight, and dry weight. RT-qPCR results revealed that the Bt strain GBAC46 induced key defense genes in maize involved in activating salicylic acid, jasmonic acid, and ethylene pathways. The overall study demonstrated and confirmed the GBAC46 strain as a promising microbial agent for disease and pest management.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Ministry of Agriculture, Xuzhou 221131, China;
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Huijun Wu
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Gu
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Houjun Sun
- Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Ministry of Agriculture, Xuzhou 221131, China;
| | - Xuewen Gao
- The Sanya Institute, Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (H.W.); (Q.G.)
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Chang H, Zheng Z, Li H, Xu Y, Zhen G, Zhang Y, Ren X, Liu X, Zhu D. Multi-omics investigation of high-transglutaminase production mechanisms in Streptomyces mobaraensis and co-culture-enhanced fermentation strategies. Front Microbiol 2025; 16:1525673. [PMID: 39973936 PMCID: PMC11835810 DOI: 10.3389/fmicb.2025.1525673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Transglutaminase (TGase) has been widely applied in the food industry. However, achieving high-yield TGase production remains a challenge, limiting its broader industrial application. In this study, a high-yield strain with stable genetic traits was obtained through UV-ARTP combined mutagenesis, achieving a maximum TGase activity of 13.77 U/mL, representing a 92.43% increase. Using this strain as a forward mutation gene pool, comparative genomic research identified 95 mutated genes, which were mostly due to base substitutions that led to changes in codon usage preference. Transcriptomic analysis revealed significant expression changes in 470 genes, with 232 upregulated and 238 downregulated genes. By investigating potential key regulatory factors, comprehensive analysis indicated that changes in codon usage preference, amino acid metabolism, carbon metabolism, protein export processes, TGase activation, and spore production pathways collectively contributed to the enhancement of TGase activity. Subsequently, the in vitro activation efficiency of TGase was further improved using co-cultivation techniques with neutral proteases secreted by Bacillus amyloliquefaciens CICC10888, and a TGase activity of 16.91 U/mL was achieved, accounting for a 22.71% increase. This study provides a comprehensive understanding of the mechanisms underlying high-yield TGase production and valuable insights and data references for future research.
Collapse
Affiliation(s)
- Huanan Chang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ziyu Zheng
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hao Li
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yanqiu Xu
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Gengyao Zhen
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yao Zhang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xidong Ren
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinli Liu
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Deqiang Zhu
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
7
|
Dobrange E, Van den Ende W. Bacterial cell differentiation during plant root colonization: the putative role of fructans. PHYSIOLOGIA PLANTARUM 2025; 177:e70095. [PMID: 39887703 DOI: 10.1111/ppl.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Plant-growth-promoting microorganisms are extensively studied and employed as alternatives to toxic agrochemicals to enhance plant health. However, one of the main concerns regarding their use is their limited capacity to colonize plant tissues after initial application. Understanding the molecular mechanisms involved during plant colonization could help to develop strategies to improve the efficacy of beneficial microbes in the field. Polysaccharides, including fructans, may be of particular interest since they have been shown to promote cellular and morphological changes in bacteria from the genus Bacillus that are typically associated with improved root colonization, such as increased motility and biofilm reinforcement. The potential role of fructans as signalling molecules affecting plant-microbe interactions is discussed in the context of plant root colonization with a focus on the model organism Bacillus subtilis, a well-characterized rhizobacterium. First, the molecular processes underlying B. subtilis cell differentiation are explained and connected to plant root colonization. Secondly, we explore how fructans, in particular inulin and levan, may interfere during these processes. These views call for further research into the putative role of inulin and levan-type fructans as microbial signalling molecules, with the aim of developing beneficial microbial networks in the rhizosphere.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology and Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Xiong Q, Zhang H, Shu X, Sun X, Feng H, Xu Z, Kovács ÁT, Zhang R, Liu Y. Autoinducer-2 relieves soil stress-induced dormancy of Bacillus velezensis by modulating sporulation signaling. NPJ Biofilms Microbiomes 2024; 10:117. [PMID: 39489748 PMCID: PMC11532509 DOI: 10.1038/s41522-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
The collective behavior of bacteria is regulated by quorum sensing (QS). Autoinducer-2 (AI-2) is a common QS signal that regulates the behavior of both Gram-positive and Gram-negative bacteria. Despite the plethora of processes described to be influenced by AI-2 in diverse Gram-negative bacteria, the AI-2-regulated processes in Bacilli are relatively unexplored. Here, we describe a novel function for AI-2 in Bacillus velezensis SQR9 related to the sporulation. AI-2 inhibited the initiation of sporulation through the phosphatase RapC and the DNA binding regulator ComA. Using biochemistry experiments, we demonstrated that AI-2 interacts with RapC to stimulate its binding to ComA, which leads to an inactive ComA and subsequently a sporulation inhibition. The AI-2 molecule could be shared across species for inhibiting Bacillus sporulation and it also plays the same role in different soil conditions. Our study revealed a novel function and regulatory mechanism of AI-2 in inhibiting sporulation in Bacilli.
Collapse
Affiliation(s)
- Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, PR China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Gznzhou, PR China
| | - Huihui Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Xiting Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ákos T Kovács
- Faculty of Science - Institute of Biology, Leiden University, Sylviusweg 73, 2333BE, Leiden, Netherlands
- DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
| |
Collapse
|
9
|
Qiao J, Borriss R, Sun K, Zhang R, Chen X, Liu Y, Liu Y. Research advances in the identification of regulatory mechanisms of surfactin production by Bacillus: a review. Microb Cell Fact 2024; 23:100. [PMID: 38566071 PMCID: PMC10988940 DOI: 10.1186/s12934-024-02372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.
Collapse
Affiliation(s)
- Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany.
| | - Kai Sun
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xijun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
10
|
Xia L, Hou Z, Zhu F, Wen J. Enhancing surfactin production in Bacillus subtilis: Insights from proteomic analysis of nitrate-induced overproduction and strategies for combinatorial metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 397:130499. [PMID: 38417461 DOI: 10.1016/j.biortech.2024.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Surfactin biosynthesis in Bacillus subtilis is intricately regulated by environmental conditions. In the present study, addition of nitrate, a nitrogen source, increased the production of surfactin in B. subtilis ATCC 21332, whereas its absence resulted in minimal or no surfactin production. Proteomics revealed the mechanism underlying nitrate-induced surfactin overproduction, identifying three key differential proteins (preprotein translocase subunit SecA, signal recognition particle receptor FtsY, and cell division adenosine triphosphate-binding protein FtsE) relevant to surfactin transport and regulation. Combinatorial metabolic engineering strategies (enhanced nitrate reduction, fatty acid hydroxylation, rational transporter engineering, and feeding) led to a 41.4-fold increase in surfactin production compared with the initial production in the wild-type strain. This study provides insights into the molecular mechanism of nitrate-induced surfactin overproduction and strategies to enhance the performance of surfactin-producing strains.
Collapse
Affiliation(s)
- Li Xia
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, 300350, PR China; Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300350, PR China; Center for Chemical Science and Engineering, Tianjin University, 300350, PR China
| | - Zhengjie Hou
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, 300350, PR China; Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300350, PR China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, 300350, PR China; Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300350, PR China; Center for Chemical Science and Engineering, Tianjin University, 300350, PR China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, 300350, PR China; Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300350, PR China; Center for Chemical Science and Engineering, Tianjin University, 300350, PR China.
| |
Collapse
|
11
|
Zanon MSA, Cavaglieri LR, Palazzini JM, Chulze SN, Chiotta ML. Bacillus velezensis RC218 and emerging biocontrol agents against Fusarium graminearum and Fusarium poae in barley: in vitro, greenhouse and field conditions. Int J Food Microbiol 2024; 413:110580. [PMID: 38246027 DOI: 10.1016/j.ijfoodmicro.2024.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Fusarium head blight (FHB) is one of the most common diseases in Argentina, affecting the quality and yield of barley grains. Fusarium graminearum sensu stricto (ss) and Fusarium poae are causal agents of FHB and potential sources of mycotoxin contamination in barley. Conventional management strategies do not lead to a complete control of FHB; therefore, biological control emerges as an eco-friendly alternative in the integrated management of the disease. In the present work, Bacillus velezensis, Bacillus inaquosorum, Bacillus nakamurai and Lactobacillus plantarum were evaluated as potential biocontrol agents against F. graminearum ss and F. poae on barley-based media. Bacillus velezensis RC218 was selected to carry out greenhouse and field trials in order to reduce FHB and mycotoxin accumulation. This strain was able to control growth of both Fusarium species and reduced deoxynivalenol (DON) and nivalenol (NIV) production by 66 % and 79 %, respectively. Bacillus inaquosorum and B. nakamurai were more effective in controlling F. poae growth, and the mean levels of reduction in DON accumulation were 50 and 38 %, and 93 and 26 % for NIV, respectively. Lactobacillus plantarum showed variable biocontrol capacity depending on the strain, with no significant mycotoxin reduction. The biocontrol on incidence and severity of FHB in the greenhouse and field trials was effective, being more efficient against F. graminearum ss and DON accumulation than against F. poae and NIV occurrence. This study provides valuable data for the development of an efficient tool based on biocontrol agents to prevent FHB-producing Fusarium species development and mycotoxin occurrence in barley, contributing to food safety.
Collapse
Affiliation(s)
- María Silvina Alaniz Zanon
- Research Institute on Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | | | - Juan Manuel Palazzini
- Research Institute on Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - Sofía Noemí Chulze
- Research Institute on Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - María Laura Chiotta
- Research Institute on Mycology and Micotoxicology (IMICO), National Scientific and Technical Research Council - Argentina (CONICET), National University of Río Cuarto (UNRC), Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET.
| |
Collapse
|
12
|
Wang J, Ping Y, Liu W, He X, Du C. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and comA genes. Prep Biochem Biotechnol 2024; 54:184-192. [PMID: 37158496 DOI: 10.1080/10826068.2023.2209890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bacillus subtilis HNDF2-3 can produce a variety of lipopeptide antibiotics with lower production. To improve its lipopeptide production, three genetically engineered strains were constructed. The results of real-time PCR showed that the highest transcriptional levels of the sfp gene in F2-3sfp, F2-3comA and F2-3sfp-comA were 29.01, 6.65 and 17.50 times of the original strain, respectively, while the highest transcriptional levels of the comA gene in F2-3comA and F2-3sfp-comA were 10.44 and 4.13 times of the original strain, respectively. The results of ELISA showed that the malonyl-CoA transacylase activity of F2-3comA was the highest, reaching 18.53 IU/L at 24 h, the data was 32.74% higher than that of the original strain. The highest total lipopeptide production of F2-3sfp, F2-3comA and F2-3sfp-comA induced by IPTG at optimal concentration were 33.51, 46.05 and 38.96% higher than that of the original strain, respectively. The results of HPLC showed that iturin A production of F2-3sfp-comA was the highest, which was 63.16% higher than that of the original strain. This study laid the foundation for further construction of genetically engineered strains with high lipopeptide production.
Collapse
Affiliation(s)
- Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
13
|
Yu C, Qiao J, Ali Q, Jiang Q, Song Y, Zhu L, Gu Q, Borriss R, Dong S, Gao X, Wu H. degQ associated with the degS/degU two-component system regulates biofilm formation, antimicrobial metabolite production, and biocontrol activity in Bacillus velezensis DMW1. MOLECULAR PLANT PATHOLOGY 2023; 24:1510-1521. [PMID: 37731193 PMCID: PMC10632791 DOI: 10.1111/mpp.13389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.
Collapse
Affiliation(s)
- Chenjie Yu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Junqing Qiao
- Jiangsu Academy of Agricultural SciencesInstitute of Plant ProtectionNanjingChina
| | - Qurban Ali
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qifan Jiang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Yan Song
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Linli Zhu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Rainer Borriss
- Institut für BiologieHumboldt University BerlinBerlinGermany
| | - Suomeng Dong
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
14
|
Xia L, Wen J. Available strategies for improving the biosynthesis of surfactin: a review. Crit Rev Biotechnol 2023; 43:1111-1128. [PMID: 36001039 DOI: 10.1080/07388551.2022.2095252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
Surfactin is an excellent biosurfactant with a wide range of application prospects in many industrial fields. However, its low productivity and high cost have largely limited its commercial applications. In this review, the pathways for surfactin synthesis in Bacillus strains are summarized and discussed. Further, the latest strategies for improving surfactin production, including: medium optimization, genome engineering methods (rational genetic engineering, genome reduction, and genome shuffling), heterologous synthesis, and the use of synthetic biology combined with metabolic engineering approaches to construct high-quality artificial cells for surfactin production using xylose, are described. Finally, the prospects for improving surfactin synthesis are discussed in detail.
Collapse
Affiliation(s)
- Li Xia
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
16
|
Liu N, Sun H, Tang Z, Zheng Y, Qi G, Zhao X. Transcription Factor Spo0A Regulates the Biosynthesis of Difficidin in Bacillus amyloliquefaciens. Microbiol Spectr 2023; 11:e0104423. [PMID: 37432122 PMCID: PMC10434259 DOI: 10.1128/spectrum.01044-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Bacillus amyloliquefaciens WH1 produces multiple antibiotics with antimicrobial activity and can control bacterial wilt disease caused by Ralstonia solanacearum. Antibacterial substances produced by WH1 and the regulation mechanism are unknown. In this study, it was found that difficidin, and to a minor extent bacillibactin, exhibited antibacterial activity against R. solanacearum. Lipopeptides, macrolactin, bacillaene, and bacilysin had no antibacterial activity. Ferric iron uptake transcriptional regulator Fur bound the promoter region of the dhb gene cluster of bacillibactin biosynthesis. Mutant Δfur showed a higher bacillibactin production and its antibacterial activity increased by 27% than wild-type WH1. Difficidin inhibited R. solanacearum growth and disrupted the integrity of the cells. Lack of transcription factor Spo0A abolished difficidin biosynthesis. Spo0A bound the promoter region of the dfn gene cluster of difficidin biosynthesis. Changing phosphorylation levels of Spo0A via deletion of phosphatase gene spo0E and histidine kinases genes kinA and kinD affected the biosynthesis of difficidin. Deletion of spo0E increased the phosphorylation level of Spo0A and consequently improved the difficidin production. The antibacterial activity of mutant Δspo0E and ΔkinA increased by 12% and 19%. The antibacterial activity of mutant ΔkinD decreased by 28%. Collectively, WH1 produced difficidin to disrupt the cell of R. solanacearum and secreted siderophore bacillibactin to compete for ferric iron. Spo0A regulated difficidin biosynthesis. Spo0A regulates quorum-sensing responses and controls the biosynthesis of secondary metabolites in B. amyloliquefaciens. This study has important findings in the regulation mechanism of antibiotic synthesis and helps to improve antibiotic yield in Bacillus. IMPORTANCE Pathogen R. solanacearum causes bacterial wilt disease in many crops. There is no chemical bactericide that can control bacterial wilt disease. It is vital to find antagonistic microorganisms and antibacterial substances that can efficiently control bacterial wilt disease. B. amyloliquefaciens WH1 could inhibit the growth of R. solanacearum. Via genetic mutation, it was found that difficidin and to a minor extent bacillibactin produced by WH1 acted efficiently against R. solanacearum. The transcription factor Spo0A regulated the synthesis of difficidin. Phosphorylation of Spo0A affected the production of difficidin. Increasing the phosphorylation level of Spo0A improved the difficidin production and antibacterial activity. In-depth analysis of the regulation mechanism of antibiotic difficidin is meaningful for enhancing the control efficiency of WH1. B. amyloliquefaciens WH1 and the antibacterial substances have vast application potential in controlling bacterial wilt disease.
Collapse
Affiliation(s)
- Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huiwan Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhengyu Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yuqing Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
17
|
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv 2023; 65:108142. [PMID: 36977440 DOI: 10.1016/j.biotechadv.2023.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.
Collapse
Affiliation(s)
- Zhuoce Dang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiahao Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yufei Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhixin Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China.
| |
Collapse
|
18
|
Liu D, Han Z, Hu Z, Yu C, Wang Y, Tong J, Fang X, Yue W, Nie G. Comparative analysis of the transcriptome of Bacillus subtilis natto incubated in different substrates for nattokinase production. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
19
|
Qiao J, Zhang R, Liu Y, Liu Y. Evaluation of the Biocontrol Efficiency of Bacillus subtilis Wettable Powder on Pepper Root Rot Caused by Fusarium solani. Pathogens 2023; 12:225. [PMID: 36839497 PMCID: PMC9967462 DOI: 10.3390/pathogens12020225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The plant-growth-promoting rhizobacteria (PGPR) B. subtilis PTS-394 has been utilized as a biocontrol agent (in a wettable powder form) due to its excellent ability to suppress tomato soil-borne diseases caused by Fusarium oxysporum and Ralstonia solanacearum. In this study, we evaluated the biocontrol efficiency of Bacillus subtilis PTS-394 wettable powder on pepper root rot in pot experiments and field trials. B. subtilis PTS-394 and its lipopeptide crude extract possessed excellent inhibition activity against Fusarium solani, causing pepper root rot; in an antifungal activity test B. subtilis PTS-394 wettable powder exhibited a good ability to promote pepper seed germination and plant height. The experiments in pots and the field indicated that B. subtilis PTS-394 wettable powder had an excellent control effect at 100-fold dilution, and its biocontrol efficacy reached 69.63% and 74.43%, respectively. In this study, the biocontrol properties of B. subtilis PTS-394 wettable powder on pepper root rot were evaluated and its application method was established. It was concluded that B. subtilis PTS-394 wettable powder is a potential biocontrol agent with an excellent efficiency against pepper root rot.
Collapse
Affiliation(s)
| | | | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
20
|
Wu X, Fan Y, Wang R, Zhao Q, Ali Q, Wu H, Gu Q, Borriss R, Xie Y, Gao X. Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition. FRONTIERS IN PLANT SCIENCE 2022; 13:978066. [PMID: 36035675 PMCID: PMC9404337 DOI: 10.3389/fpls.2022.978066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Salt stress decreases plant growth and is a major threat to crop yields worldwide. The present study aimed to alleviate salt stress in plants by inoculation with halophilic plant growth-promoting rhizobacteria (PGPR) isolated from an extreme environment in the Qinghai-Tibetan Plateau. Wheat plants inoculated with Bacillus halotolerans KKD1 showed increased seedling morphological parameters and physiological indexes. The expression of wheat genes directly involved in plant growth was upregulated in the presence of KKD1, as shown by real-time quantitative PCR (RT-qPCR) analysis. The metabolism of phytohormones, such as 6-benzylaminopurine and gibberellic acid were also enhanced. Mining of the KKD1 genome corroborated its potential plant growth promotion (PGP) and biocontrol properties. Moreover, KKD1 was able to support plant growth under salt stress by inducing a stress response in wheat by modulating phytohormone levels, regulating lipid peroxidation, accumulating betaine, and excluding Na+. In addition, KKD1 positively affected the soil nitrogen content, soil phosphorus content and soil pH. Our findings indicated that KKD1 is a promising candidate for encouraging wheat plant growth under saline conditions.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Yaning Fan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität, Berlin, Germany
- Nord Reet UG, Greifswald, Germany
| | - Yongli Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, Gao X. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi. Int J Mol Sci 2022; 23:ijms23158189. [PMID: 35897765 PMCID: PMC9331774 DOI: 10.3390/ijms23158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Xuefei Kan
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Yajun Ren
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China;
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5268
| |
Collapse
|
22
|
Bai N, He Y, Zhang H, Zheng X, Zeng R, Li Y, Li S, Lv W. γ-Polyglutamic Acid Production, Biocontrol, and Stress Tolerance: Multifunction of Bacillus subtilis A-5 and the Complete Genome Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137630. [PMID: 35805288 PMCID: PMC9265942 DOI: 10.3390/ijerph19137630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022]
Abstract
Bacillus subtilis A-5 has the capabilities of high-molecular-weight γ-PGA production, antagonism to plant pathogenic fungi, and salt/alkaline tolerance. This multifunctional bacterium has great potential for enhancing soil fertility and plant security in agricultural ecosystem. The genome size of B. subtilis A-5 was 4,190,775 bp, containing 1 Chr and 2 plasmids (pA and pB) with 43.37% guanine-cytosine content and 4605 coding sequences. The γ-PGA synthase gene cluster was predicted to consist of pgsBCA and factor (pgsE). The γ-PGA-degrading enzymes were mainly pgdS, GGT, and cwlO. Nine gene clusters producing secondary metabolite substances, namely, four unknown function gene clusters and five antibiotic synthesis gene clusters (surfactin, fengycin, bacillibactin, subtilosin_A, and bacilysin), were predicted in the genome of B. subtilis A-5 using antiSMASH. In addition, B. subtilis A-5 contained genes related to carbohydrate and protein decomposition, proline synthesis, pyruvate kinase, and stress-resistant proteins. This affords significant insights into the survival and application of B. subtilis A-5 in adverse agricultural environmental conditions.
Collapse
Affiliation(s)
- Naling Bai
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
| | - Yu He
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
| | - Hanlin Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
| | - Xianqing Zheng
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
| | - Rong Zeng
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
| | - Yi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Shuangxi Li
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
- Agricultural Environment and Farmland Conservation Experiment Station, Ministry Agriculture and Rural Affairs, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Correspondence: (S.L.); (W.L.)
| | - Weiguang Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (N.B.); (Y.H.); (H.Z.); (X.Z.); (R.Z.)
- Agricultural Environment and Farmland Conservation Experiment Station, Ministry Agriculture and Rural Affairs, Shanghai 201403, China
- Key Laboratory of Low-Carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai 201403, China
- Correspondence: (S.L.); (W.L.)
| |
Collapse
|
23
|
Gu Q, Qiao J, Wang R, Lu J, Wang Z, Li P, Zhang L, Ali Q, Khan AR, Gao X, Wu H. The Role of Pyoluteorin from Pseudomonas protegens Pf-5 in Suppressing the Growth and Pathogenicity of Pantoea ananatis on Maize. Int J Mol Sci 2022; 23:ijms23126431. [PMID: 35742879 PMCID: PMC9223503 DOI: 10.3390/ijms23126431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/24/2023] Open
Abstract
The rhizospheric bacterium Pseudomonas protegens Pf-5 can colonize the seed and root surfaces of plants, and can protect them from pathogen infection. Secondary metabolites, including lipopeptides and polyketides produced by Pf-5, are involved in its biocontrol activity. We isolated a crude extract from Pf-5. It exhibited significant surface activity and strong antibacterial activity against Pantoea ananatis DZ-12, which causes maize brown rot on leaves. HPLC analysis combined with activity tests showed that the polyketide pyoluteorin in the crude extract participated in the suppression of DZ-12 growth, and that the lipopeptide orfamide A was the major biosurfactant in the crude extract. Further studies indicated that the pyoluteorin in the crude extract significantly suppressed the biofilm formation of DZ-12, and it induced the accumulation of reactive oxygen species in DZ-12 cells. Scanning electron microscopy and transmission electron microscopy observation revealed that the crude extract severely damaged the pathogen cells and caused cytoplasmic extravasations and hollowing of the cells. The pathogenicity of DZ-12 on maize leaves was significantly reduced by the crude extract from Pf-5 in a dose-dependent manner. The polyketide pyoluteorin had strong antibacterial activity against DZ-12, and it has the potential for development as an antimicrobial agent.
Collapse
Affiliation(s)
- Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Juan Lu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Zhengqi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Pingping Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Lulu Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.G.); (R.W.); (J.L.); (Z.W.); (P.L.); (L.Z.); (Q.A.); (A.R.K.); (X.G.)
- Correspondence: ; Tel./Fax: +86-25-84395268
| |
Collapse
|
24
|
Metabolic engineering of Bacillus subtilis 168 for the utilization of arabinose to synthesize the antifungal lipopeptide fengycin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Mazanko MS, Popov IV, Prazdnova EV, Refeld AG, Bren AB, Zelenkova GA, Chistyakov VA, Algburi A, Weeks RM, Ermakov AM, Chikindas ML. Beneficial Effects of Spore-Forming Bacillus Probiotic Bacteria Isolated From Poultry Microbiota on Broilers' Health, Growth Performance, and Immune System. Front Vet Sci 2022; 9:877360. [PMID: 35711797 PMCID: PMC9194945 DOI: 10.3389/fvets.2022.877360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.
Collapse
Affiliation(s)
- Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V. Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- *Correspondence: Igor V. Popov
| | - Evgeniya V. Prazdnova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G. Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- ChemBio Cluster, ITMO University, Saint Petersburg, Russia
| | - Anzhelica B. Bren
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Galina A. Zelenkova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A. Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ammar Algburi
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Richard M. Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|