1
|
Kongsomboonchoke P, Mongkolkarvin P, Khunti P, Vijitphichiankul J, Nonejuie P, Thiennimitr P, Chaikeeratisak V. Rapid formulation of a genetically diverse phage cocktail targeting uropathogenic Escherichia coli infections using the UTI89 model. Sci Rep 2025; 15:12832. [PMID: 40229393 PMCID: PMC11997193 DOI: 10.1038/s41598-025-96561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Urinary tract infections are commonly caused by uropathogenic Escherichia coli (UPEC). Due to the emergence of multidrug-resistant UPEC, rendering antibiotic treatment ineffective, phage combination-based therapy has been proposed as a potential alternative. Here, we present a formulation of a genetically diverse phage-derived cocktail that is rapidly customized for UPEC using E. coli UTI89 as a model strain. Through our rapid selection and combination of four phages against UPEC strain UTI89 (SR01, SR02, SR04, and Zappy) from our library, the combination of two lytic phages, SR02 and SR04, exhibits the strongest suppression of bacterial growth for at least 16 h, with no emergence of phage resistance observed in vitro. Phage SR02 undergoes subcellular activity for 25 min, producing approximately 106 progeny particles per cell, while SR04 completes its replication cycle in 20 min, generating around 564 progeny particles per cell. These two novel phages are genetically diverse, and their cocktail exhibited potent suppression of bacterial growth, independent of multiplicities of infection (MOIs), significantly reducing the viable bacterial counts after treatment in vitro. The phage cocktail has low immunogenicity and does not induce any proinflammatory gene responses in human bladder uroepithelial cells. Moreover, the cocktail effectively eradicates the invading UPEC strain UTI89 in the uroepithelial cells at a comparable level to that of phage SR04 alone, likely releasing some immunostimulatory agents that, in turn, trigger upregulation of MIP-3 and IL-8 genes. Altogether, this study offers an alternative pipeline for rapidly formulating genetically diverse phage-derived cocktails, which is specifically customized for targeted bacteria.
Collapse
Affiliation(s)
| | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patiphan Khunti
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Poochit Nonejuie
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Wesołowski W, Łukasiak A, Bloch S, Kuligowska K, Neumann J, Lewandowska N, Węglińska E, Węgrzyn G, Nejman-Faleńczyk B. Phage Endolysins as Promising and Effective Candidates for Use Against Uropathogenic Escherichia coli. Viruses 2025; 17:560. [PMID: 40285003 PMCID: PMC12031403 DOI: 10.3390/v17040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The presented in silico and phylogenetic analysis of putative endolysins potentially produced by phages infecting uropathogenic Escherichia coli (UPEC) demonstrates their remarkable diversity. These proteins exhibit significant variations in sequence length, molecular weight, isoelectric point, and stability, as well as diverse functional domains determining their enzymatic activity, including lysin, lysozyme, hydrolase, amidase, and peptidase functions. Due to their predicted lytic properties, endolysins hold great promise in combating UPEC bacteria, including those within biofilms, which are often highly resistant to conventional treatments. Despite their potential, several challenges hinder the full utilization of endolysins. These include the relatively small number of identified proteins, challenges in the annotation process, and the scarcity of studies evaluating their efficacy in vitro and in vivo against Gram-negative bacteria. In this work, we emphasize these challenges while also underlining the potential of endolysins as an effective tool against UPEC infections. Their effectiveness could be significantly enhanced when combined with agents that disrupt the outer membrane of these bacteria, making them a promising alternative or complement to existing antimicrobial strategies. Further research is necessary to fully explore their therapeutic potential.
Collapse
Affiliation(s)
- Wojciech Wesołowski
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
| | - Aleksandra Łukasiak
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
| | - Sylwia Bloch
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
- BNF—New Bio Force Ltd., Kartuska 420a, 80-125 Gdańsk, Poland
| | - Kaja Kuligowska
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
| | - Julia Neumann
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk (UG), Wita Stwosza 63, 80-309 Gdansk, Poland;
| | - Natalia Lewandowska
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
| | - Emilia Węglińska
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
| | - Grzegorz Węgrzyn
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
| | - Bożena Nejman-Faleńczyk
- Laboratory of Biology and Biotechnology of Bacteriophages, Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.W.); (A.Ł.); (S.B.); (K.K.); (N.L.); (E.W.); (G.W.)
- BNF—New Bio Force Ltd., Kartuska 420a, 80-125 Gdańsk, Poland
| |
Collapse
|
3
|
Ren Q, Wang Z, Ge Y, Huang Y, Zhang W, Liu C, Li Y, Cao S. Biological characterization of novel Escherichia coli O157:H7 phages and their bacteriostatic effects in milk and pork. Front Microbiol 2025; 16:1516223. [PMID: 39980686 PMCID: PMC11841896 DOI: 10.3389/fmicb.2025.1516223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
Foodborne bacteria, particularly Escherichia coli (E. coli) O157:H7, are significant contributors to foodborne illnesses, with antibiotic overuse exacerbating the issue through the emergence of multidrug-resistant strains. This study investigated the potential of E. coli phages in food safety, examining their biological traits and bacteriostatic properties. Two phages (vB_EcoP_SD2, vB_EcoP_SD6) of E. coli O157:H7 were isolated from slaughterhouse sewage and characterized for morphology, genomic composition, phage phylogenetic tree, optimal multiplicity of infection (MOI), one-step growth curve, thermal and pH stability and antibacterial efficacy. The optimal MOIs of vB_EcoP_SD2 and vB_EcoP_SD6 was 0.1 and 0.01, and temperature range for maintaining activity was 4°C to 55°C. The host range of vB_EcoP_SD2 and vB_EcoP_SD6 was 65% (13/20) and 55% (11/20), which was partially complementary to each other (75%, 15/20). Notably, vB_EcoP_SD2 displayed a latent period of 10 min, a burst period of 80 min, and a burst volume of 80 PFU per cell, while vB_EcoP_SD6 had a burst volume of 10 PFU per cell. Comprehensive whole-genome analysis confirmed two phages has no presence of pathogenic factors or resistance genes. Genomic comparisons suggest vB_EcoP_SD2 and vB_EcoP_SD6, respectively, constituted a novel member of a new genus, Justusliebigvirus genus and Kayfunavirus genus which genome, respectively, was found to be 1,49,066 bp, 40,202 bp long with an average GC content of 37.5 and 49.8%. The phages effectively inhibited host bacteria in LB broth for at least 6 h and showed promise in inhibiting bacteria in milk and pork, which indicated that the two phages exhibited a favorable bacteriostatic effect on milk and pork within the first 6 h under the optimal MOI. In the milk bacteriostasis experiment, vB_EcoP_SD2 could reduce bacteria by 3.16 × 104 CFU/mL, and vB_EcoP_SD6 could reduce bacteria by 1.05 × 104 CFU/mL. Phage vB_EcoP_SD2 decreased bacteria by 1.14 × 104 CFU/mL, and vB_EcoP_SD6 decreased bacteria by 2.04 × 103 CFU/mL in the pork. There was no disparity in bacteriostatic effect of different MOI within the first 6 h, but bacteriostatic effect of all groups still remained different from that of the control group. This study indicates the two phages possess excellent biological characteristics, thereby providing a theoretical foundation for the subsequent development of natural fungicides.
Collapse
Affiliation(s)
- Qinghai Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Anyou Biotechnology Group Co., Ltd., Suzhou, China
| | - Zhiwei Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Yichen Ge
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Yucui Huang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Suzhou, China
| | - Yubao Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Shengliang Cao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
4
|
Rodea M GE, González-Villalobos E, Espinoza-Mellado MDR, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, Molina-López J. Genomic analysis and characterization of a new Salmonella phage vB_Sen_ST2 infecting Salmonella enterica serovars Typhi and Typhimurium. Microb Pathog 2025; 198:107178. [PMID: 39608505 DOI: 10.1016/j.micpath.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
In this study, we have characterized and sequenced the whole genome of a new member of the Kuttervirus genus, Salmonella phage vB_Sen_ST2. This phage selectively targets Salmonella enterica serovars Typhi and Typhimurium, which are major etiologic agents of salmonellosis worldwide. Its genome consists of a linear, double-stranded DNA of 156,028 bp, with a G + C content of 44.93 %. Based on our results, Salmonella phage vB_Sen_ST2 presents suitable features to be considered as a potential control agent against Salmonella enterica serovars that are responsible for salmonellosis.
Collapse
Affiliation(s)
- Gerardo E Rodea M
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular División de Investigación, Departamento de Salud Pública, Facultad de Medicina, UNAM, C.P. 06720, Mexico City, Mexico
| | - María Del Rosario Espinoza-Mellado
- Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City, 11340, Mexico
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - Carlos Alberto Eslava-Campos
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain
| | - José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico.
| |
Collapse
|
5
|
Guo M, Zhang Y, Wu L, Xiong Y, Xia L, Cheng Y, Ma J, Wang H, Sun J, Wang Z, Yan Y. Development and mouse model evaluation of a new phage cocktail intended as an alternative to antibiotics for treatment of Staphylococcus aureus-induced bovine mastitis. J Dairy Sci 2024; 107:5974-5987. [PMID: 38522833 DOI: 10.3168/jds.2024-24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Bovine mastitis is a prevalent infectious disease in dairy herds worldwide, resulting in substantial economic losses. Staphylococcus aureus is a major cause of mastitis in animals, and its antibiotic resistance poses challenges for treatment. Recently, renewed interest has focused on the development of alternative methods to antibiotic therapy, including bacteriophages (phages), for controlling bacterial infections. In this study, 2 lytic phages, vB_SauM_JDYN (JDYN) and vB_SauM_JDF86 (JDF86), were isolated from the cattle sewage effluent samples collected from dairy farms in Shanghai. The 2 phages have a broad bactericidal spectrum against Staphylococcus of various origins. Genomic and morphological analyses revealed that the 2 phages belonged to the Myoviridae family. Moreover, JDYN and JDF86 remained stable under a wide temperature and pH range and were almost unaffected in chloroform. In this study, we prepared a phage cocktail (PHC-1) which consisted of a 1:1:1 ratio of JDYN, JDF86, and SLPW (a previously characterized phage). We found that PHC-1 showed the strongest bacteriolytic effect and the lowest frequency of emergence of bacteriophage insensitive mutants compared with monophages. Bovine mammary epithelial cells and lactating mice mastitis models were used to evaluate the effectiveness of PHC-1 in vitro and in vivo, respectively. The results demonstrated that PHC-1 treatment significantly reduced bacterial load, alleviated inflammatory response, and improved mastitis pathology. Altogether, these results suggest that PHC-1 has the potential to treat S. aureus-induced bovine mastitis and that phage cocktails can combat antibiotic-resistant S. aureus infections.
Collapse
Affiliation(s)
- Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lifei Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yangjing Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lu Xia
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| |
Collapse
|
6
|
Rodea M GE, González-Villalobos E, Espinoza-Mellado MDR, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, Molina-López J. Genomic analysis of a novel phage vB_SenS_ST1UNAM with lytic activity against Salmonella enterica serotypes. Diagn Microbiol Infect Dis 2024; 109:116305. [PMID: 38643675 DOI: 10.1016/j.diagmicrobio.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
In this study, we present the complete annotated genome of a novel Salmonella phage, vB_SenS_ST1UNAM. This phage exhibits lytic activity against several Salmonella enterica serotypes, such as S. Typhi, S. Enteritidis, and S. Typhimurium strains, which are major causes of foodborne illness worldwide. Its genome consists of a linear, double-stranded DNA of 47,877 bp with an average G+C content of 46.6%. A total of 85 coding regions (CDS) were predicted, of which only 43 CDS were functionally assigned. Neither genes involved in the regulation of lysogeny, nor antibiotic resistance genes were identified. This phage harbors a lytic cassette that encodes a type II-holin and a Rz/Rz1-like spanin complex, along with a restriction-modification evasion system and a depolymerase that degrades Salmonella exopolysaccharide. Moreover, the comparative analysis with closely related phage genomes revealed that vB_SenS_ST1UNAM represents a novel genus, for which the genus "Gomezvirus" within the subfamily "ST1UNAM-like" is proposed.
Collapse
Affiliation(s)
- Gerardo E Rodea M
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico; Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular División de Investigación, departamento de Salud Pública, Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - María Del Rosario Espinoza-Mellado
- Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City 11340, México
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - Carlos Alberto Eslava-Campos
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA). 17003, Girona, Spain; University of Girona. 17004 Girona, Spain
| | - José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510. Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación. Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720 Mexico City, Mexico.
| |
Collapse
|
7
|
Engel DR, Wagenlehner FME, Shevchuk O. Scientific Advances in Understanding the Pathogenesis, Diagnosis, and Prevention of Urinary Tract Infection in the Past 10 Years. Infect Dis Clin North Am 2024; 38:229-240. [PMID: 38575493 DOI: 10.1016/j.idc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Urinary tract infection (UTI) is a very common disease that is accompanied by various complications in the affected person. UTI triggers diverse inflammatory reactions locally in the infected urinary bladder and kidney, causing tissue destruction and organ failure. Moreover, systemic responses in the entire body carry the risk of urosepsis with far-reaching consequences. Understanding the cell-, organ-, and systemic mechanisms in UTI are crucial for prevention, early intervention, and current therapeutic approaches. This review summarizes the scientific advances over the last 10 years concerning pathogenesis, prevention, rapid diagnosis, and new treatment approaches. We also highlight the impact of the immune system and potential new therapies to reduce progressive and recurrent UTI.
Collapse
Affiliation(s)
- Daniel R Engel
- Department of Immunodynamics, University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Hufelandstraße 55, 45147 Essen, Germany
| | - Florian M E Wagenlehner
- Justus-Liebig University Giessen, Clinic for Urology, Paediatric Urology and Andrology, Rudolf-Buchheim Straße 7, 35392 Giessen, Germany
| | - Olga Shevchuk
- Department of Immunodynamics, University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Hufelandstraße 55, 45147 Essen, Germany.
| |
Collapse
|
8
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2023; 42:1207-1234. [PMID: 37608144 PMCID: PMC10511388 DOI: 10.1007/s10096-023-04649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a nosocomial bacterium responsible for variety of infections. Inappropriate use of antibiotics could lead to emergence of multidrug-resistant (MDR) P. aeruginosa strains. Herein, a virulent phage; vB_PaeM_PS3 was isolated and tested for its application as alternative to antibiotics for controlling P. aeruginosa infections. METHODS Phage morphology was observed using transmission electron microscopy (TEM). The phage host range and efficiency of plating (EOP) in addition to phage stability were analyzed. One-step growth curve was performed to detect phage growth kinetics. The impact of isolated phage on planktonic cells and biofilms was assessed. The phage genome was sequenced. Finally, the therapeutic potential of vB_PaeM_PS3 was determined in vivo. RESULTS Isolated phage has an icosahedral head and a contractile tail and was assigned to the family Myoviridae. The phage vB_PaeM_PS3 displayed a broad host range, strong bacteriolytic ability, and higher environmental stability. Isolated phage showed a short latent period and large burst size. Importantly, the phage vB_PaeM_PS3 effectively eradicated bacterial biofilms. The genome of vB_PaeM_PS3 consists of 93,922 bp of dsDNA with 49.39% G + C content. It contains 171 predicted open reading frames (ORFs) and 14 genes as tRNA. Interestingly, the phage vB_PaeM_PS3 significantly attenuated P. aeruginosa virulence in host where the survival of bacteria-infected mice was markedly enhanced following phage treatment. Moreover, the colonizing capability of P. aeruginosa was markedly impaired in phage-treated mice as compared to untreated infected mice. CONCLUSION Based on these findings, isolated phage vB_PaeM_PS3 could be potentially considered for treating of P. aeruginosa infections.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
9
|
Li Y, Wang S, Zhang K, Yin Y, Zhang X, Zhang Q, Kong X, Tang L, Zhang R, Zhang Z. Serratia marcescens in the intestine of housefly larvae inhibits host growth by interfering with gut microbiota. Parasit Vectors 2023; 16:196. [PMID: 37301969 DOI: 10.1186/s13071-023-05781-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/20/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The structure of gut microbiota is highly complex. Insects have ubiquitous associations with intestinal symbiotic bacteria, which play essential roles. Thus, understanding how changes in the abundance of a single bacterium interfere with bacterial interactions in the insect's gut is important. METHODS Here, we analyzed the effects of Serratia marcescens on the growth and development of housefly larvae using phage technology. We used 16S rRNA gene sequencing technology to explore dynamic diversity and variation in gut bacterial communities and performed plate confrontation assays to study the interaction between S. marcescens and intestinal microorganisms. Furthermore, we performed phenoloxidase activity assay, crawling assay, and trypan blue staining to explore the negative effects of S. marcescens on housefly larvae's humoral immunity, motility, and intestinal organization. RESULTS The growth and development of housefly larvae were inhibited after feeding on S. marcescens, and their intestinal bacterial composition changed with increasing abundance of Providencia and decreasing abundance of Enterobacter and Klebsiella. Meanwhile, the depletion of S. marcescens by phages promoted the reproduction of beneficial bacteria. CONCLUSIONS In our study, using phage as a tool to regulate the abundance of S. marcescens, we highlighted the mechanism by which S. marcescens inhibits the growth and development of housefly larvae and illustrated the importance of intestinal flora for larval development. Furthermore, by studying the dynamic diversity and variation in gut bacterial communities, we improved our understanding of the possible relationship between the gut microbiome and housefly larvae when houseflies are invaded by exogenous pathogenic bacteria.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Shumin Wang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- School of Life Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
| | - Kexin Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Yansong Yin
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Xinyu Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Qian Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Xinxin Kong
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Luyao Tang
- Weifang Medical University, Weifang, 261021, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China.
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China.
| | - Zhong Zhang
- Weifang Medical University, Weifang, 261021, Shandong, China.
- The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| |
Collapse
|
10
|
Rodea M GE, González-Villalobos E, Medina-Contreras O, Castelán-Sánchez HG, Aguilar-Rodea P, Velázquez-Guadarrama N, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, Molina-López J. Genomic characterization of two bacteriophages (vB_EcoS-phiEc3 and vB_EcoS-phiEc4) belonging to the genus Kagunavirus with lytic activity against uropathogenic Escherichia coli. Microb Pathog 2022; 165:105494. [DOI: 10.1016/j.micpath.2022.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|
11
|
González-Villalobos E, Molina-López J, Balcázar JL. Phage therapy for urinary tract infections: does it really work? Int Microbiol 2022; 25:665-667. [DOI: 10.1007/s10123-022-00237-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
12
|
Maganha de Almeida Kumlien AC, Pérez-Vega C, González-Villalobos E, Borrego CM, Balcázar JL. Genome analysis of a new Escherichia phage vB_EcoM_C2-3 with lytic activity against multidrug-resistant Escherichia coli. Virus Res 2022; 307:198623. [PMID: 34762992 DOI: 10.1016/j.virusres.2021.198623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022]
Abstract
In this study, we present the complete, annotated genome of a new member of the Tequatrovirus (T4-like) genus, Escherichia phage vB_EcoM_C2-3. This phage has an isometric head (92 nm in diameter) and a contractile tail (114 nm in length). Its genome consists of a linear, double-stranded DNA of 167,069bp with an average G+C content of 35.3%. There are 267 predicted genes, of which 125 encode functional proteins, including those for DNA replication, transcription and packaging, phage morphogenesis and cell lysis. Neither genes involved in the regulation of lysogeny nor antibiotic resistance genes were identified. Based on our results, its genomic features provide valuable insights into the use of a potential biocontrol agent, as Escherichia phage vB_EcoM_C2-3 exhibited lytic activity against E. coli, including multidrug-resistant strains.
Collapse
Affiliation(s)
| | - Clara Pérez-Vega
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain
| | | | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|