1
|
Gao S, Guo J, Wang T, Xu L. A rapid visual detection method for Sugarcane streak mosaic virus based on one-tube RPA-CRISPR/Cas12a. Talanta 2025; 291:127888. [PMID: 40049000 DOI: 10.1016/j.talanta.2025.127888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
Sugarcane is the most important crop for sugar production. Sugarcane streak mosaic virus (SCSMV) triggered sugarcane mosaic disease can lead to substantial reductions in both yield and sucrose content. In the process of disease prevention and control, target pathogen detection technology is indispensable. However, traditional detection methods are time-consuming and require expensive equipment, making them less efficient for timely disease control and unfavorable to disease resistance breeding. Here, we introduce a novel detection technology that combines recombinase polymerase amplification (RPA) with CRISPR-Cas12a. The method utilizes crude extracts from sugarcane leaves as the reaction template, significantly simplifying and expediting the preparation process. By combining RPA and CRISPR-Cas12a in a single reaction tube, the risk of aerosol contamination has decreased markedly. The entire process, from sample preparation to result interpretation, only takes 50 min, and the reaction equipment only a water bath pot, and results can be blue light spectrometer or UV flashlight assessed visually. Importantly, the method demonstrates high sensitivity, detecting a minimum of 50 copies of the plasmid, which surpasses the sensitivity of reverse transcription polymerase chain reaction (RT-PCR) and is comparable to quantitative RT-PCR (RT-qPCR). The method exhibits excellent specificity, showing no cross-reactivity with other common sugarcane viruses, including Sugarcane mosaic virus, Sugarcane yellow leaf virus, and Sorghum mosaic virus. The practicality of this technique was validated through the detection of leaf crude extracts from 40 field samples. The detection results were consistent with those obtained from RT-PCR and RT-qPCR using leaf RNA as the template, indicating its suitability for laboratory detection and field applications.
Collapse
Affiliation(s)
- Shuai Gao
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinlong Guo
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Wang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Liu Q, Lu C, Lv Q, Lei L. Emerging point-of-care testing technology for the detection of animal pathogenic microorganisms. CHEMICAL ENGINEERING JOURNAL 2025; 512:162548. [DOI: 10.1016/j.cej.2025.162548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
3
|
Yang F, Wu Q, Zeng X, Jiang Q, Zhang S, Wang J, Zhang Q, Li F, Xu D. The establishment and optimization of a Mycoplasma pneumoniae detection system based on ERA-CRISPR/Cas12a. Microbiol Spectr 2025; 13:e0323524. [PMID: 39998241 PMCID: PMC11960117 DOI: 10.1128/spectrum.03235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Mycoplasma pneumoniae (MP) is a significant pathogen associated with community-acquired pneumonia, with considerable infectious risks posed, particularly to children and immunocompromised individuals. The current methods for detecting MP in research and clinical settings are recognized as time-consuming, instrument-dependent, and prone to non-specific cross-reactivity. Therefore, the creation of a rapid and sensitive detection method is urgently required. In this study, the MP-ERA-Cas12a system, integrating enzyme restriction amplification (ERA) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a technology, was introduced. Three detection methods were evaluated: the two-pot system, a modified one-pot system, and a lateral flow assay (LFA) strip-based system. In the one-pot system, the amplification and detection steps were consolidated within a single reaction vessel, effectively minimizing the risk of contamination and false positives that may arise from the handling of multiple tubes. It was observed that the one-pot system generated a fluorescent signal within 1 h and produced 1.6 times higher fluorescence signal intensity compared to the two-pot system, achieving a detection limit of 1 copy/μL. In contrast, the LFA system facilitated rapid on-site screening, with visible band results appearing on the strip within 5 min of the reaction, and a detection limit of 102 copies/μL was achieved. High specificity for MP was demonstrated by all methods. Significant advantages, including rapid processing, the absence of complex instrumentation, and ease of use are offered by this detection system, making it particularly suitable for resource-limited clinical settings. The system is seen as an efficient tool for the early diagnosis of MP, with substantial public health and clinical relevance. IMPORTANCE This study successfully combined enzyme restriction amplification (ERA) with the specific detection capabilities of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a. Based on the two-pot system established before, the one-pot system and lateral flow assay (LFA) system were developed for Mycoplasma pneumoniae (MP) detection. The MP-ERA-Cas12a system eliminates the need to open the lid during the reaction, reducing aerosol contamination, and minimizing the risk of false positives. The method does not require the use of advanced instruments or equipment and shows strong specificity while not being affected by other pathogens. As a new method of MP detection, the MP-ERA-Cas12a system has an important practical application prospect.
Collapse
Affiliation(s)
- Fo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qianlin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xiaotong Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiuyang Jiang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Shanshan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Jin Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Tolo Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Qi Zhang
- Huaibei People’s Hospital, Huaibei, Anhui, China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
4
|
Zeng X, Jiang Q, Yang F, Wu Q, lyu T, Zhang Q, Wang J, Li F, Xu D. Establishment and optimization of a system for the detection of Candida albicans based on enzymatic recombinase amplification and CRISPR/Cas12a system. Microbiol Spectr 2025; 13:e0026825. [PMID: 40162765 PMCID: PMC12054178 DOI: 10.1128/spectrum.00268-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Invasive candidiasis is a fungal infection caused by various pathogenic yeasts, with Candida albicans as the predominant pathogen. Traditional culturing and identification methods for C. albicans are slow, requiring several days to weeks to produce results, which hampers rapid diagnosis. In this study, we proposed three amplification methods to combine with CRISPR/Cas12a and selected the enzymatic recombinase amplification (ERA) and CRISPR/Cas12a two-step method for the detection of C. albicans in terms of sensitivity, and then the two-step method was optimized to a temperature-controlled one-step method for the detection of C. albicans by enzymatic recombinase amplification (ERA)-CRISPR/Cas12a. The temperature-controlled system employs a combination of liquid and solid paraffin wax to maintain the desired melting point, thus facilitating spatial separation of the ERA amplification system from the CRISPR/Cas12a detection system within a single tube. After a reaction at 37°C, the temperature is raised to 45°C, melting the wax and allowing the amplification system to merge with the detection system, initiating the reaction. This one-step detection platform simplifies and expedites the procedure, achieving a sensitivity level on par with that of two-step methods. The reaction completes in about 30 minutes, detecting as little as 100 ag/µL of genomic DNA from C. albicans pure cultures. It shows high specificity and resistance to clinical nucleic acid interference, without cross-reactivity. Additionally, the method eliminates the need to open the reaction tube, effectively preventing aerosol contamination and providing a stable, thus offering a new tool for the rapid clinical diagnosis of C. albicans. IMPORTANCE This study established a two-step method through optimization, compared its sensitivity, and then combined the specific detection capabilities of ERA and CRISPR/Cas12a. Furthermore, a one-step method was developed based on the two-step method, creating a one-step system for the detection of Candida albicans. This system does not require the lid to be opened during the reaction process, reducing aerosol contamination and minimizing the risk of false positives. This method does not require advanced instruments or equipment and shows strong specificity without being affected by other pathogens. It can serve as a new method for the detection of Candida albicans and has significant practical application prospects.
Collapse
Affiliation(s)
- Xiaotong Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiuyang Jiang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Fo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qianlin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Tingyao lyu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qi Zhang
- Huaibei People’s Hospital, Huaibei, Anhui, China
| | - Jin Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Tolo Biotech Co., Ltd, Wuxi, Jiangsu, China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
5
|
Ma L, Wang X, Zhang M, Zhu M. Rapid detection of FAdV-4 by one-tube RPA-CRISPR/Cas12a assay. Front Microbiol 2025; 16:1541943. [PMID: 39963492 PMCID: PMC11830807 DOI: 10.3389/fmicb.2025.1541943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Fowl adenovirus serotype 4 (FAdV-4) is a highly contagious viral pathogen of global significance that affects various avian species. It primarily infects poultry and wild birds, leading to avian inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS). The development of rapid diagnostic tools for detecting FAdV-4 is crucial for effective disease control and eradication efforts. Methods In this study, we developed a recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a assay, specifically targeting the FAdV-4 Hexon gene. RPA and CRISPR/Cas12a reagents were added to the bottom and lid of the test tube at once, allowing the detection process to occur within a single reaction tube. This approach reduced contamination. Results The RPA-CRISPR/Cas12a detection method can identify as few as 10 copies of the genome per reaction, demonstrating 100% sensitivity comparable to that of fluorescence PCR (qPCR). This approach exhibits high specificity for FAdV-4, with no cross-reactivity observed with other FAdV serotypes or common avian pathogens. Additionally, the agreement rate between the results of RPA-CRISPR/Cas12a and qPCR for detecting clinical samples is as high as 97.5%. Discussion Therefore, the RPA-CRISPR/Cas12a assay presents a promising alternative for the simple, sensitive, and specific identification of FAdV-4.
Collapse
Affiliation(s)
- Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xueping Wang
- College of Animal Science and Technology, Tarim University, AIar, China
| | - Mingliang Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Mengjie Zhu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
6
|
Bhardwaj P, Dhangur P, Kalichamy A, Singh R. RT-RPA Assisted CRISPR/Cas12a Based One-Pot Rapid and Visual Detection of the Pan-Dengue Virus. J Med Virol 2025; 97:e70219. [PMID: 39949262 DOI: 10.1002/jmv.70219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 05/09/2025]
Abstract
Globally ≤ 4 billion of the population are at potential risk of contracting dengue virus (DENV) infection. Seasonal outbreaks of dengue are frequently reported causing a high healthcare burden. Undiagnosed DENV can lead to severe morbidity and mortality. Early diagnosis of DENV relies on molecular methods, which are impractical in resource-constrained settings (RCSs). Dengue can be caused by any of the four distinct DENV serotypes. Therefore, a simple method for rapid diagnosis of Pan-DENV serotypes is of utmost importance at RCSs. A fluorescence detection platform for Pan-DENV using RT-RPA and CRISPR/Cas12a was developed targeting nonstructural 1 (NS1) gene for DENV-1, 2, and 3, and envelope (E) gene for DENV-2. Further, crRNA specific to DENV serotypes were designed to facilitate CRISPR/Cas12a detection. Analytical sensitivity was determined using synthetic RNA and DENV serotypes genome. Clinical validation of the assay was performed using RNA extracted from AES/AFI clinical samples. The developed CRISPR/Cas12a-based detection platform can detect all four serotypes of DENV viz 1-4 in a single pot using fluorescence detection. This assay showed the limit of detection ≥ 781 zg reaction- 1, ≥ 1.81 ag reaction-1, ≥ 62.5 fg reaction-1, and ≥ 2.5 pg reaction-1 for synthetic DENV-1, DENV-2, DENV-3, and DENV-4 template, respectively. Our assay demonstrated the analytic sensitivity of ≥ 10 ng reaction-1 for DENV-1 and DENV-4, and ≥ 0.5 ng reaction-1 for DENV-3 and DENV-4 genomes. This assay showed no cross-reactivity with other related etiologies tested causing AFI/AES. With 76 clinical samples (DENV PCR positive = 16, DENV PCR negative = 60), the assay demonstrated 93.7% sensitivity and 100% specificity with an overall accuracy of 98.7% for detection of the Pan-DENV serotypes. Our assay displayed comparable results to that of RT-PCR. The ease of interpretation and rapid detection of the Pan-DENV, represents the potential of the developed assay as an ideal point-of-care test. This assay upon field-deployment could help in reducing healthcare burden, provide differential diagnosis and support initiating early and prompt treatment to patients at RCS.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- JE-AES Apex Laboratory, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, India
| | - Preeti Dhangur
- JE-AES Apex Laboratory, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, India
| | | | - Rajeev Singh
- JE-AES Apex Laboratory, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, India
| |
Collapse
|
7
|
Gao J, Huang S, Jiang J, Miao Q, Zheng R, Kang Y, Tang W, Zuo H, He J, Xie J. Dual-CRISPR/Cas12a-assisted RT-RAA visualization system for rapid on-site detection of nervous necrosis virus (NNV). Anal Chim Acta 2025; 1335:343469. [PMID: 39643320 DOI: 10.1016/j.aca.2024.343469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/27/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Nervous necrosis virus (NNV) poses a severe threat to the aquaculture industry, particularly infecting fish fry with devastating mortality rates and inflicting heavy economic losses. Traditional detection methods, such as cell culture and conventional RT-PCR, are not only time-consuming and require specialized laboratory facilities but also hard to eliminate contamination. Rapid and accurate on-site detection methods in aquaculture settings are crucial for effective control of NNV outbreaks in fish farms. RESULTS This study developed a one-tube visualization system for rapid and precise identification of NNV in a pond-side setting. This system utilizes the dual-clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-assisted reverse transcription-recombinase aided amplification (RT-RAA) detection method, employing fluorescence intensity to indicate positive results for easy interpretation by field operators. The key to this system involved the meticulous selection of RT-RAA primer sets and CRISPR RNA (crRNA) primer sets targeting two genes of NNV, the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), distributing on two particles of genomic sequences. The assay demonstrated a speed and efficiency process within 30 min and a detection limit of 0.5 copies/μL, achieving 100 % accuracy when compared to qRT-PCR. The practical utility and effectiveness were validated by using 32 field samples. The results underscored the simplicity, rapidity, and reliability of the system, confirming its potential as a robust tool for NNV diagnosis in fish farms. SIGNIFICANCE This study introduces the first application of a dual-CRISPR/Cas12a-assisted RT-RAA visualization system for diagnosing NNV infections. The novel approach substantially enhances on-site diagnostic capabilities, offering a rapid, reliable, and cost-effective solution for fish farm operators. This innovation not only streamlines the detection process but also ensures timely intervention, thereby mitigating the impact of NNV on aquaculture.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Jing Jiang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Yiling Kang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Wanting Tang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China.
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China.
| |
Collapse
|
8
|
Chen Y, Shi M, Chen Y, Zhao J, Yang X, Fu J, Desneux N, Li J. Rapid and equipment-free identification of papaya mealybug Paracoccus marginatus based on RPA-CRISPR/Cas12a. PEST MANAGEMENT SCIENCE 2025; 81:230-239. [PMID: 39319635 PMCID: PMC11632207 DOI: 10.1002/ps.8425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Paracoccus marginatus has invaded many countries, spreading rapidly and causing significant economic losses to crops. Accurate detection during the monitoring process is critical to prevent its expansion into new areas, therefore it is necessary to develop efficient and reliable detection methods. Traditional detection methods are time-consuming and instrument-dependent owing to the morphological similarities and small sizes of P. marginatus and other mealybugs, therefore establishing an efficient, rapid, and sensitive method for field detection in resource-limited settings is critical. RESULTS A sensitive and rapid detection system was developed to detect P. marginatus using recombinase polymerase amplification (RPA) combined with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a. The RPA-CRISPR/Cas12a assay distinguished P. marginatus from 10 other mealybugs. The entire process can be completed in approximately an hour, and the identification results can be determined by the naked eye using lateral flow strips or a portable mini-UV torch. A method was developed to extract DNA from P. marginatus within 5 min. This method was combined with the RPA-CRISPR/Cas12a assay to achieve rapid and simple detection. In addition, two portable thermos cups with temperature displays were used to maintain the reagents and assay reactions in the field. CONCLUSION This assay represents the first application of portable and easily available items (mini-UV torch and thermos cup) based on the combination of RPA and CRISPR/Cas12a for rapid pest detection. This method is rapid, highly specific, and instrument-flexible, allowing for the early monitoring of P. marginatus in the field. This study provides guidance for the development of suitable management strategies. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan‐Ting Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop PestsInstitute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Meng‐Zhu Shi
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop PestsInstitute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhouChina
- Institute of Quality Standards and Testing Technology for Agro‐ProductsFujian Academy of Agricultural SciencesFuzhouChina
- Université Côte d'Azur, French National Research Institute for Agriculture, Food & Environment, CNRS, UMR ISANiceFrance
| | - Yan Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop PestsInstitute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Jian‐Wei Zhao
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop PestsInstitute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Xiu‐Juan Yang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop PestsInstitute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Jian‐Wei Fu
- Institute of Quality Standards and Testing Technology for Agro‐ProductsFujian Academy of Agricultural SciencesFuzhouChina
| | - Nicolas Desneux
- Université Côte d'Azur, French National Research Institute for Agriculture, Food & Environment, CNRS, UMR ISANiceFrance
| | - Jian‐Yu Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop PestsInstitute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhouChina
- Université Côte d'Azur, French National Research Institute for Agriculture, Food & Environment, CNRS, UMR ISANiceFrance
| |
Collapse
|
9
|
Bhardwaj P, Gulafshan S, Singh R. A rapid, specific and ultrasensitive detection of the Chikungunya virus based on RT-RPA:CRISPR/Cas12a one-pot dual mode end-point detection system. Anal Chim Acta 2024; 1329:343221. [PMID: 39396286 DOI: 10.1016/j.aca.2024.343221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Chikungunya (CHIK) is an underdiagnosed acute febrile illness (AFI) and an important cause of acute encephalitis syndrome (AES). Unavailaibility of rapid and sensitive molecular point-of-care tests (PoCTs) for CHIK at grass-root level, results in increased hospital burden, due to delayed diagnosis or misdiagnosis with other clinically relevant diseases. Since, no therapeutic intervention is readily available, accurate and differential diagnosis of CHIK is the only available option to initiate early supportive treatment. Thus, we aimed to develop a one-pot reverse transcription recombinase polymerase amplification (RT-RPA) mediated CRISPR/Cas12a based detection platform for rapid, specific, and ultrasensitive detection of chikungunya virus (CHIKV) in clinical samples. RESULTS We have successfully integrated CRISPR/Cas12a technology with reverse transcription recombinase polymerase amplification (RT-RPA) for the detection of Chikungunya virus (CHIKV). The developed assay enabled rapid detection of CHIKV within 35 min, requiring minimal handling process and instrumentation. Next, this assay demonstrated dual mode end-point detection capabilities, employing both fluorescence and lateral flow detection within a reaction. Our one-pot system allows the entire process to be completed without the need to open the reaction tube, thereby eliminating the risk of cross-contamination. Remarkably, the assay exhibits an analytical sensitivity of 412 zg μL-1 (≈1 copy), and 100 % clinical sensitivity and specificity for CHIKV. Furthermore, the developed assay demonstrated limit of detection of 8 gene copies of CHIKV. The assay demonstrates precise detection of CHIKV without any cross-reactivity with other pathogens commonly associated AFI or AES. SIGNIFICANCE The overall findings of this study indicate that the RT-RPA:CRISPR/Cas12a detection assay, with one-pot dual-mode detection approach enables rapid, specific and ultrasensitive molecular detection of CHIKV. This advancement holds significant potential for CHIKV detection in resource-limited settings, providing a robust tool for diagnosis and management of the disease. This developed assay may empower clinicians to initiate prompt supportive therapy for Chikungunya fever, thereby improving patient outcomes and public health responses.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- JE-AES Apex Laboratory, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India.
| | - Shahzadi Gulafshan
- JE-AES Apex Laboratory, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajeev Singh
- JE-AES Apex Laboratory, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India.
| |
Collapse
|
10
|
Ye X, Wu H, Liu J, Xiang J, Feng Y, Liu Q. One-pot diagnostic methods based on CRISPR/Cas and Argonaute nucleases: strategies and perspectives. Trends Biotechnol 2024; 42:1410-1426. [PMID: 39034177 DOI: 10.1016/j.tibtech.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
CRISPR/Cas and Argonaute (Ago) proteins, which target specific nucleic acid sequences, can be applied as diagnostic tools. Despite high specificity and efficiency, achieving sensitive detection often necessitates a preamplification step that involves opening the lid and multistep operation, which may elevate the risk of contamination and prove inadequate for point-of-care testing. Hence, various one-pot detection strategies have been developed that enable preamplification and sensing in a single operation. We outline the challenges of one-pot detection with Cas and Ago proteins, present several main implementation strategies, and discuss future prospects. This review offers comprehensive insights into this vital field and explores potential improvements to detection methods that will be beneficial for human health.
Collapse
Affiliation(s)
- Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoyang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghan Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Xiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Liu D, Luo M, Zhu YX, Zeng ZZ, Hu JJ, Cai MZ, Wang J, Yin WX, Schnabel G, Luo CX. Visual detection of fungicide resistance by combining RPA and CRISPR/Cas12a in peach Brown rot fungus Monilinia fructicola. PEST MANAGEMENT SCIENCE 2024; 80:5974-5982. [PMID: 39096082 DOI: 10.1002/ps.8330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Peach brown rot caused by Monilinia fructicola severely affects the quality and yield of peach, resulting in large economic losses worldwide. Methyl benzimidazole carbamate (MBC) fungicides and sterol demethylation inhibitor (DMI) fungicides are among the most applied chemical classes used to control the disease but resistance in the target pathogen has made them risky choices. Timely monitoring of resistance to these fungicides in orchards could prevent control failure in practice. RESULTS In the current study, we developed methods based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a systems to detect MBC and DMI resistance based on the E198A mutation in the β-tubulin (MfTub2) gene and the presence of the Mona element in the upstream region of the MfCYP51, respectively. For MBC resistance, RPA primers were designed that artificially incorporated PAM sites to facilitate the CRISPR/Cas12a reaction. Subsequently, specific tcrRNAs were designed based on the E198A mutation site. For the detection of the Mona element, we designed RPA primers M-DMI-F2/M-DMI-R1 that in combination with crRNA1 detected 'Mona' and distinguished resistant from sensitive strains. CONCLUSION Both methods exhibited high sensitivity and specificity, requiring only a simple isothermal device to obtain results within 1 h at 37 °C. The FQ-reporter enabled visualization with a handheld UV or white light flashlight. This method was successfully used with purified DNA from lab cultures and crude DNA from symptomatic fruit tissue, highlighting its potential for on-site detection of resistant strains in orchards. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duo Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mei Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Xu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe-Zheng Zeng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Jie Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Zheng Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. CRISPR/Cas and Argonaute-powered lateral flow assay for pathogens detection. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39434421 DOI: 10.1080/10408398.2024.2416473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Pathogens contamination is a pressing global public issue that has garnered significant attention worldwide, especially in light of recent outbreaks of foodborne illnesses. Programmable nucleases like CRISPR/Cas and Argonaute hold promise as tools for nucleic acid testing owning to programmability and the precise target sequence specificity, which has been utilized for the development pathogens detection. At present, fluorescence, as the main signal output method, provides a simple response mode for sensing analysis. However, the dependence of fluorescence output on large instruments and correct analysis of output data limited its use in remote areas. Lateral flow strips (LFS), emerging as a novel flexible substrate, offer a plethora of advantages, encompassing easy-to-use, rapidity, visualization, low-cost, portability, etc. The integration of CRISPR/Cas and Argonaute with LFS, lateral flow assay (LFA), rendered a new and on-site mode for pathogens detection. In the review, we introduced two programmable nucleases CRISPR/Cas and Argonaute, followed by the structure, principle and advantages of LFA. Then diversified engineering detection pattens for viruses, bacteria, parasites, and fungi based on CRISPR/Cas and Argonaute were introduced and summarized. Finally, the challenge and perspectives involved in on-site diagnostic assays were discussed.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| |
Collapse
|
13
|
Tan M, Yi X, Liao C, Zhou Z, Ren B, Liang L, Li X, Wei G. Establishment of a platform based on dual RPA combined with CRISPR/Cas12a for the detection of Klebsiella pneumoniae and its KPC resistance gene. Front Bioeng Biotechnol 2024; 12:1447963. [PMID: 39416281 PMCID: PMC11480703 DOI: 10.3389/fbioe.2024.1447963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Carbapenem resistant Klebsiella pneumoniae (CRKP) can cause serious hospital- and community-acquired infections. Treatment for CRKP infection is limited, resulting in prolonged hospitalization and high consultation costs. The KPC genotype has the highest detection rate of CRKP, and its mortality rate is higher than the overall mortality rate of CRKP. However, traditional testing methods have disadvantages such as long time and reliance on complex and sophisticated instruments, which are not conducive to rapid screening for CRKP. Therefore, this study aimed to establish a detection platform for early screening of CRKP so that effective antimicrobial therapy could be administered promptly to prevent the widespread spread of CRKP. We integrated dual RPA with CRISPR/Cas12a to establish a dual platform for the detection of K. pneumoniae (Kp) rcsA-specific gene and KPC resistance gene. Four result reading methods were established, including fluorescence detection (FD), blue light irradiation detection (BLID), ultraviolet irradiation detection (UID), and lateral flow test strips (LFTS). For the rcsA gene, the LOD of FD was 1 × 10 pg/μL, and the other three methods could detect 1 × 101 pg/μL of bacterial DNA. As for the KPC gene, four resultant readout methods were able to detect 1 × 102 pg/μL of bacterial DNA. In 59 clinical strains tested, the dual RPA-CRISPR/Cas12a detection of the rcsA had 100% sensitivity, specificity, and accuracy compared to the culture method. Compared with the drug sensitivity test, the sensitivity of dual RPA-CRISPR/Cas12a detection for the KPC was 85.71%, the specificity was 100%, and the accuracy was 94.92%. In summary, our dual RPA-CRISPR/Cas12a platform proved to be rapid, precise, and convenient for the efficient detection of Kp with KPC in the laboratory or at the point of care.
Collapse
Affiliation(s)
- Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Baoyan Ren
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
- Yaneng BlOscience (Shenzhen) Corporation, Guangxi, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Xuebin Li
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
14
|
He X, Deng L, Zhou S, Dong J, Zhu S, Li J, Li X, Huo D, Hou C. CRISPR/Cas12a-coupled multiplexed strand displacement amplification for miRNA155 one-tube detection: via a dual-cavity PCR tube. Mikrochim Acta 2024; 191:470. [PMID: 39023769 DOI: 10.1007/s00604-024-06538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
A CRISPR/Cas12a-coupled multiplexed strand displacement amplification (CMSDA) for the detection of miR155 has been developed. Non-specific amplification was avoided by designing a single-stranded DNA template with a hairpin structure. The detection target miR155 was used as a primer to initiate a multiple-strand displacement reaction to produce abundant ssDNA. ssDNA was recognized by the Cas12a/CrRNA binary complex, activating the trans-cleaving activity of Cas12a. The multiple-strand displacement reaction is more efficiently detected compared with a single-strand displacement reaction. The detection range is from 250 pM to 1 nM, and the limit of the detection is 6.5 pM. The proposed method showed a good applicability in complex serum environments, indicating that the method has a broad prospect for disease detection and clinical application. In addition, we designed a dual-cavity PCR tube, which realized one-tube detection of miRNA155 and avoided open-cap contamination.
Collapse
Affiliation(s)
- Xinyu He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shuyu Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210018, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
15
|
Cao G, Yang N, Yang J, Li J, Wang L, Nie F, Huo D, Hou C. Label-Free and DNAzyme-Mediated Biosensor with a High Signal-to-Noise Ratio for a Lumpy Skin Disease Virus Assay. Anal Chem 2024; 96:10927-10934. [PMID: 38934225 DOI: 10.1021/acs.analchem.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lumpy skin disease virus (LSDV) is a severe and highly contagious form of cowpox. As LSDV continues to mutate and there is no vaccine and treatment in nonendemic countries, early detection of LSDV becomes an important basis for epidemic prevention and control, especially for detection of conserved sequences. A new label-free and sensitive fluorescence method was developed based on a light-up RNA aptamer for detecting LSDV. The method integrated recombinase polymerase amplification (RPA), CRISPR/Cas12a, 10-23 DNAzyme, and Baby Spinach RNA aptamer for triple cascade signal amplification. Based on highly sensitive and specific RPA and CRISPR/Cas12a, DNAzyme achieved a third signal amplification. Additionally, the Baby Spinach RNA aptamer had stronger fluorescence signals and higher quantum yields. The label-free method had ultrahigh sensitivity with the actual detection limit as 1.29 copies·μL-1. The method was 100-fold more sensitive compared to RPA with Cas12a. Moreover, it had no cross-reactivity with viruses belonging to the Capripoxvirus, such as sheep pox virus and goat pox virus with genetic homology as 97%. Furthermore, the method displayed 100% accuracy in 50 actual samples. Therefore, the method based on RPA, Cas12a, and 10-23 DNAzyme had advantages in LSDV detection and provided a new solution for LSD prevention and control.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jun Yang
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Jiali Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
16
|
Tan M, Liang L, Liao C, Zhou Z, Long S, Yi X, Wang C, Wei C, Cai J, Li X, Wei G. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a. Front Cell Infect Microbiol 2024; 14:1362513. [PMID: 38994004 PMCID: PMC11236598 DOI: 10.3389/fcimb.2024.1362513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/μL and 10 fg/μL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.
Collapse
Affiliation(s)
- Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Shaoping Long
- Department of Clinical Laboratory, Baise People's Hospital, Guangxi, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Caiheng Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Jinyuan Cai
- School of Food and Chemical Engineering, Liuzhou Institute of Technology, Guangxi, China
| | - Xuebin Li
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
17
|
Wei C, Lei X, Yu S. Multiplexed Detection Strategies for Biosensors Based on the CRISPR-Cas System. ACS Synth Biol 2024; 13:1633-1646. [PMID: 38860462 DOI: 10.1021/acssynbio.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A growing number of applications require simultaneous detection of multiplexed nucleic acid targets in a single reaction, which enables higher information density in combination with reduced assay time and cost. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-Cas system have broad applications for the detection of nucleic acids due to their strong specificity, high sensitivity, and excellent programmability. However, realizing multiplexed detection is still challenging for the CRISPR-Cas system due to the nonspecific collateral cleavage activity, limited signal reporting strategies, and possible cross-reactions. In this review, we summarize the principles, strategies, and features of multiplexed detection based on the CRISPR-Cas system and further discuss the challenges and perspective.
Collapse
Affiliation(s)
- Cong Wei
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Lu J, Bai Y, Wang X, Huang P, Liu M, Wang R, Zhang H, Wang H, Li Y. Sensitive, Semiquantitative, and Portable Nucleic Acid Detection of Rabies Virus Using a Personal Glucose Meter. ACS OMEGA 2024; 9:26058-26065. [PMID: 38911722 PMCID: PMC11191140 DOI: 10.1021/acsomega.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Rabies is a zoonotic infection with the potential to infect all mammals and poses a significant threat to mortality. Although enzyme-linked immunosorbent tests and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) have been established for rabies virus (RABV) detection, they require skilled staff. Here, we introduce a personal glucose meter (PGM)-based nucleic acid (NA-PGM) detection method to diagnose RABV. This method ensures sensitive and convenient RABV diagnosis through hybridization of reverse transcription-recombinase aided amplification (RT-RAA) amplicons with probes labeled with sucrose-converting enzymes, reaching a detection level as low as 6.3 copies/μL equivalent to 12.26 copies. NA-PGM allows for the differentiation of RABV from other closely related viruses. In addition, NA-PGM showed excellent performance on 65 clinical samples with a 100% accuracy rate compared with the widely adopted RT-qPCR method. Thus, our developed NA-PGM method stands out as sensitive, semiquantitative, and portable for RABV detection, showcasing promise as a versatile platform for a wide range of pathogens.
Collapse
Affiliation(s)
| | | | - Xuejin Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Pei Huang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Meihui Liu
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Ruijia Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| |
Collapse
|
19
|
Hu H, Liu L, Wei XY, Duan JJ, Deng JY, Pei DS. Revolutionizing aquatic eco-environmental monitoring: Utilizing the RPA-Cas-FQ detection platform for zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172414. [PMID: 38631624 DOI: 10.1016/j.scitotenv.2024.172414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.
Collapse
Affiliation(s)
- Huan Hu
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Li Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xing-Yi Wei
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jin-Jing Duan
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Zhao X, He Y, Shao S, Ci Q, Chen L, Lu X, Liu Q, Chen J. CRISPR/Cas14 and G-Quadruplex DNAzyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sens 2024; 9:2413-2420. [PMID: 38635911 PMCID: PMC11216275 DOI: 10.1021/acssensors.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/μL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference. Moreover, this approach was employed to detect ASFV in porcine plasma. A broad linear detection range was observed, and the limit of detection in spiked porcine plasma was calculated to be as low as 42-85 copies/μL. Our results indicate that the developed paper platform exhibits the advantages of high sensitivity, excellent specificity, and low cost, making it promising for clinical applications in the field of DNA disease detection and suitable for popularization in low-resourced areas.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengjie Shao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
21
|
Tan Q, Shi Y, Duan C, Li Q, Gong T, Li S, Duan X, Xie H, Li Y, Chen L. Simple, sensitive, and visual detection of 12 respiratory pathogens with one-pot-RPA-CRISPR/Cas12a assay. J Med Virol 2024; 96:e29624. [PMID: 38647075 DOI: 10.1002/jmv.29624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/μL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.
Collapse
Affiliation(s)
- Qi Tan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yaoqiang Shi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chenlu Duan
- Sichuan Provincial Judicial Police General Hospital, Chengdu, China
| | - Qingyuan Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tao Gong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- The Hospital of Xidian Group, Xi'an, China
- The Joint-Laboratory on Transfusion-Transmitted Diseases (TTDs) between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| |
Collapse
|
22
|
Jiang F, Liu Y, Yang X, Li Y, Huang J. Ultrasensitive and visual detection of Feline herpesvirus type-1 and Feline calicivirus using one-tube dRPA-Cas12a/Cas13a assay. BMC Vet Res 2024; 20:106. [PMID: 38493286 PMCID: PMC10943893 DOI: 10.1186/s12917-024-03953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Feline herpesvirus type 1 (FHV) and Feline calicivirus (FCV) are the primary co-infecting pathogens that cause upper respiratory tract disease in cats. However, there are currently no visual detection assays available for on-site testing. Here, we develop an ultrasensitive and visual detection method based on dual recombinase polymerase amplification (dRPA) reaction and the hybrid Cas12a/Cas13a trans-cleavage activities in a one-tube reaction system, referred to as one-tube dRPA-Cas12a/Cas13a assay. RESULTS The recombinant plasmid DNAs, crRNAs, and RPA oligonucleotides targeting the FCV ORF1 gene and FHV-1 TK gene were meticulously prepared. Subsequently, dual RPA reactions were performed followed by screening of essential reaction components for hybrid CRISPR-Cas12a (targeting the FHV-1 TK gene) and CRISPR-Cas13a (targeting the FCV ORF1 gene) trans-cleavage reaction. As a result, we successfully established an ultra-sensitive and visually detectable method for simultaneous detection of FCV and FHV-1 nucleic acids using dRPA and CRISPR/Cas-powered technology in one-tube reaction system. Visual readouts were displayed using either a fluorescence detector (Fluor-based assay) or lateral flow dipsticks (LDF-based assay). As expected, this optimized assay exhibited high specificity towards only FHV-1 and FCV without cross-reactivity with other feline pathogens while achieving accurate detection for both targets with limit of detection at 2.4 × 10- 1 copies/μL for the FHV-1 TK gene and 5.5 copies/μL for the FCV ORF1 gene, respectively. Furthermore, field detection was conducted using the dRPA-Cas12a/Cas13a assay and the reference real-time PCR methods for 56 clinical samples collected from cats with URTD. Comparatively, the results of Fluor-based assay were in exceptional concordance with the reference real-time PCR methods, resulting in high sensitivity (100% for both FHV-1 and FCV), specificity (100% for both FHV-1 and FCV), as well as consistency (Kappa values were 1.00 for FHV-1 and FCV). However, several discordant results for FHV-1 detection were observed by LDF-based assay, which suggests its prudent use and interpretaion for clinical detection. In spite of this, incorporating dRPA-Cas12a/Cas13a assay and visual readouts will facilitate rapid and accurate detection of FHV-1 and FCV in resource-limited settings. CONCLUSIONS The one-tube dRPA-Cas12a/Cas13a assay enables simultaneously ultrasensitive and visual detection of FHV-1 and FCV with user-friendly modality, providing unparalleled convenience for FHV-1 and FCV co-infection surveillance and decision-making of URTD management.
Collapse
Affiliation(s)
- Fumei Jiang
- Key Laboratory of Animal Medicine, Southwest Minzu University, Chengdu City, Sichuan Province, China
| | - Yunjia Liu
- Key Laboratory of Animal Medicine, Southwest Minzu University, Chengdu City, Sichuan Province, China
| | - Xiaonong Yang
- Key Laboratory of Animal Medicine, Southwest Minzu University, Chengdu City, Sichuan Province, China
| | - Yan Li
- Key Laboratory of Animal Medicine, Southwest Minzu University, Chengdu City, Sichuan Province, China.
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Southwest Minzu University, No. 16, South 4th Section, 1st-Ring Road, Wuhou, Chengdu, Sichuan, 610041, China.
| | - Jian Huang
- Key Laboratory of Animal Medicine, Southwest Minzu University, Chengdu City, Sichuan Province, China.
- Veterinary Teaching Hospital, Southwest Minzu University, Chengdu, China.
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Southwest Minzu University, No. 16, South 4th Section, 1st-Ring Road, Wuhou, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
23
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
24
|
Zhu XX, Wang YS, Li SJ, Peng RQ, Wen X, Peng H, Shi QS, Zhou G, Xie XB, Wang J. Rapid detection of mexX in Pseudomonas aeruginosa based on CRISPR-Cas13a coupled with recombinase polymerase amplification. Front Microbiol 2024; 15:1341179. [PMID: 38357344 PMCID: PMC10864651 DOI: 10.3389/fmicb.2024.1341179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The principal pathogen responsible for chronic urinary tract infections, immunocompromised hosts, and cystic fibrosis patients is Pseudomonas aeruginosa, which is difficult to eradicate. Due to the extensive use of antibiotics, multidrug-resistant P. aeruginosa has evolved, complicating clinical therapy. Therefore, a rapid and efficient approach for detecting P. aeruginosa strains and their resistance genes is necessary for early clinical diagnosis and appropriate treatment. This study combines recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats-association protein 13a (CRISPR-Cas13a) to establish a one-tube and two-step reaction systems for detecting the mexX gene in P. aeruginosa. The test times for one-tube and two-step RPA-Cas13a methods were 5 and 40 min (including a 30 min RPA amplification reaction), respectively. Both methods outperform Quantitative Real-time Polymerase Chain Reactions (qRT-PCR) and traditional PCR. The limit of detection (LoD) of P. aeruginosa genome in one-tube and two-step RPA-Cas13a is 10 aM and 1 aM, respectively. Meanwhile, the designed primers have a high specificity for P. aeruginosa mexX gene. These two methods were also verified with actual samples isolated from industrial settings and demonstrated great accuracy. Furthermore, the results of the two-step RPA-Cas13a assay could also be visualized using a commercial lateral flow dipstick with a LoD of 10 fM, which is a useful adjunt to the gold-standard qRT-PCR assay in field detection. Taken together, the procedure developed in this study using RPA and CRISPR-Cas13a provides a simple and fast way for detecting resistance genes.
Collapse
Affiliation(s)
- Xiao-Xuan Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Su-Juan Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ru-Qun Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Huang T, Han Y, Chen Y, Diao Z, Ma Y, Feng L, Wang D, Zhang R, Li J. RLP system: A single-tube two-step approach with dual amplification cascades for rapid identification of EGFR T790M. Anal Chim Acta 2024; 1287:342126. [PMID: 38182396 DOI: 10.1016/j.aca.2023.342126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The detection of cancer gene mutations in biofluids plays a pivotal role in revolutionizing disease diagnosis. The presence of a large background of wild-type sequences poses a challenge to liquid biopsy of tumor mutation genes. Suppressing the detection of wild-type sequences can reduce their interference, however, due to the minimal difference between mutant and wild-type sequences (such as single nucleotide variants differing by only one nucleotide), how to suppress the detection of wild-type sequences to the greatest extent without compromising the sensitivity of mutant sequence detection remains to be explored. SIGNIFICANCE The RLP system addresses the incompatibility between RPA and RT-PCR reactions through a physical separation strategy. Besides, due to the remarkable flexibility of locked nucleic acid probes, the RLP system emerges as a potent tool for detecting mutations across diverse genes. It excels in sensitivity and speed, tolerates plasma matrix, and is cost-effective. This bodes well for advancing the field of precision medicine. RESULTS The recombinase-assisted locked nucleic acid (LNA) probe-mediated dual amplification biosensing platform (namely RLP), which combines recombinase polymerase amplification (RPA) and LNA clamp PCR method in one tube, enabling highly sensitive and selective detection of EGFR T790M mutation under the help of well-designed LNA probes. This technique can quantify DNA targets with a limit of detection (LoD) at the single copy level and identify point mutation with mutant allelic fractions as low as 0.007 % in 45 min. Moreover, RLP has the potential for the direct detection of plasma samples without the need for nucleic acid extraction and the cost of a single test is less than 1USD. Furthermore, the RLP system is a cascading dual amplification reaction conducted in a single tube, which eliminates the risk of cross-contamination associated with opening multiple tubes and ensures the reliability of the results.
Collapse
Affiliation(s)
- Tao Huang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lei Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Duo Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.
| |
Collapse
|
26
|
Cao G, Yang N, Xiong Y, Shi M, Wang L, Nie F, Huo D, Hou C. Completely Free from PAM Limitations: Asymmetric RPA with CRISPR/Cas12a for Nucleic Acid Assays. ACS Sens 2023; 8:4655-4663. [PMID: 38010352 DOI: 10.1021/acssensors.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Experimentally, Cas12a can recognize multiple protospacer adjacent motif (PAM) sequences and is not restricted to the "TTTN". However, the application of the CRISPR/Cas12a system is still limited by the PAM for double-stranded DNA (dsDNA). Here, we developed asymmetric RPA (Asy-RPA) to completely break the limitations of PAM. Asy-RPA not only achieved efficient amplification but also converted dsDNA to single-stranded DNA (ssDNA) without complicated steps. The ssDNA products activated the trans-cleavage activity of Cas12a, outputting signals. The application of Asy-RPA completely freed Cas12a from the PAM, which can be more widely used in nucleic acid detection, such as lumpy skin disease virus, with an actual detection limit as low as 1.21 × 101 copies·μL-1. More importantly, Cas12a was intolerant to mutations on ssDNA. This provided technical support for the detection and identification of wild-type Mycobacterium tuberculosis (WT-TB) and rifampin-resistant mutant-type M. tuberculosis (MT-TB). The detection limit was as low as 1 fM for 1% mixed samples. The detection and availability of different treatment options for treatment-resistant and WT-TB were significant for the elimination of TB. In summary, the platform consisting of Asy-RPA and CRISPR/Cas12a was suitable for the detection of various viruses and bacteria and was a boon for the detection of dsDNA without recognizable PAM.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Nannan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Meimei Shi
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Lin Wang
- Science and Technology Research Center of China Customs, Beijing 100730, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
27
|
Bhardwaj P, Nanaware NS, Behera SP, Kulkarni S, Deval H, Kumar R, Dwivedi GR, Kant R, Singh R. CRISPR/Cas12a-Based Detection Platform for Early and Rapid Diagnosis of Scrub Typhus. BIOSENSORS 2023; 13:1021. [PMID: 38131781 PMCID: PMC10742217 DOI: 10.3390/bios13121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 12/23/2023]
Abstract
Orientia tsutsugamushi is responsible for causing scrub typhus (ST) and is the leading cause of acute encephalitis syndrome (AES) in AES patients. A rapid and sensitive method to detect scrub typhus on-site is essential for the timely deployment of control measures. In the current study, we developed a rapid, sensitive, and instrument-free lateral flow assay (LFA) detection method based on CRISPR/Cas12a technology for diagnosing ST (named LoCIST). The method is completed in three steps: first, harnessing the ability of recombinase polymerase for isothermal amplification of the target gene; second, CRISPR/Cas12a-based recognition of the target; and third, end-point detection by LFA. The detection limit of LoCIST was found to be one gene copy of ST genomic DNA per reaction, and the process was complete within an hour. In 81 clinical samples, the assay showed no cross-reactivity with other rickettsial DNA and was 100% consistent with PCR detection of ST. LoCIST demonstrated 97.6% sensitivity and 100% specificity. Overall, the LoCIST offers a novel alternative for the portable, simple, sensitive, and specific detection of ST, and it may help prevent and control AES outbreaks due to ST. In conclusion, LoCIST does not require specialized equipment and poses a potential for future applications as a point-of-care diagnostic.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- ICMR-Regional Medical Research Centre Gorakhpur, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (S.P.B.); (H.D.); (G.R.D.); (R.K.)
| | | | - Sthita Pragnya Behera
- ICMR-Regional Medical Research Centre Gorakhpur, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (S.P.B.); (H.D.); (G.R.D.); (R.K.)
| | - Smita Kulkarni
- ICMR-National AIDS Research Institute, Bhosari, Pune 411026, India; (N.S.N.); (S.K.)
| | - Hirawati Deval
- ICMR-Regional Medical Research Centre Gorakhpur, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (S.P.B.); (H.D.); (G.R.D.); (R.K.)
| | - Rajesh Kumar
- RGSC, Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi 221005, India;
| | - Gaurav Raj Dwivedi
- ICMR-Regional Medical Research Centre Gorakhpur, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (S.P.B.); (H.D.); (G.R.D.); (R.K.)
| | - Rajni Kant
- ICMR-Regional Medical Research Centre Gorakhpur, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (S.P.B.); (H.D.); (G.R.D.); (R.K.)
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre Gorakhpur, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (S.P.B.); (H.D.); (G.R.D.); (R.K.)
| |
Collapse
|
28
|
Zhang D, Jiang S, Xia N, Zhang Y, Zhang J, Liu A, Zhang C, Chen N, Meurens F, Zheng W, Zhu J. Rapid Visual Detection of African Swine Fever Virus with a CRISPR/Cas12a Lateral Flow Strip Based on Structural Protein Gene D117L. Animals (Basel) 2023; 13:3712. [PMID: 38067063 PMCID: PMC10705096 DOI: 10.3390/ani13233712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 03/31/2025] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a lack of effective vaccines and therapeutics. Therefore, rapid and accurate detection is essential for the prevention and control of ASF. The portable DNA endonuclease (Cas12a)-mediated lateral flow strip detection method (Cas12a-LFS) combined with recombinant polymerase amplification (RPA) has been gradually recognized as effective for virus detection including ASFV. In this study, based on the ASFV structural protein p17 gene (D117L), an RPA-Cas12a-LFS detection method was established. The detection method exhibits a sensitivity of up to two gene copies and has no cross-reaction with nine other swine viruses. Thus, the method is highly sensitive and specific. In 68 clinical samples, the coincidence rate of the p17 strip was 100%, compared to the traditional quantitative PCR (qPCR). In conclusion, we have developed a simple, rapid, sensitive, and specific ASFV visual detection method and demonstrated the potential of on-site detection of ASFV.
Collapse
Affiliation(s)
- Desheng Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nengwen Xia
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Youwen Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Anjing Liu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Francois Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
29
|
Li T, Cheng N. Sensitive and Portable Signal Readout Strategies Boost Point-of-Care CRISPR/Cas12a Biosensors. ACS Sens 2023; 8:3988-4007. [PMID: 37870387 DOI: 10.1021/acssensors.3c01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Point-of-care (POC) detection is getting more and more attention in many fields due to its accuracy and on-site test property. The CRISPR/Cas12a system is endowed with excellent sensitivity, target identification specificity, and signal amplification ability in biosensing because of its unique trans-cleavage ability. As a result, a lot of research has been made to develop CRISPR/Cas12a-based biosensors. In this review, we focused on signal readout strategies and summarized recent sensitivity-improving strategies in fluorescence, colorimetric, and electrochemical signaling. Then we introduced novel portability-improving strategies based on lateral flow assays (LFAs), microfluidic chips, simplified instruments, and one-pot design. In the end, we also provide our outlook for the future development of CRISPR/Cas12a biosensors.
Collapse
Affiliation(s)
- Tong Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
30
|
Mao X, Xu M, Luo S, Yang Y, Zhong J, Zhou J, Fan H, Li X, Chen Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front Bioeng Biotechnol 2023; 11:1273988. [PMID: 37885449 PMCID: PMC10598474 DOI: 10.3389/fbioe.2023.1273988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In the realm of pathogen detection, isothermal amplification technology has emerged as a swift, precise, and sensitive alternative to conventional PCR. This paper explores the fundamental principles of recombinase polymerase amplification (RPA) and recombinase-aid amplification (RAA) and reviews the current status of integrating the CRISPR-Cas system with RPA/RAA techniques. Furthermore, this paper explores the confluence of isothermal amplification and CRISPR-Cas technology, providing a comprehensive review and enhancements of existing combined methodologies such as SHERLOCK and DETECTR. We investigate the practical applications of RPA/RAA in conjunction with CRISPR-Cas for pathogen detection, highlighting how this integrated approach significantly advances both research and clinical implementation in the field. This paper aims to provide readers with a concise understanding of the fusion of RPA/RAA and CRISPR-Cas technology, offering insights into their clinical utility, ongoing enhancements, and the promising prospects of this integrated approach in pathogen detection.
Collapse
Affiliation(s)
- Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Minghui Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuyin Luo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
31
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
32
|
Cao G, Xiong Y, Shi M, Qiu Y, Wang Y, Nie F, Huo D, Hou C. Multiple accurate and sensitive arrays for Capripoxvirus (CaPV) differentiation. Anal Chim Acta 2023; 1267:341391. [PMID: 37257965 DOI: 10.1016/j.aca.2023.341391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Capripoxvirus (CaPV) contains three viruses that have caused massive losses in the livestock and dairy industries. Accurate CaPV differentiation has far-reaching implications for effectively controlling outbreaks. However, it has a great challenge to distinguishing three viruses due to high homology of 97%. Here, we established a sensitive CRISPR/Cas12a array based on Multiple-recombinase polymerase amplification (M-RPA) for CaPV differentiation, which provided a more comprehensive and accurate differentiation mode targeting VARV B22R and RPO30 genes. By sensitive CRISPR/Cas12a and M-RPA, the actual detection limits of three viruses were as low as 50, 40 and 60 copies, respectively. Moreover, Lateral flow dipstick (LFD) array based on CRISPR/Cas12a achieved portable and intuitive detection, making it suitable for point-of-care testing. Therefore, CRISPR/Cas12a array and LFD array paved the way for CaPV differentiation in practice. Additionally, we constructed a real-time quantitative PCR (qPCR) array to fill the qPCR technical gap in differentiation and to facilitate the quarantine departments.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Meimei Shi
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400020, PR China
| | - Yue Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yu Wang
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400020, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs, Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400020, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
33
|
Jiang T, Li G, Liu R, Zhou J, Gao N, Shen J. Creating an ultra-sensitive detection platform for monkeypox virus DNA based on CRISPR technology. J Med Virol 2023; 95:e28905. [PMID: 37386903 DOI: 10.1002/jmv.28905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The recent major worldwide outbreak of monkeypox virus (MPXV) has highlighted the urgent need for accurate MPXV detection methods. Although quantitative PCR (qPCR) technique is currently the gold standard for MPXV diagnosis, the high costs associated with the technique and the need for complex instrumentation, limits its application in resource-poor settings. CRISPR technology has developed rapidly in recent years and provides an effective tool for point-of-care testing pathogen identification. Here, we exploited the cleavage properties of the Cas12a enzyme and Cas13a enzyme, to detect the MPXV specific genes, F3L gene and B6R gene, respectively. We developed two detection protocols: a 2-step method in which the CRISPR Dual System reaction and the multiplex recombinase polymerase amplification reaction were carried out in separate tubes and a single-tube method in which both reactions were carried out in one tube. Evaluation of the two methods showed that our protocol can detect the MPXV genome down to 10° copies/μL with good specificity and no cross-reactivity with other poxviruses pseudoviruses, and bacteria. Mock positive samples were used to assess clinical applicability, with the results showing satisfactory concordance with the qPCR method for parallel testing. In conclusion, our study provides a reliable molecular diagnostic strategy for detection of MPXV.
Collapse
Affiliation(s)
- Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Ge Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Runde Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jin Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Nana Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
34
|
Cao G, Xiong Y, Shi M, Qiu Y, Bian Y, Nie F, Huo D, Hou C. The End of the Gray Zone: One-Tube Nested Recombinase Polymerase Amplification with Ultrahigh Signal-to-Noise Ratio for Precisely Detecting and Surveilling Viruses. Anal Chem 2023. [PMID: 37367936 DOI: 10.1021/acs.analchem.3c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The samples were difficult to accurately determine positive or negative between 35 and 40 cycles by real-time quantitative PCR (qPCR) as the standard method. Here, we developed one-tube nested recombinase polymerase amplification (ONRPA) technology with CRISPR/Cas12a to overcome this difficulty. ONRPA broke the amplification plateau to substantially enhance the signals, which considerably improved the sensitivity and eliminated the problem of gray area. Using two pairs of primers one after another, it improved precision by lowering the probability of magnifying several target zones, which was completely free of contamination by nonspecific amplification. This was important in nucleic acid testing. Finally, by the CRISPR/Cas12a system as a terminal output, the approach achieved a high signal output as few as 2.169 copies·μL-1 in 32 min. ONRPA was 100-fold more sensitive than conventional RPA and 1000-fold compared to qPCR. ONRPA coupled with CRISPR/Cas12a will be an important and new promoter of RPA in clinical applications.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, Sichuan 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, Sichuan 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Meimei Shi
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Yue Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, Sichuan 400044, PR China
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Yong Bian
- Science and Technology Research Center of China Customs, Beijing 100730, PR China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing) of Customs. Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing 400020, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, Sichuan 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| |
Collapse
|
35
|
Shashank PR, Parker BM, Rananaware SR, Plotkin D, Couch C, Yang LG, Nguyen LT, Prasannakumar NR, Braswell WE, Jain PK, Kawahara AY. CRISPR-based diagnostics detects invasive insect pests. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541004. [PMID: 37292907 PMCID: PMC10245733 DOI: 10.1101/2023.05.16.541004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid identification of organisms is essential across many biological and medical disciplines, from understanding basic ecosystem processes and how organisms respond to environmental change, to disease diagnosis and detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta, and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than other real time-PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a lab setting, reduces the risk of cross-contamination, and can be completed in less than one hour. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.
Collapse
Affiliation(s)
- Pathour R. Shashank
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Division of Entomology, ICAR-Indian Agricultural Research Institution, New Delhi 110012, India
| | - Brandon M. Parker
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, 27709, USA
| | - Santosh R. Rananaware
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - David Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Christian Couch
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Lilia G. Yang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Long T. Nguyen
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - N. R. Prasannakumar
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - W. Evan Braswell
- Insect Management and Molecular Diagnostics Laboratory, USDA APHIS PPQ S&T, 22675 North Moorefield Road, Edinburg, Texas 78541, USA
| | - Piyush K. Jain
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
36
|
Fang J, Liu J, Cheng N, Kang X, Huang Z, Wang G, Xiong X, Lu T, Gong Z, Huang Z, Che J, Xiang T. Four thermostatic steps: A novel CRISPR-Cas12-based system for the rapid at-home detection of respiratory pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12568-3. [PMID: 37166482 PMCID: PMC10173909 DOI: 10.1007/s00253-023-12568-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) in 2019 has severely damaged the world's economy and public health and made people pay more attention to respiratory infectious diseases. However, traditional quantitative real-time polymerase chain reaction (qRT-PCR) nucleic acid detection kits require RNA extraction, reverse transcription, and amplification, as well as the support of large-scale equipment to enrich and purify nucleic acids and precise temperature control. Therefore, novel, fast, convenient, sensitive and specific detection methods are urgently being developed and moving to proof of concept test. In this study, we developed a new nucleic acid detection system, referred to as 4 Thermostatic steps (4TS), which innovatively allows all the detection processes to be completed in a constant temperature device, which performs extraction, amplification, cutting of targets, and detection within 40 min. The assay can specifically and sensitively detect five respiratory pathogens, namely SARS-CoV-2, Mycoplasma felis (MF), Chlamydia felis (CF), Feline calicivirus (FCV), and Feline herpes virus (FHV). In addition, a cost-effective and practical small-scale reaction device was designed and developed to maintain stable reaction conditions. The results of the detection of the five viruses show that the sensitivity of the system is greater than 94%, and specificity is 100%. The 4TS system does not require complex equipment, which makes it convenient and fast to operate, and allows immediate testing for suspected infectious agents at home or in small clinics. Therefore, the assay system has diagnostic value and significant potential for further reducing the cost of early screening of infectious diseases and expanding its application. KEY POINTS: • The 4TS system enables the accurate and specific detection of nucleic acid of pathogens at 37 °C in four simple steps, and the whole process only takes 40 min. •A simple alkali solution can be used to extract nucleic acid. • A small portable device simple to operate is developed for home diagnosis and detection of respiratory pathogens.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Jing Liu
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Na Cheng
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiuhua Kang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhanchao Huang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Guoyu Wang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiaofeng Xiong
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Tian Lu
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhigang Huang
- Emergency Department, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jun Che
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518036, China.
| | - Tianxin Xiang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China.
| |
Collapse
|
37
|
Wang P, Guo B, Zhang X, Wang Y, Yang G, Shen H, Gao S, Zhang L. One-Pot Molecular Diagnosis of Acute Hepatopancreatic Necrosis Disease by Recombinase Polymerase Amplification and CRISPR/Cas12a with Specially Designed crRNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6490-6498. [PMID: 37014765 DOI: 10.1021/acs.jafc.2c08689] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is one of the most devastating diseases in aquaculture, causing significant economic losses in seafood supplies worldwide. Early detection is critical for its prevention, which requires reliable and fast-responding diagnosis tools with point-of-care testing (POCT) capacity. Recombinase polymerase amplification (RPA) has been combined with CRISPR/Cas12a for AHPND diagnosis with a two-step procedure, but the operation is inconvenient and has the risk of carryover contamination. Here, we develop an RPA-CRISPR one-pot assay that integrates RPA and CRISPR/Cas12a cleavage into simultaneous reactions. Using the special design of crRNA, which is based on suboptimal protospacer adjacent motifs (PAM), RPA and Cas12a are made compatible in one pot. The assay is highly specific with a good sensitivity of 102 copies/reaction. This study provides a new choice for AHPND diagnosis with a POCT facility and sets a good example for developing RPA-CRISPR one-pot molecular diagnosis assays.
Collapse
Affiliation(s)
- Pei Wang
- School of Food Science and Pharmaceutical Engineering, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong 226007, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
38
|
Zhao D, Tang J, Tan Q, Xie X, Zhao X, Xing D. CRISPR/Cas13a-triggered Cas12a biosensing method for ultrasensitive and specific miRNA detection. Talanta 2023; 260:124582. [PMID: 37116358 DOI: 10.1016/j.talanta.2023.124582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Constructing an ultrasensitive CRISPR/Cas-based biosensing strategy is highly significant for the detection of trace targets. Here we presented a dual-amplified biosensing method based on CRISPR/Cas13a-triggered Cas12a, namely, Cas13a-12a amplification. As proof-of-principle, the developed strategy was used for miRNA-155 detection. The target bound to the Cas13a-crRNA complex and activated the cleavage activity of Cas13a for cleaving uracil ribonucleotides (rU) in the bulge structure of blocker strand (BS), resulting in the release of primer strand (PS) from the BS modified on magnetic beads. Then, the released PS activated the cleavage activity of Cas12a to cleave single-strand DNA reporter probes, producing a significantly increased fluorescent signal. The detection limit of the Cas13a-12a amplification using synthetic miRNA-155 was as low as 0.35 fM, which was much lower than that of the only Cas13a-based assay. The applied performance of this amplification strategy was verified by accurately quantifying miRNA-155 expression levels in different cancer patients. Therefore, the developed strategy offers a supersensitive and highly specific miRNAs sensing platform for clinical application.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Jiutang Tang
- Center for Neuroscience Research, Chongqing Medical University, 400010, Chongqing, China
| | - Qin Tan
- Department of Clinical Laboratory, Chongqing Wanzhou Shanghai Hospital, Chongqing, 404000, China
| | - Xiaohong Xie
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Xin Zhao
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Dingpei Xing
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
| |
Collapse
|
39
|
Shao F, Park JS, Zhao G, Hsieh K, Wang TH. Elucidating the Role of CRISPR/Cas in Single-Step Isothermal Nucleic Acid Amplification Testing Assays. Anal Chem 2023; 95:3873-3882. [PMID: 36745596 PMCID: PMC10884613 DOI: 10.1021/acs.analchem.2c05632] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing assays that combine CRISPR/Cas and isothermal nucleic acid amplification has become a burgeoning research area due to the novelty and simplicity of CRISPR/Cas and the potential for point-of-care uses. Most current research explores various two-step assays by appending different CRISPR/Cas effectors to the end of different isothermal nucleic acid amplification methods. However, efforts in integrating both components into more ideal single-step assays are scarce, and poor-performing single-step assays have been reported. Moreover, lack of investigations into CRISPR/Cas in single-step assays results in incomplete understanding. To fill this knowledge gap, we conducted a systematic investigation by developing and comparing assays that share the identical recombinase polymerase amplification (RPA) but differ in CRISPR/Cas12a. We found that the addition of CRISPR/Cas12a indeed unlocks signal amplification but, at the same time, impedes RPA and that CRISPR/Cas12a concentration is a key parameter for attenuating RPA impediment and ensuring assay performance. Accordingly, we found that our protospacer adjacent motif (PAM)-free CRISPR/Cas12a-assisted RPA assay, which only moderately impeded RPA at its optimal CRISPR/Cas12a concentration, outperformed its counterparts in assay design, signal, sensitivity, and speed. We also discovered that a new commercial Cas12a effector could also drive our PAM-free CRISPR/Cas12a-assisted RPA assay and reduce its cost, though simultaneously lowering its signal. Our study and the new insights can be broadly applied to steer and facilitate further advances in CRISPR/Cas-based assays.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joon Soo Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guojie Zhao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Hu JJ, Liu D, Cai MZ, Zhou Y, Yin WX, Luo CX. One-Pot Assay for Rapid Detection of Benzimidazole Resistance in Venturia carpophila by Combining RPA and CRISPR/Cas12a. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1381-1390. [PMID: 36624936 DOI: 10.1021/acs.jafc.2c06549] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High resistance to benzimidazole fungicides in Venturia carpophila is caused by the point mutation E198K of the β-tubulin (TUB2) gene. Traditional methods for detection of fungicide resistance are time-consuming, which are routinely based on tedious operation, reliance on expensive equipment, and specially trained people. Therefore, it is important to establish efficient methods for field detection of benzimidazole resistance in V. carpophila to make suitable management strategies and ensure food safety. Based on recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a, a rapid one-pot assay ORCas12a-BRVc (one-pot RPA-CRISPR/Cas12 platform) was established for the detection of benzimidazole resistance in V. carpophila. The ORCas12a-BRVc assay enabled one-pot detection by adding components at the bottom and wall of the tube separately, solving the problems of aerosol contamination and decreased sensitivity caused by competing DNA substrates between Cas12a cleavage and RPA amplification. The ORCas12a-BRVc assay could accomplish the detection with a minimum of 7.82 × 103 fg μL-1 V. carpophila genomic DNA in 45 min at 37 °C. Meanwhile, this assay showed excellent specificity due to the specific recognition ability of the Cas12a-crRNA complex. Further, we combined a method that could rapidly extract DNA from V. carpophila within 2 min with the ORCas12a-BRVc to achieve more rapid and simple detection of V. carpophila with benzimidazole resistance in fields. The ORCas12a-BRVc assay has the advantages of simplicity, rapidity, high sensitivity, high specificity, and ease of operation without the need for precision instruments and the need to isolate and culture pathogens. This assay is the first application of the one-pot platform based on the combination of RPA and CRISPR/Cas12a in fungicide resistance detection and can be used for monitoring of resistant populations in fields, providing guidance on making suitable management strategies for peach scab.
Collapse
Affiliation(s)
- Jia-Jie Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Duo Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min-Zheng Cai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Wang Y, Li R, Zhang Y, Zhang W, Hu S, Li Z. Visual and label-free ASFV and PCV2 detection by CRISPR-Cas12a combined with G-quadruplex. Front Vet Sci 2022; 9:1036744. [PMID: 36524221 PMCID: PMC9745048 DOI: 10.3389/fvets.2022.1036744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) and postweaning multisystemic wasting syndrome (PMWS) are acute infectious diseases caused by the African swine fever virus (ASFV) and porcine circovirus type 2 (PCV2). At present, there are no effective vaccines for the prevention of ASFV. PMWS, which is harmful to the domestic and even the world pig industry, is difficult to cure and has a high mortality. So, developing simple, inexpensive, and accurate analytical methods to detect and effectively diagnose ASFV and PCV2 can be conducive to avoid ASFV and PCV2 infection. CRISPR has become a potentially rapid diagnostic tool due to recent discoveries of the trans-cleavage properties of CRISPR type V effectors. Herein, we report the visual detection based on CRISPR-Cas12a (cpf1), which is more convenient than fluorescence detection. Through in vitro cleavage target DNA activation, Cas12a can trans-cleavage ssDNA G-quadruplex. TMB/H2O2 and Hemin cannot be catalyzed by cleavaged G-DNA to produce green color products. This protocol is useful for the detection of ASFV and PCV2 with high sensitivity. This method can enable the development of visual and label-free ASFV and PCV2 detection and can be carried out in the field without relying on instruments or power. This method can complete nucleic acid detection at 37 °C without using other instruments or energy. Our research has expanded the application of Cas12a and laid the foundation for the field's rapid detection of viral nucleic acid in future.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Rong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
42
|
Huang T, Zhang R, Li J. CRISPR-Cas-based techniques for pathogen detection: Retrospect, recent advances, and future perspectives. J Adv Res 2022:S2090-1232(22)00240-5. [PMID: 36367481 PMCID: PMC10403697 DOI: 10.1016/j.jare.2022.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Early detection of pathogen-associated diseases are critical for effective treatment. Rapid, specific, sensitive, and cost-effective diagnostic technologies continue to be challenging to develop. The current gold standard for pathogen detection, polymerase chain reaction technology, has limitations such as long operational cycles, high cost, and high technician and instrumentation requirements. AIM OF REVIEW This review examines and highlights the technical advancements of CRISPR-Cas in pathogen detection and provides an outlook for future development, multi-application scenarios, and clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW Approaches enabling clinical detection of pathogen nucleic acids that are highly sensitive, specific, cheap, and portable are necessary. CRISPR-Cas9 specificity in targeting nucleic acids and "collateral cleavage" activity of CRISPR-Cas12/Cas13/Cas14 show significant promise in nucleic acid detection technology. These methods have a high specificity, versatility, and rapid detection cycle. In this paper, CRISPR-Cas-based detection methods are discussed in depth. Although CRISPR-Cas-mediated pathogen diagnostic solutions face challenges, their powerful capabilities will pave the way for ideal diagnostic tools.
Collapse
|