1
|
Kämmerling N, Farnebo S, Sandstedt M, Booij R, Persson A, Tesselaar E. Assessment of metal artifacts from titanium wrist prostheses: photon-counting versus energy-integrating detector CT. Eur Radiol Exp 2025; 9:45. [PMID: 40310571 PMCID: PMC12045920 DOI: 10.1186/s41747-025-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND We compared photon-counting detector computed tomography (PCD-CT) polyenergetic images, PCD-CT virtual monoenergetic images (VMI), and energy-integrating detector computed tomography (EID-CT) polyenergetic images regarding bone visualization and metal artifacts in patients with titanium wrist prostheses. METHODS After ethical approval, 15 patients were examined with PCD-CT and EID-CT. Polyenergetic images were reconstructed, as well as 130-keV VMI for PCD-CT. Five radiologists evaluated bone visualization, interpretability at metal-bone interface and metal artifacts using a 7-point ordinal scale. Streak artifacts and artifacts at the bone-metal interface were quantitatively assessed. Differences between image setups were analyzed using Friedman test and one-way ANOVA with post hoc tests. RESULTS Bone visualization was superior in PCD-CT polyenergetic images (median rating 6, range 3-7) compared with VMI (5, 3-7; p < 0.001) and EID-CT (5, 3-7; p = 0.018). Streak artifacts were more pronounced with PCD-CT polyenergetic images (4, 3-6) compared with EID-CT (5, 4-6; p = 0.003) and PCD-CT VMI (5, 3-7; p = 0.002), with quantitative results showing least streak artifacts in PCD-CT VMI, followed by EID-CT and PCD-CT polyenergetic images (50 ± 7%, 70 ± 6%, and 79 ± 5%, respectively; p < 0.001). Interpretability at bone-metal interface was better with PCD-CT polyenergetic images (5, 2-7; p = 0.045) and EID-CT (5, 3-6; p = 0.018) compared with PCD-CT VMI (4, 2-6), without quantitative differences. CONCLUSION Streak artifacts from titanium wrist prostheses were reduced using 130-keV PCD-CT VMI, while bone visualization was highest using PCD-CT polyenergetic images. RELEVANCE STATEMENT In patients with wrist implants, photon-counting detector CT allows for effective metal artifact reduction using virtual monoenergetic images and improved bone visualization using polyenergetic images. As polyenergetic images and VMI have different advantages, access to both image setups may benefit diagnostic evaluation. KEY POINTS Virtual monoenergetic images (VMI) presented a substantial reduction of metal streak artifacts. Polyenergetic images exhibited better image quality for bone imaging compared with VMI. A combination of image reconstructions should be preferred depending on the diagnostic task.
Collapse
Affiliation(s)
- Nina Kämmerling
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Simon Farnebo
- Department of Hand and Plastic Surgery, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mårten Sandstedt
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Ronald Booij
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anders Persson
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Midon FG, Athlani L, Cholley-Roulleau M, Piessat C, Dap F. Total wrist arthrodesis epidemiology and prior surgeries survival. HAND SURGERY & REHABILITATION 2025:102135. [PMID: 40127843 DOI: 10.1016/j.hansur.2025.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
This study investigates the indications for first- and second-line total wrist arthrodesis, focusing on conversion delays following prior wrist surgeries and analyzing complications based on the underlying etiology. We reviewed 121 patients who underwent total wrist arthrodesis over a nine-year period. First-line total arthrodesis was predominantly performed for inflammatory rheumatic conditions or spasticity, while 53% of second-line total arthrodesis were conducted for post-traumatic conditions. The procedures most frequently converted included four-corner arthrodesis (28%), proximal row carpectomy (22%), and radioscapholunate arthrodesis (20%), with mean conversion delays of 3 years, 5 years, and 1.8 years, respectively. Four-corner arthrodesis was the most commonly converted procedure, while radioscapholunate arthrodesis showed the shortest conversion time, primarily due to pseudarthrosis. LEVEL OF EVIDENCE: IV.
Collapse
Affiliation(s)
- François-Gabriel Midon
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, Nancy University Hospital, 49 rue Hermite, 54000 Nancy, France.
| | - Lionel Athlani
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, Nancy University Hospital, 49 rue Hermite, 54000 Nancy, France; Université de Lorraine, IADI Laboratory, INSERM, CIC-IT Nancy, Nancy, France
| | - Martin Cholley-Roulleau
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, Nancy University Hospital, 49 rue Hermite, 54000 Nancy, France
| | - Colin Piessat
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, Nancy University Hospital, 49 rue Hermite, 54000 Nancy, France
| | - François Dap
- Department of Hand Surgery, Plastic and Reconstructive Surgery, Centre Chirurgical Emile Gallé, Nancy University Hospital, 49 rue Hermite, 54000 Nancy, France
| |
Collapse
|
3
|
Grunz JP, Huflage H. Photon-Counting Detector CT Applications in Musculoskeletal Radiology. Invest Radiol 2025; 60:198-204. [PMID: 39088264 PMCID: PMC11801470 DOI: 10.1097/rli.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024]
Abstract
ABSTRACT Photon-counting detectors (PCDs) have emerged as one of the most influential technical developments for medical imaging in recent memory. Surpassing conventional systems with energy-integrating detector technology in many aspects, PCD-CT scanners provide superior spatial resolution and dose efficiency for all radiological subspecialities. Demanding detailed display of trabecular microarchitecture and extensive anatomical coverage frequently within the same scan, musculoskeletal (MSK) imaging in particular can be a beneficiary of PCD-CT's remarkable performance. Since PCD-CT provides users with a plethora of customization options for both image acquisition and reconstruction, however, MSK radiologists need to be familiar with the scanner to unlock its full potential. From filter-based spectral shaping for artifact reduction over full field-of-view ultra-high-resolution scans to postprocessing of single- or dual-source multienergy data, almost every imaging task can be met with an optimized approach in PCD-CT. The objectives of this review were to give an overview of the most promising applications of PCD-CT in MSK imaging to date, to state current limitations, and to highlight directions for future research and developments.
Collapse
|
4
|
Trentadue TP, Thoreson A, Lopez C, Breighner RE, Leng S, Kakar S, Rizzo M, Zhao KD. Sex differences in photon-counting detector computed tomography-derived scaphotrapeziotrapezoid joint morphometrics. Skeletal Radiol 2025:10.1007/s00256-024-04863-5. [PMID: 39907791 DOI: 10.1007/s00256-024-04863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE The scaphotrapeziotrapezoid (STT) joint transmits load between the wrist and thumb. Despite its clinical importance, it has received less diagnostic attention than adjacent wrist and thumb joints. CT-derived three-dimensional models offer the ability to improve measurement of articular space by evaluating subchondral articular surfaces, which can be quantified using articular morphometrics. The objectives of this study were to investigate whether articular surface areas, interosseous proximities, and carpal bone positions differ between sexes. MATERIALS AND METHODS Thirty participants (50% female, median age 27.0 years) were prospectively recruited to a cohort study of normative wrist imaging and biomechanics. Carpal bones were meshed from CT-based segmentations using a marching cubes algorithm. Rigid body kinematic parameters of individual bones were calculated. Carpal bone postures were defined using projection angles between bone centroids. Articular surface areas and interosseous proximity distributions between adjacent bones were calculated. Morphometrics were compared between sexes using Wilcoxon rank sum or two-tailed Kolmogorov-Smirnov tests as appropriate. RESULTS Median articular surface area was significantly smaller in females than in males at the trapeziotrapezoid but not scaphotrapezium or scaphotrapezoid joints. Interosseous proximity distributions were closer in females at all joints (scaphotrapezium, 1.19 versus 1.42 mm; scaphotrapezoid, 1.15 versus 1.43 mm; trapeziotrapezoid, 0.45 versus 0.65 mm). Distal bones were more dorsally translated in females. CONCLUSION This study quantifies sex-stratified morphological variations at the STT joint. Interosseous proximity distributions may guide interpretation of imaging-derived STT joint space and can serve as reference ranges for studies of STT arthrokinematics.
Collapse
Affiliation(s)
- Taylor P Trentadue
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Andrew Thoreson
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ryan E Breighner
- Department of Radiology, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Shuai Leng
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Computed Tomography Clinical Innovation Center, Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Marco Rizzo
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Chen W, Liu L, Zhao H, Li H, Luo J, Qu YL, Zhang D, He YH, Pan YS, Gao F, Liao HZ, Chen XL, Lei H, Tang DQ, Peng F. Dual-energy CT-derived virtual noncalcium imaging to assess bone marrow lesions in patients with knee osteoarthritis. Sci Rep 2025; 15:3331. [PMID: 39870692 PMCID: PMC11772839 DOI: 10.1038/s41598-025-86697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
To determine the diagnostic performance of dual-energy CT (DECT) virtual noncalcium (VNCa) technique in the detection of bone marrow lesions (BMLs) in knee osteoarthritis, and further analyze the correlation between the severity of BMLs on VNCa image and the degree of knee pain. 23 consecutive patients with clinically diagnosed knee osteoarthritis were underwent DECT and 3.0T MRI between August 2017 and November 2018. Evaluation of two pain assessment scales (WOMAC and KOOS) were collected. VNCa images and MRI were independently scored by three readers using a four-level scoring system over 15 anatomical subregions in each knee joint. Spearman correlation coefficient was used for total BML scores on DECT and MRI correlation with WOMAC and KOOS. Specificity, Sensitivity, NPV and PPV of reader 1 and reader 2 were 99.4%/99.2%, 89.4%/87.2%, 98.6%/98.3% and 95.5%/93.2%. A cutoff value of - 41.5 HU/- 46.5 HU provided sensitivities of 93.2%/90.9% and specificities of 100.0%/93.9% for diagnosing BMLs with AUC of 0.970/0.996. A stronger correlation was observed between the WOMAC and total BML score compared to the KOOS. DECT possessed excellent diagnostic performance in the detection of BMLs in knee osteoarthritis. And the pain degree increased with the severity of BMLs on VNCa images.
Collapse
Affiliation(s)
- Wei Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Limin Liu
- Department of Ultrasound, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Jiefang Road No. 35, Hengyang, 421001, Hunan, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Hui Li
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
- Department of Radiology, The First People's Hospital of Zhaoqing, DonggangEast Road No.9, Zhaoqing, 526060, Guangdong, China
| | - Jing Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Yao-Lin Qu
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Dan Zhang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Ya-Han He
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Yi-Sha Pan
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Fang Gao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Hua-Zhi Liao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Xiao-Long Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - De-Qiu Tang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Chuanshan Road No. 69, Hengyang, 421001, Hunan, China.
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Bette S, Risch F, Becker J, Popp D, Decker JA, Kaufmann D, Friedrich L, Scheurig-Münkler C, Schwarz F, Kröncke TJ. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. ROFO-FORTSCHR RONTG 2025; 197:34-43. [PMID: 38788741 DOI: 10.1055/a-2312-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The introduction of photon-counting detector CT (PCD-CT) marks a remarkable leap in innovation in CT imaging. The new detector technology allows X-rays to be converted directly into an electrical signal without an intermediate step via a scintillation layer and allows the energy of individual photons to be measured. Initial data show high spatial resolution, complete elimination of electronic noise, and steady availability of spectral image data sets. In particular, the new technology shows promise with respect to the imaging of osseous structures. Recently, PCD-CT was implemented in the clinical routine. The aim of this review was to summarize recent studies and to show our first experiences with photon-counting detector technology in the field of musculoskeletal radiology.We performed a literature search using Medline and included a total of 90 articles and reviews that covered recent experimental and clinical experiences with the new technology.In this review, we focus on (1) spatial resolution and delineation of fine anatomic structures, (2) reduction of radiation dose, (3) electronic noise, (4) techniques for metal artifact reduction, and (5) possibilities of spectral imaging. This article provides insight into our first experiences with photon-counting detector technology and shows results and images from experimental and clinical studies. · This review summarizes recent experimental and clinical studies in the field of photon-counting detector CT and musculoskeletal radiology.. · The potential of photon-counting detector technology in the field of musculoskeletal radiology includes improved spatial resolution, reduction in radiation dose, metal artifact reduction, and spectral imaging.. · PCD-CT enables imaging at lower radiation doses while maintaining or even enhancing spatial resolution, crucial for reducing patient exposure, especially in repeated or prolonged imaging scenarios.. · It offers promising results in reducing metal artifacts commonly encountered in orthopedic or dental implants, enhancing the interpretability of adjacent structures in postoperative and follow-up imaging.. · With its ability to routinely acquire spectral data, PCD-CT scans allow for material classification, such as detecting urate crystals in suspected gout or visualizing bone marrow edema, potentially reducing reliance on MRI in certain cases.. Bette S, Risch F, Becker J et al. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024; DOI 10.1055/a-2312-6914.
Collapse
Affiliation(s)
- Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Judith Becker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Daniel Popp
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - David Kaufmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Lena Friedrich
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Christian Scheurig-Münkler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Institute of Conventional and Interventional Radiology, Donauisar Hospital Deggendorf, Deggendorf, Germany
| | - Thomas J Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| |
Collapse
|
7
|
Quintiens J, Coudyzer W, Bevers M, Vereecke E, van den Bergh JP, Manske SL, van Lenthe GH. The quantification of bone mineral density using photon counting computed tomography and its implications for detecting bone remodeling. J Bone Miner Res 2024; 39:1774-1782. [PMID: 39365940 DOI: 10.1093/jbmr/zjae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
HR-pQCT has become standard practice when quantifying volumetric BMD (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows. The goal of this study was to assess the potential of photon counting CT (PCCT) in quantitative bone imaging. Using the European Forearm Phantom, PCCT was calibrated to hydroxyapatite (HA) density. Eight cadaveric forearms were scanned twice with PCCT and once with HR-pQCT. The dominant forearm of two volunteers was scanned twice with PCCT. In each scan, the carpals were delineated. At bone level, accuracy was assessed with a paired measurement of total vBMD (Tt.vBMD) calculated with PCCT and HR-pQCT. At voxel-level, repeatability was assessed by image registration and voxel-wise subtraction of the ex vivo PCCT scans. In an ideal scenario, this difference would be zero; any deviation was interpreted as falsely detected remodeling. For clinical usage, the least detectable remodeling was determined by finding a threshold in the PCCT difference image that resulted in a classification of bone formation and resorption below acceptable noise levels (<0.5%). The paired measurement of Tt.vBMD had a Pearson correlation of 0.986. Compared to HR-pQCT, PCCT showed a bias of 7.46 mgHA/cm3. At voxel-level, the repeated PCCT scans showed a bias of 17.66 mgHA/cm3 and a standard error of 96.23 mgHA/cm3. Least detectable remodeling was found to be 250 mgHA/cm3, for which 0.37% of the voxels was incorrectly classified as newly added or resorbed bone. In vivo, this volume increased to 0.97%. Based on the cadaver data, we conclude that PCCT can be used to quantify vBMD and bone turnover. We provided proof of principle that this technique is also accurate in vivo, hence, that it has high potential for clinical applications.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3001 Heverlee, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Melissa Bevers
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Evie Vereecke
- Department of Development and Regeneration, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Tegelseweg 210, 5912 BL Venlo, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Sarah L Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - G Harry van Lenthe
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3001 Heverlee, Belgium
| |
Collapse
|
8
|
Trentadue TP, Thoreson A, Lopez C, Breighner RE, Leng S, Holmes DR, Kakar S, Rizzo M, Zhao KD. Morphology of the scaphotrapeziotrapezoid joint: A multi-domain statistical shape modeling approach. J Orthop Res 2024; 42:2562-2574. [PMID: 38956833 PMCID: PMC12042604 DOI: 10.1002/jor.25918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
The scaphotrapeziotrapezoid (STT) joint is involved in load transmission between the wrist and thumb. A quantitative description of baseline STT joint morphometrics is needed to capture the variation of normal anatomy as well as to guide staging of osteoarthritis. Statistical shape modeling (SSM) techniques quantify variations in three-dimensional shapes and relative positions. The objectives of this study are to describe the morphology of the STT joint using a multi-domain SSM. We asked: (1) What are the dominant modes of variation that impact bone and articulation morphology at the STT joint, and (2) what are the morphometrics of SSM-generated STT joints? Thirty adult participants were recruited to a computed tomography study of normal wrist imaging and biomechanics. Segmentations of the carpus were converted to three-dimensional triangular surface meshes. A multi-domain, particle-based entropy system SSM was used to quantify variation in carpal bone shape and position as well as articulation morphology. Articular surface areas and interosseous proximity distributions were calculated between mesh vertex pairs on adjacent bones within distance (2.0 mm) and surface-normal angular (35°) thresholds. In the SSM, the first five modes of variation captured 76.2% of shape variation and contributed to factors such as bone scale, articular geometries, and carpal tilt. Median interosseous proximities-a proxy for joint space-were 1.39 mm (scaphotrapezium), 1.42 mm (scaphotrapezoid), and 0.61 mm (trapeziotrapezoid). This study quantifies morphological and articular variations at the STT joint, presenting a range of normative anatomy. The range of estimated interosseous proximities may guide interpretation of imaging-derived STT joint space.
Collapse
Affiliation(s)
- Taylor P. Trentadue
- Assistive and Restorative Technology Laboratory, Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew Thoreson
- Assistive and Restorative Technology Laboratory, Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan E. Breighner
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, New York, USA
| | - Shuai Leng
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic Computed Tomography Clinical Innovation Center, Mayo Clinic, Rochester, Minnesota, USA
| | - David R. Holmes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Biomedical Imaging Resource Core Facility, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Marco Rizzo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristin D. Zhao
- Assistive and Restorative Technology Laboratory, Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Vosshenrich J, O'Donnell T, Fritz J. Photon-Counting CT in Musculoskeletal Imaging-10 Key Questions Answered. Semin Roentgenol 2024; 59:378-386. [PMID: 39490034 DOI: 10.1053/j.ro.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY; Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY.
| |
Collapse
|
10
|
Kok J, Bevers MSAM, van Rietbergen B, Oei EHG, Booij R. Quantification of bone microarchitecture using photon-counting CT at different radiation doses: A comparison with µCT. Eur J Radiol 2024; 181:111717. [PMID: 39241304 DOI: 10.1016/j.ejrad.2024.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE Accurate measurements of trabecular bone microarchitecture are required for a proper assessment of bone fragility. Photon-counting detector CT (PCD-CT) has different technical properties than conventional CT, resulting in higher resolution and thereby potentially enabling in-vivo measurement of trabecular microarchitecture. The purpose of this study was to quantify trabecular bone microarchitectural parameters with PCD-CT at varying radiation doses and compare this to µCT as gold standard. METHOD Both distal radii, distal tibiae, femoral heads, and two vertebrae were dissected from one human. All specimens were scanned ex-vivo on a PCD-CT system (slice increment 0.1 mm; pixel size 0.1042-0.127 mm) and a µCT system (isotropic voxel size 49-68.4 µm). The radiation doses of the PCD-CT scans were varied from 2.5 to 120 mGy based on the volume CT dose index (CTDIvol32). For the PCD-CT scans, contrast-to-noise ratio and trabecular sharpness were calculated and compared between radiation doses. µCT and PCD-CT scans were registered. The trabecular bone was then segmented from all PCD-CT and µCT scans and split into cubes with 6-mm edge length. For each cube, bone volume over total volume, trabecular thickness, trabecular number, and trabecular heterogeneity were calculated and compared between corresponding PCD-CT and µCT cubes. RESULTS With increasing dose, contrast-to-noise ratio and trabecular sharpness values increased for the PCD-CT images. Already at the lowest dose, high correlations between the trabecular microarchitectural parameters between µCT and PCD-CT were found (R2 = 0.55-0.95), which improved with increasing radiation dose (R2 = 0.76-0.96 at 20 mGy). CONCLUSIONS PCD-CT can be used to quantify trabecular bone microarchitecture, with accuracy comparable to µCT and at clinically relevant radiation doses.
Collapse
Affiliation(s)
- Joeri Kok
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Orthopaedic Surgery, Maastricht University, Maastricht, The Netherlands.
| | - Melissa S A M Bevers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Orthopaedic Surgery, Maastricht University, Maastricht, The Netherlands.
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, Omoumi P. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53:1889-1902. [PMID: 38441616 PMCID: PMC11303444 DOI: 10.1007/s00256-024-04622-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/09/2024]
Abstract
In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.
Collapse
Affiliation(s)
- Charbel Mourad
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Diagnostic Imaging and Interventional Therapeutics, Hôpital Libanais Geitaoui-CHU, Beyrouth, Lebanon
| | - Lucia Gallego Manzano
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anaïs Viry
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fabio Becce
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Bette SJ, Braun FM, Luitjens JH, Kaufmann D, Decker J, Becker J, Scheurig-Muenkler C, Kroencke TJ, Schwarz F. Multiplanar reconstructions of the thoracic spine in a photon counting dual-source CT scanner: comparison to EID-CT. Acta Radiol 2024; 65:1087-1093. [PMID: 39169708 DOI: 10.1177/02841851241271109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a groundbreaking technology with promising results for visualization of small bone structures. PURPOSE To analyze the delineation of the thoracic spine in multiplanar reconstructions (MPR) on PCD-CT compared to energy-integrating detector (EID)-CT. MATERIAL AND METHODS Two euthanized mice were examined using different scanners: (i) 20-slice EID-CT and (ii) dual-source PCD-CT at various CTDIVol values. Readers evaluated the thoracic spine and selected series with best visualization among signal-to-noise ratio (SNR)-matched pairs. RESULTS SNR was significantly higher in PCD-CT reconstructions (Br68) and lower in Hr98 reconstructions compared to EID-CT. Bone detail visualization was superior in PCD-CT (especially in Hr98 reconstructions) compared to EID-CT. CONCLUSION MPR on a PCD-CT had a higher SNR and better bone detail visualization even at lower radiation doses compared to EID-CT. PCD-CT with bone reconstructions showed the best delineation of small bone structures and might be considered in clinical routine.
Collapse
Affiliation(s)
- Stefanie J Bette
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Franziska M Braun
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Jan H Luitjens
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - David Kaufmann
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Josua Decker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Judith Becker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Christian Scheurig-Muenkler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Thomas J Kroencke
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Clinic for Diagnostic and Interventional Radiology, Donau-Isar-Klinikum, Deggendorf, Germany
| |
Collapse
|
13
|
Huflage H, Hendel R, Woznicki P, Conrads N, Feldle P, Patzer TS, Ergün S, Bley TA, Kunz AS, Grunz JP. The Small Pixel Effect in Ultra-High-Resolution Photon-Counting CT of the Lumbar Spine. Invest Radiol 2024; 59:629-634. [PMID: 38329822 DOI: 10.1097/rli.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVES Image acquisition in ultra-high-resolution (UHR) scan mode does not impose a dose penalty in photon-counting CT (PCCT). This study aims to investigate the dose saving potential of using UHR instead of standard-resolution PCCT for lumbar spine imaging. MATERIALS AND METHODS Eight cadaveric specimens were examined with 7 dose levels (5-35 mGy) each in UHR (120 × 0.2 mm) and standard-resolution acquisition mode (144 × 0.4 mm) on a first-generation PCCT scanner. The UHR images were reconstructed with 3 dedicated bone kernels (Br68 [spatial frequency at 10% of the modulation transfer function 14.5 line pairs/cm], Br76 [21.0], and Br84 [27.9]), standard-resolution images with Br68 and Br76. Using automatic segmentation, contrast-to-noise ratios (CNRs) were established for lumbar vertebrae and psoas muscle tissue. In addition, image quality was assessed subjectively by 19 independent readers (15 radiologists, 4 surgeons) using a browser-based forced choice comparison tool totaling 16,974 performed pairwise tests. Pearson's correlation coefficient ( r ) was used to analyze the relationship between CNR and subjective image quality rankings, and Kendall W was calculated to assess interrater agreement. RESULTS Irrespective of radiation exposure level, CNR was higher in UHR datasets than in standard-resolution images postprocessed with the same reconstruction parameters. The use of sharper convolution kernels entailed lower CNR but higher subjective image quality depending on radiation dose. Subjective assessment revealed high interrater agreement ( W = 0.86; P < 0.001) with UHR images being preferred by readers in the majority of comparisons on each dose level. Substantial correlation was ascertained between CNR and the subjective image quality ranking (all r 's ≥ 0.95; P < 0.001). CONCLUSIONS In PCCT of the lumbar spine, UHR mode's smaller pixel size facilitates a considerable CNR increase over standard-resolution imaging, which can either be used for dose reduction or higher spatial resolution depending on the selected convolution kernel.
Collapse
Affiliation(s)
- Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (H.H., R.H., P.W., N.C., P.F., T.S., T.A.B., A.S.K., J.-P.G.); and Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (S.E.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Giraudo C, Sudol-Szopinska I, Fichera G, Evangelista L, Zanatta E, Del Grande F, Stramare R, Bazzocchi A, Guglielmi G, Rennie W. Update on Rheumatic Diseases in Clinical Practice: Recent Concepts and Developments. Radiol Clin North Am 2024; 62:725-738. [PMID: 39059968 DOI: 10.1016/j.rcl.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diagnostic imaging is essential in the diagnostic process of rheumatic diseases. Given the heterogeneity of this group of diseases and the tremendous impact of novel therapeutic options, guidelines and recommendations regarding the optimal choice of the most appropriate technique/s are continuously revised and radiologists should always be up-to-date. Last, because of the continuous technological innovations, we will assist to the progressive application of advanced techniques and tools in rheumatology.
Collapse
Affiliation(s)
- Chiara Giraudo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Via Giustiniani 2, Padova, 35122, Italy.
| | - Iwona Sudol-Szopinska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 1- Spartanska Street, Warsaw, Poland
| | - Giulia Fichera
- Pediatric Radiology, Padova Hospital, Via Giustiniani 2, Padova, 35122, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, 20072, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan, 20089, Italy
| | - Elisabetta Zanatta
- Department of Medicine -DIMED, Rheumatology Unit, University of Padova, Via Giustiniani 2, 35122, Padova, Italy
| | - Filippo Del Grande
- Istituto Di Imaging Della Svizzera Italiana (IIMSI), Clinica Di Radiologia Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, Lugano 6900, Switzerland
| | - Roberto Stramare
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Via Giustiniani 2, Padova, 35122, Italy
| | - Alberto Bazzocchi
- Department of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G. C. Pupilli 1, Bologna, 40136, Italy
| | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, Radiology Unit, Foggia University School of Medicine, Via Gramsci 89, 71122, Foggia, Italy; Department of Radiology, Scientific Institute "Casa Sollievo Della Sofferenza" Hospital, Viale Cappuccini, San Giovanni Rotondo, 71013, Italy
| | - Winston Rennie
- Department of Radiology, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW, United Kingdom
| |
Collapse
|
15
|
Quintiens J, van Lenthe GH. Photon-Counting Computed Tomography for Microstructural Imaging of Bone and Joints. Curr Osteoporos Rep 2024; 22:387-395. [PMID: 38833188 DOI: 10.1007/s11914-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Recently, photon-counting computed tomography (PCCT) has been introduced in clinical research and diagnostics. This review describes the technological advances and provides an overview of recent applications with a focus on imaging of bone. RECENT FINDINGS PCCT is a full-body scanner with short scanning times that provides better spatial and spectral resolution than conventional energy-integrating-detector CT (EID-CT), along with an up to 50% reduced radiation dose. It can be used to quantify bone mineral density, to perform bone microstructural analyses and to assess cartilage quality with adequate precision and accuracy. Using a virtual monoenergetic image reconstruction, metal artefacts can be greatly reduced when imaging bone-implant interfaces. Current PCCT systems do not allow spectral imaging in ultra-high-resolution (UHR) mode. Given its improved resolution, reduced noise and spectral imaging capabilities PCCT has diagnostic capacities in both qualitative and quantitative imaging that outperform those of conventional CT. Clinical use in monitoring bone health has already been demonstrated. The full potential of PCCT systems will be unlocked when UHR spectral imaging becomes available.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Foley RA, Trentadue TP, Lopez C, Weber NM, Thoreson AR, Holmes DR, Murthy NS, Leng S, Kakar S, Zhao KD. Bilateral lunotriquetral coalition: a dynamic four-dimensional computed tomography technical case report. Skeletal Radiol 2024; 53:1423-1430. [PMID: 37943305 PMCID: PMC11078889 DOI: 10.1007/s00256-023-04490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Lunotriquetral coalitions are the most common form of carpal coalition wherein the cartilage between the lunate and triquetrum ossification centers failed to undergo apoptosis. This technical case report examines the arthrokinematics of bilateral lunotriquetral coalitions with dissimilar Minnaar types in one participant with one asymptomatic wrist and one wrist with suspected distal radioulnar joint injury. Static and dynamic (four-dimensional) CT images during pronosupination were captured using a photon-counting detector CT scanner. Interosseous proximity distributions were calculated between the lunotriquetral coalition and adjacent bones in both wrists to quantify arthrokinematics. Interosseous proximity distributions at joints adjacent to the lunotriquetral coalition demonstrate differences in median and minimum interosseous proximities between the asymptomatic and injured wrists during resisted pronosupination. Altered kinematics from lunotriquetral coalitions may be a source of ulnar-sided wrist pain and discomfort, limiting the functional range of motion. This case report highlights potential alterations to wrist arthrokinematics in the setting of lunotriquetral coalitions and possible associations with ulnar-sided wrist pain, highlighting anatomy to examine in radiographic follow-up. Furthermore, this case report demonstrates the technical feasibility of four-dimensional CT using photon-counting detector technology in assessing arthrokinematics in the setting of variant wrist anatomy.
Collapse
Affiliation(s)
- Robert A Foley
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Taylor P Trentadue
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Nikkole M Weber
- Computed Tomography Clinical Innovation Center, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - David R Holmes
- Biomedical Imaging Resource Core Facility, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Shuai Leng
- Computed Tomography Clinical Innovation Center, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Grunz JP, Huflage H. Photon-Counting Computed Tomography: Experience in Musculoskeletal Imaging. Korean J Radiol 2024; 25:662-672. [PMID: 38942460 PMCID: PMC11214923 DOI: 10.3348/kjr.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 06/30/2024] Open
Abstract
Since the emergence of the first photon-counting computed tomography (PCCT) system in late 2021, its advantages and a wide range of applications in all fields of radiology have been demonstrated. Compared to standard energy-integrating detector-CT, PCCT allows for superior geometric dose efficiency in every examination. While this aspect by itself is groundbreaking, the advantages do not stop there. PCCT facilitates an unprecedented combination of ultra-high-resolution imaging without dose penalty or field-of-view restrictions, detector-based elimination of electronic noise, and ubiquitous multi-energy spectral information. Considering the high demands of orthopedic imaging for the visualization of minuscule details while simultaneously covering large portions of skeletal and soft tissue anatomy, no subspecialty may benefit more from this novel detector technology than musculoskeletal radiology. Deeply rooted in experimental and clinical research, this review article aims to provide an introduction to the cosmos of PCCT, explain its technical basics, and highlight the most promising applications for patient care, while also mentioning current limitations that need to be overcome.
Collapse
Affiliation(s)
- Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Trentadue TP, Thoreson AR, Lopez C, Breighner RE, An KN, Holmes DR, Moran SL, Kakar S, Murthy NS, Leng S, Zhao KD. Detection of scapholunate interosseous ligament injury using dynamic computed tomography-derived arthrokinematics: A prospective clinical trial. Med Eng Phys 2024; 128:104172. [PMID: 38789217 PMCID: PMC11342909 DOI: 10.1016/j.medengphy.2024.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Scapholunate interosseous ligament injuries are a major cause of wrist instability and can be difficult to diagnose radiographically. To improve early diagnosis of scapholunate ligament injuries, we compared injury detection between bilateral routine clinical radiographs, static CT, and dynamic four-dimensional CT (4DCT) during wrist flexion-extension and radioulnar deviation. Participants with unilateral scapholunate ligament injuries were recruited to a prospective clinical trial investigating the diagnostic utility of 4DCT imaging for ligamentous wrist injury. Twenty-one participants underwent arthroscopic surgery to confirm scapholunate ligament injury. Arthrokinematics, defined as distributions of interosseous proximities across radioscaphoid and scapholunate articular surfaces at different positions within the motion cycle, were used as CT-derived biomarkers. Preoperative radiographs, static CT, and extrema of 4DCT were compared between uninjured and injured wrists using Wilcoxon signed rank or Kolmogorov-Smirnov tests. Median interosseous proximities at the scapholunate interval were significantly greater in the injured versus the uninjured wrists at static-neutral and maximum flexion, extension, radial deviation, and ulnar deviation. Mean cumulative distribution functions at the radioscaphoid joint were not significantly different between wrists but were significantly shifted at the scapholunate interval towards increased interosseous proximities in injured versus uninjured wrists in all positions. Median and cumulative distribution scapholunate proximities from static-neutral and 4DCT-derived extrema reflect injury status.
Collapse
Affiliation(s)
- Taylor P Trentadue
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Graduate Program in Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan E Breighner
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Kai-Nan An
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - David R Holmes
- Biomedical Imaging Resource Core Facility, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naveen S Murthy
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA; Computed Tomography Clinical Innovation Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
19
|
Klempka A, Schröder A, Neumayer P, Groden C, Clausen S, Hetjens S. Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients. Diagnostics (Basel) 2024; 14:1019. [PMID: 38786317 PMCID: PMC11119038 DOI: 10.3390/diagnostics14101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
This study provides an objective comparison of cranial computed tomography (CT) imaging quality and radiation dose between photon counting detectors (PCCTs) and energy-integrated detectors (EIDs). We retrospectively analyzed 158 CT scans from 76 patients, employing both detector types on the same individuals to ensure a consistent comparison. Our analysis focused on the Computed Tomography Dose Index and the Dose-Length Product together with the contrast-to-noise ratio and the signal-to-noise ratio for brain gray and white matter. We utilized standardized imaging protocols and consistent patient positioning to minimize variables. PCCT showed a potential for higher image quality and lower radiation doses, as highlighted by this study, thus achieving diagnostic clarity with reduced radiation exposure, underlining its significance in patient care, particularly for patients requiring multiple scans. The results demonstrated that while both systems were effective, PCCT offered enhanced imaging and patient safety in neuroradiological evaluations.
Collapse
Affiliation(s)
- Anna Klempka
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Alexander Schröder
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Philipp Neumayer
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
20
|
Horst KK, Cao JY, McCollough CH, El-Ali A, Frush DP, Siegel MJ, Ramirez-Giraldo JC, O'Donnell T, Bache S, Yu L. Multi-institutional Protocol Guidance for Pediatric Photon-counting CT. Radiology 2024; 311:e231741. [PMID: 38771176 DOI: 10.1148/radiol.231741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Performing CT in children comes with unique challenges such as greater degrees of patient motion, smaller and densely packed anatomy, and potential risks of radiation exposure. The technical advancements of photon-counting detector (PCD) CT enable decreased radiation dose and noise, as well as increased spatial and contrast resolution across all ages, compared with conventional energy-integrating detector CT. It is therefore valuable to review the relevant technical aspects and principles specific to protocol development on the new PCD CT platform to realize the potential benefits for this population. The purpose of this article, based on multi-institutional clinical and research experience from pediatric radiologists and medical physicists, is to provide protocol guidance for use of PCD CT in the imaging of pediatric patients.
Collapse
Affiliation(s)
- Kelly K Horst
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Joseph Y Cao
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Cynthia H McCollough
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Alex El-Ali
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Donald P Frush
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Marilyn J Siegel
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Juan Carlos Ramirez-Giraldo
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Tom O'Donnell
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Steve Bache
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| | - Lifeng Yu
- From the Department of Radiology, Division of Pediatric Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (K.K.H., C.H.M., L.Y.); Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham, NC (J.Y.C., D.P.F., S.B.); Department of Radiology, Division of Pediatric Radiology, NYU Grossman School of Medicine, New York, NY (A.E.A.); Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (M.J.S.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., T.O.)
| |
Collapse
|
21
|
Kämmerling N, Tesselaar E, Booij R, Fornander L, Persson A, Farnebo S. A comparative study of image quality and diagnostic confidence in diagnosis and follow-up of scaphoid fractures using photon-counting detector CT and energy-integrating detector CT. Eur J Radiol 2024; 173:111383. [PMID: 38377892 DOI: 10.1016/j.ejrad.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Scaphoid fractures in patients and assessment of healing using PCD-CT have, as far as we know, not yet been studied. Therefore, the aim was to compare photon counting detector CT (PCD-CT) with energy integrating detector CT (EID-CT) in terms of fracture visibility and evaluation of fracture healing. METHOD Eight patients with scaphoid fracture were examined with EID-CT and PCD-CT within the first week post-trauma, and with additional scans at 4, 6 and 8 weeks. Our clinical protocol for wrist examination with EID-CT was used (CTDIvol 3.1 ± 0.1 mGy, UHR kernel Ur77). For PCD-CT matched radiation dose, reconstruction kernel Br89. Quantitative analyses of noise, CNR, trabecular and cortical sharpness, and bone volume fraction were conducted. Five radiologists evaluated the images for fracture visibility, fracture gap consolidation and image quality, and rated their confidence in the diagnosis. RESULTS The trabecular and cortical sharpness were superior in images obtained with PCD-CT compared with EID-CT. A successive reduction in trabecular bone volume fraction during the immobilized periods was found with both systems. Despite higher noise and lower CNR with PCD-CT, radiologists rated the image quality of PCD-CT as superior. The visibility of the fracture line within 1-week post-trauma was rated higher with PCD-CT as was diagnostic confidence, but the subsequent assessments of fracture gap consolidation during healing process and the confidence in diagnosis were found equivalent between both systems. CONCLUSION PCD-CT offers superior visibility of bone microstructure compared with EID-CT. The evaluation of fracture healing and confidence in diagnosis were rated equally with both systems, but the radiologists found primary fracture visibility and overall image quality superior with PCD-CT.
Collapse
Affiliation(s)
- Nina Kämmerling
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Erik Tesselaar
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Medical Radiation Physics, Linköping University, Linköping, Sweden
| | - Ronald Booij
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lotta Fornander
- Department of Orthopedic Surgery, Norrköping, and Department of Biomedical and Clinical Sciences, Linköping University, Norrköping, Sweden
| | - Anders Persson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Hand and Plastic Surgery, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Fukuda T, Yonenaga T, Akao R, Hashimoto T, Maeda K, Shoji T, Shioda S, Ishizaka Y, Ojiri H. Comparison of Bone Evaluation and Metal Artifact between Photon-Counting CT and Five Energy-Integrating-Detector CT under Standardized Conditions Using Cadaveric Forearms. Diagnostics (Basel) 2024; 14:350. [PMID: 38396389 PMCID: PMC10888094 DOI: 10.3390/diagnostics14040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND To compare the potential of various bone evaluations by considering photon-counting CT (PCCT) and multiple energy-integrating-detector CT (EIDCT), including three dual-energy CT (DECT) scanners with standardized various parameters in both standard resolution (STD) and ultra-high-resolution (UHR) modes. METHODS Four cadaveric forearms were scanned using PCCT and five EIDCTs, by applying STD and UHR modes. Visibility of bone architecture, image quality, and a non-displaced fracture were subjectively scored against a reference EIDCT image by using a five-point scale. Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared. To assess metal artifacts, a forearm with radial plate fixation was scanned by with and without Tin filter (Sn+ and Sn-), and virtual monoenergetic image (VMI) at 120 keV was created. Regarding Sn+ and VMI, images were only obtained from the technically available scanners. Subjective scores and the areas of streak artifacts were compared. RESULTS PCCT demonstrated significantly lower noise (p < 0.001) and higher bone SNR and CNR (p < 0.001) than all EIDCTs in both resolution modes. However, there was no significant difference between PCCT and EIDCTs in almost all subjective scores, regardless of scan modes, except for image quality where a significant difference was observed, compared to several EIDCTs. Metal artifact analysis revealed PCCT had larger artifact in Sn- and Sn+ (p < 0.001), but fewer in VMIs than three DECTs (p < 0.001 or 0.001). CONCLUSIONS Under standardized conditions, while PCCT had almost no subjective superiority in visualizing bone structures and fracture line when compared to EIDCTs, it outperformed in quantitative analysis related to image quality, especially in lower noise and higher tissue contrast. When using PCCT to assess cases with metal implants, it may be recommended to use VMIs to minimize the possible tendency for artifact to be pronounced.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Takenori Yonenaga
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ryo Akao
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tohru Hashimoto
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tomokazu Shoji
- Department of Radiology, Tha Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan
| | - Shoichi Shioda
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yu Ishizaka
- Medicalscanning Tokyo, 3-1-17 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
23
|
Layer YC, Mesropyan N, Kupczyk PA, Luetkens JA, Isaak A, Dell T, Ernst BP, Attenberger UI, Kuetting D. Use of virtual monoenergetic images for reduction of extensive dental implant associated artifacts in photon-counting detector CT. Sci Rep 2024; 14:497. [PMID: 38177651 PMCID: PMC10766624 DOI: 10.1038/s41598-023-50926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Aim of this study was to assess the impact of virtual monoenergetic images (VMI) on dental implant artifacts in photon-counting detector computed tomography (PCD-CT) compared to standard reconstructed polychromatic images (PI). 30 scans with extensive (≥ 5 dental implants) dental implant-associated artifacts were retrospectively analyzed. Scans were acquired during clinical routine on a PCD-CT. VMI were reconstructed for 100-190 keV (10 keV steps) and compared to PI. Artifact extent and assessment of adjacent soft tissue were rated using a 5-point Likert grading scale for qualitative assessment. Quantitative assessment was performed using ROIs in most pronounced hypodense and hyperdense artifacts, artifact-impaired soft tissue, artifact-free fat and muscle tissue. A corrected attenuation was calculated as difference between artifact-impaired tissue and tissue without artifacts. Qualitative assessment of soft palate and cheeks improved for all VMI compared to PI (Median PI: 1 (Range: 1-3) and 1 (1-3); e.g. VMI130 keV 2 (1-5); p < 0.0001 and 2 (1-4); p < 0.0001). In quantitative assessment, VMI130 keV showed best results with a corrected attenuation closest to 0 (PI: 30.48 ± 98.16; VMI130 keV: - 0.55 ± 73.38; p = 0.0026). Overall, photon-counting deducted VMI reduce the extent of dental implant-associated artifacts. VMI of 130 keV showed best results and are recommended to support head and neck CT scans.
Collapse
Affiliation(s)
- Yannik C Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick A Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tatjana Dell
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Benjamin P Ernst
- Department of Otorhinolaryngology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
24
|
Hagen F, Soschynski M, Weis M, Hagar MT, Krumm P, Ayx I, Taron J, Krauss T, Hein M, Ruile P, von Zur Muehlen C, Schlett CL, Neubauer J, Tsiflikas I, Russe MF, Arnold P, Faby S, Froelich MF, Weiß J, Stein T, Overhoff D, Bongers M, Nikolaou K, Schönberg SO, Bamberg F, Horger M. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. ROFO-FORTSCHR RONTG 2024; 196:25-35. [PMID: 37793417 DOI: 10.1055/a-2119-5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a promising new technology with the potential to fundamentally change workflows in the daily routine and provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD The contents of this review are based on an unrestricted literature search of PubMed and Google Scholar using the search terms "photon-counting CT", "photon-counting detector", "spectral CT", "computed tomography" as well as on the authors' own experience. RESULTS The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCD-CT allows for the counting of every single photon at the detector level. Based on the identified literature, PCD-CT phantom measurements and initial clinical studies have demonstrated that the new technology allows for improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION For clinical practice, the potential benefits include fewer beam hardening artifacts, a radiation dose reduction, and the use of new or combinations of contrast agents. In particular, critical patient groups such as oncological, cardiovascular, lung, and head & neck as well as pediatric patient collectives benefit from the clinical advantages. KEY POINTS · Photon-counting computed tomography (PCD-CT) is being used for the first time in routine clinical practice, enabling a significant dose reduction in critical patient populations such as oncology, cardiology, and pediatrics.. · Compared to conventional CT, PCD-CT enables a reduction in electronic image noise.. · Due to the spectral data sets, PCD-CT enables fully comprehensive post-processing applications.. CITATION FORMAT · Hagen F, Soschynski M, Weis M et al. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. Fortschr Röntgenstr 2024; 196: 25 - 34.
Collapse
Affiliation(s)
- Florian Hagen
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Soschynski
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Meike Weis
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Muhammad Taha Hagar
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana Taron
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Krauss
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Hein
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Philipp Ruile
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Constantin von Zur Muehlen
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Neubauer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilias Tsiflikas
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Arnold
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jakob Weiß
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malte Bongers
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Marcus RP, Nagy DA, Feuerriegel GC, Anhaus J, Nanz D, Sutter R. Photon-Counting Detector CT With Denoising for Imaging of the Osseous Pelvis at Low Radiation Doses: A Phantom Study. AJR Am J Roentgenol 2024; 222:e2329765. [PMID: 37646387 DOI: 10.2214/ajr.23.29765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND. Photon-counting detector (PCD) CT may allow lower radiation doses than used for conventional energy-integrating detector (EID) CT, with preserved image quality. OBJECTIVE. The purpose of this study was to compare PCD CT and EID CT, reconstructed with and without a denoising tool, in terms of image quality of the osseous pelvis in a phantom, with attention to low radiation doses. METHODS. A pelvic phantom comprising human bones in acrylic material mimicking soft tissue underwent PCD CT and EID CT at various tube potentials and radiation doses ranging from 0.05 to 5.00 mGy. Additional denoised reconstructions were generated using a commercial tool. Noise was measured in the acrylic material. Two readers performed independent qualitative assessments that entailed determining the denoised EID CT reconstruction with the lowest acceptable dose and then comparing this reference reconstruction with PCD CT reconstructions without and with denoising, using subjective Likert scales. RESULTS. Noise was lower for PCD CT than for EID CT. For instance, at 0.05 mGy and 100 kV with tin filter, noise was 38.4 HU for PCD CT versus 48.8 HU for EID CT. Denoising further reduced noise; for example, for PCD CT at 100 kV with tin filter at 0.25 mGy, noise was 19.9 HU without denoising versus 9.7 HU with denoising. For both readers, lowest acceptable dose for EID CT was 0.10 mGy (total score, 11 of 15 for both readers). Both readers somewhat agreed that PCD CT without denoising at 0.10 mGy (reflecting reference reconstruction dose) was relatively better than the reference reconstruction in terms of osseous structures, artifacts, and image quality. Both readers also somewhat agreed that denoised PCD CT reconstructions at 0.10 mGy and 0.05 mGy (reflecting matched and lower doses, respectively, with respect to reference reconstruction dose) were relatively better than the reference reconstruction for the image quality measures. CONCLUSION. PCD CT showed better-quality images than EID CT when performed at the lowest acceptable radiation dose for EID CT. PCD CT with denoising yielded better-quality images at a dose lower than lowest acceptable dose for EID CT. CLINICAL IMPACT. PCD CT with denoising could facilitate lower radiation doses for pelvic imaging.
Collapse
Affiliation(s)
- Roy P Marcus
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel A Nagy
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Georg C Feuerriegel
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Daniel Nanz
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital Zurich, Forchstrasse 340, Zurich 8008, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Gruschwitz P, Hartung V, Ergün S, Peter D, Lichthardt S, Huflage H, Hendel R, Pannenbecker P, Augustin AM, Kunz AS, Feldle P, Bley TA, Grunz JP. Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model. Eur Radiol Exp 2023; 7:83. [PMID: 38110729 PMCID: PMC10728414 DOI: 10.1186/s41747-023-00398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. METHODS After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). RESULTS UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). CONCLUSIONS Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. RELEVANCE STATEMENT The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. KEY POINTS • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.
Collapse
Affiliation(s)
- Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany.
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Horst KK, Yu L, McCollough CH, Esquivel A, Thorne JE, Rajiah PS, Baffour F, Hull NC, Weber NM, Thacker PG, Thomas KB, Binkovitz LA, Guerin JB, Fletcher JG. Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 2023; 96:20230189. [PMID: 37750939 PMCID: PMC10646626 DOI: 10.1259/bjr.20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.
Collapse
Affiliation(s)
- Kelly K. Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | | | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, United States
| | - Nathan C. Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Paul G. Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Kristen B. Thomas
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Larry A. Binkovitz
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Julie B. Guerin
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
28
|
Douek PC, Boccalini S, Oei EHG, Cormode DP, Pourmorteza A, Boussel L, Si-Mohamed SA, Budde RPJ. Clinical Applications of Photon-counting CT: A Review of Pioneer Studies and a Glimpse into the Future. Radiology 2023; 309:e222432. [PMID: 37787672 PMCID: PMC10623209 DOI: 10.1148/radiol.222432] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 10/04/2023]
Abstract
CT systems equipped with photon-counting detectors (PCDs), referred to as photon-counting CT (PCCT), are beginning to change imaging in several subspecialties, such as cardiac, vascular, thoracic, and musculoskeletal radiology. Evidence has been building in the literature underpinning the many advantages of PCCT for different clinical applications. These benefits derive from the distinct features of PCDs, which are made of semiconductor materials capable of converting photons directly into electric signal. PCCT advancements include, among the most important, improved spatial resolution, noise reduction, and spectral properties. PCCT spatial resolution on the order of 0.25 mm allows for the improved visualization of small structures (eg, small vessels, arterial walls, distal bronchi, and bone trabeculations) and their pathologies, as well as the identification of previously undetectable anomalies. In addition, blooming artifacts from calcifications, stents, and other dense structures are reduced. The benefits of the spectral capabilities of PCCT are broad and include reducing radiation and contrast material dose for patients. In addition, multiple types of information can be extracted from a single data set (ie, multiparametric imaging), including quantitative data often regarded as surrogates of functional information (eg, lung perfusion). PCCT also allows for a novel type of CT imaging, K-edge imaging. This technique, combined with new contrast materials specifically designed for this modality, opens the door to new applications for imaging in the future.
Collapse
Affiliation(s)
| | | | - Edwin H. G. Oei
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - David P. Cormode
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Amir Pourmorteza
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Loic Boussel
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Salim A. Si-Mohamed
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Ricardo P. J. Budde
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| |
Collapse
|
29
|
Abstract
In 1971, the first patient CT examination by Ambrose and Hounsfield paved the way for not only volumetric imaging of the brain but of the entire body. From the initial 5-minute scan for a 180° rotation to today's 0.24-second scan for a 360° rotation, CT technology continues to reinvent itself. This article describes key historical milestones in CT technology from the earliest days of CT to the present, with a look toward the future of this essential imaging modality. After a review of the beginnings of CT and its early adoption, the technical steps taken to decrease scan times-both per image and per examination-are reviewed. Novel geometries such as electron-beam CT and dual-source CT have also been developed in the quest for ever-faster scans and better in-plane temporal resolution. The focus of the past 2 decades on radiation dose optimization and management led to changes in how exposure parameters such as tube current and tube potential are prescribed such that today, examinations are more customized to the specific patient and diagnostic task than ever before. In the mid-2000s, CT expanded its reach from gray-scale to color with the clinical introduction of dual-energy CT. Today's most recent technical innovation-photon-counting CT-offers greater capabilities in multienergy CT as well as spatial resolution as good as 125 μm. Finally, artificial intelligence is poised to impact both the creation and processing of CT images, as well as automating many tasks to provide greater accuracy and reproducibility in quantitative applications.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | | |
Collapse
|
30
|
Ferrero A, Powell GM, Adaaquah DK, Rajendran K, Thorne JE, Krych AJ, Horst KK, McCollough CH, Baffour FI. Feasibility of photon-counting CT for femoroacetabular impingement syndrome evaluation: lower radiation dose and improved diagnostic confidence. Skeletal Radiol 2023; 52:1651-1659. [PMID: 36971838 DOI: 10.1007/s00256-023-04325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE The feasibility of low-dose photon-counting detector (PCD) CT to measure alpha and acetabular version angles of femoroacetabular impingement (FAI). MATERIAL AND METHODS FAI patients undergoing an energy-integrating detector (EID) CT underwent an IRB-approved prospective ultra-high-resolution (UHR) PCD-CT between 5/2021 and 12/2021. PCD-CT was dose-matched to the EID-CT or acquired at 50% dose. Simulated 50% dose EID-CT images were generated. Two radiologists evaluated randomized EID-CT and PCD-CT images and measured alpha and acetabular version angles on axial image slices. Image quality (noise, artifacts, and visualization of cortex) and confidence in non-FAI pathology were rated on a 4-point scale (3 = adequate). Preference tests of standard dose PCD-CT, 50% dose PCD-CT, and 50% dose EID-CT relative to standard dose EID-CT were performed using Wilcoxon Rank test. RESULTS 20 patients underwent standard dose EID-CT (~ CTDIvol, 4.5 mGy); 10 patients, standard dose PCD-CT (4.0 mGy); 10 patients, 50% PCD-CT (2.6 mGy). Standard dose EID-CT images were scored as adequate for diagnostic task in all categories (range 2.8-3.0). Standard dose PCD-CT images scored higher than the reference in all categories (range 3.5-4, p < 0.0033). Half-dose PCD-CT images also scored higher for noise and cortex visualization (p < 0.0033) and equivalent for artifacts and visualization of non-FAI pathology. Finally, simulated 50% EID-CT images scored lower in all categories (range 1.8-2.4, p < 0.0033). CONCLUSIONS Dose-matched PCD-CT is superior to EID-CT for alpha angle and acetabular version measurement in the work up of FAI. UHR-PCD-CT enables 50% radiation dose reduction compared to EID while remaining adequate for the imaging task.
Collapse
Affiliation(s)
- Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Garret M Powell
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Dennis K Adaaquah
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Jamison E Thorne
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Aaron J Krych
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kelly K Horst
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA
| | - Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, 55902, MN, USA.
| |
Collapse
|
31
|
McCollough CH, Rajendran K, Baffour FI, Diehn FE, Ferrero A, Glazebrook KN, Horst KK, Johnson TF, Leng S, Mileto A, Rajiah PS, Schmidt B, Yu L, Flohr TG, Fletcher JG. Clinical applications of photon counting detector CT. Eur Radiol 2023; 33:5309-5320. [PMID: 37020069 PMCID: PMC10330165 DOI: 10.1007/s00330-023-09596-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 04/07/2023]
Abstract
The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. KEY POINTS: • Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. • Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. • Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.
Collapse
Affiliation(s)
- Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Felix E Diehn
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Katrina N Glazebrook
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kelly K Horst
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tucker F Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Bernhard Schmidt
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas G Flohr
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
32
|
Gillet R, Boubaker F, Hossu G, Thay A, Gillet P, Blum A, Teixeira PAG. Computed Tomography Bone Imaging: Pushing the Boundaries in Clinical Practice. Semin Musculoskelet Radiol 2023; 27:397-410. [PMID: 37748463 DOI: 10.1055/s-0043-1768451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bone microarchitecture has several clinical implications over and above estimating bone strength. Computed tomography (CT) analysis mainly uses high-resolution peripheral quantitative CT and micro-CT, research imaging techniques, most often limited to peripheral skeleton assessment. Ultra-high-resolution (UHR) CT and photon-counting detector CT, two commercially available techniques, provide images that can approach the spatial resolution of the trabeculae, bringing bone microarchitecture analysis into clinical practice and improving depiction of bone vascularization, tumor matrix, and cortical and periosteal bone. This review presents bone microarchitecture anatomy, principles of analysis, reference measurements, and an update on the performance and potential clinical applications of these new CT techniques. We also share our clinical experience and technical considerations using an UHR-CT device.
Collapse
Affiliation(s)
- Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| | - Fatma Boubaker
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| | | | | | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, Nancy, France
- Université de Lorraine, INSERM, IADI, Nancy, France
| |
Collapse
|
33
|
Demehri S, Baffour FI, Klein JG, Ghotbi E, Ibad HA, Moradi K, Taguchi K, Fritz J, Carrino JA, Guermazi A, Fishman EK, Zbijewski WB. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Radiology 2023; 308:e230344. [PMID: 37606571 PMCID: PMC10477515 DOI: 10.1148/radiol.230344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023]
Abstract
CT is one of the most widely used modalities for musculoskeletal imaging. Recent advancements in the field include the introduction of four-dimensional CT, which captures a CT image during motion; cone-beam CT, which uses flat-panel detectors to capture the lower extremities in weight-bearing mode; and dual-energy CT, which operates at two different x-ray potentials to improve the contrast resolution to facilitate the assessment of tissue material compositions such as tophaceous gout deposits and bone marrow edema. Most recently, photon-counting CT (PCCT) has been introduced. PCCT is a technique that uses photon-counting detectors to produce an image with higher spatial and contrast resolution than conventional multidetector CT systems. In addition, postprocessing techniques such as three-dimensional printing and cinematic rendering have used CT data to improve the generation of both physical and digital anatomic models. Last, advancements in the application of artificial intelligence to CT imaging have enabled the automatic evaluation of musculoskeletal pathologies. In this review, the authors discuss the current state of the above CT technologies, their respective advantages and disadvantages, and their projected future directions for various musculoskeletal applications.
Collapse
Affiliation(s)
- Shadpour Demehri
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Francis I. Baffour
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Joshua G. Klein
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elena Ghotbi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Hamza Ahmed Ibad
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Kamyar Moradi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Katsuyuki Taguchi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - John A. Carrino
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Ali Guermazi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elliot K. Fishman
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Wojciech B. Zbijewski
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| |
Collapse
|
34
|
Garcelon C, Abascal J, Olivier C, Uk S, Si-Mohamed S, Ea HK, Douek P, Peyrin F, Chappard C. Quantification of cartilage and subchondral bone cysts on knee specimens based on a spectral photon-counting computed tomography. Sci Rep 2023; 13:11080. [PMID: 37422514 PMCID: PMC10329701 DOI: 10.1038/s41598-023-38238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Spectral photon-counting computed tomography (SPCCT) is a new technique with the capability to provide mono-energetic (monoE) images with high signal to noise ratio. We demonstrate the feasibility of SPCCT to characterize at the same time cartilage and subchondral bone cysts (SBCs) without contrast agent in osteoarthritis (OA). To achieve this goal, 10 human knee specimens (6 normal and 4 with OA) were imaged with a clinical prototype SPCCT. The monoE images at 60 keV with isotropic voxels of 250 × 250 × 250 µm3 were compared with monoE synchrotron radiation CT (SR micro-CT) images at 55 keV with isotropic voxels of 45 × 45 × 45 µm3 used as benchmark for cartilage segmentation. In the two OA knees with SBCs, the volume and density of SBCs were evaluated in SPCCT images. In 25 compartments (lateral tibial (LT), medial tibial, (MT), lateral femoral (LF), medial femoral and patella), the mean bias between SPCCT and SR micro-CT analyses were 101 ± 272 mm3 for cartilage volume and 0.33 mm ± 0.18 for mean cartilage thickness. Between normal and OA knees, mean cartilage thicknesses were found statistically different (0.005 < p < 0.04) for LT, MT and LF compartments. The 2 OA knees displayed different SBCs profiles in terms of volume, density, and distribution according to size and location. SPCCT with fast acquisitions is able to characterize cartilage morphology and SBCs. SPCCT can be used potentially as a new tool in clinical studies in OA.
Collapse
Affiliation(s)
- Célestin Garcelon
- Paris Cité University, CNRS, INSERM, B3OA UMR 7052 U1273, Paris, France
| | - Juan Abascal
- University of Lyon, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, France
| | - Cecile Olivier
- University of Lyon, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, France
| | - Stéphanie Uk
- Paris Cité University, CNRS, INSERM, B3OA UMR 7052 U1273, Paris, France
| | - Salim Si-Mohamed
- University of Lyon, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, France
| | - Hang-Korng Ea
- Rheumatology Department, University Paris Cité, Paris, France
| | - Philippe Douek
- University of Lyon, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, France
| | - Francoise Peyrin
- University of Lyon, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1206, Lyon, France
| | - Christine Chappard
- Paris Cité University, CNRS, INSERM, B3OA UMR 7052 U1273, Paris, France.
| |
Collapse
|
35
|
Patzer TS, Kunz AS, Huflage H, Luetkens KS, Conrads N, Gruschwitz P, Pannenbecker P, Ergün S, Bley TA, Grunz JP. Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT. Sci Rep 2023; 13:8226. [PMID: 37217553 DOI: 10.1038/s41598-023-35367-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Photon-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDIvol = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations were conducted in accordance with the clinical standard as "non-UHR". Reconstruction of EID data employed the sharpest kernel available for standard-resolution scans (ρ50 = 12.3 lp/cm), while PCD data were reconstructed with both a comparable kernel (11.8 lp/cm) and a sharper dedicated bone kernel (16.5 lp/cm). Six radiologists with 2-9 years of experience in musculoskeletal imaging rated image quality subjectively. Interrater agreement was analyzed by calculation of the intraclass correlation coefficient in a two-way random effects model. Quantitative analyses comprised noise recording and calculating signal-to-noise ratios based on attenuation measurements in bone and soft tissue. Subjective image quality was higher in UHR-PCD-CT than in EID-CT and non-UHR-PCD-CT datasets (all p < 0.001). While low-dose UHR-PCD-CT was considered superior to full-dose non-UHR studies on either scanner (all p < 0.001), ratings of low-dose non-UHR-PCD-CT and full-dose EID-CT examinations did not differ (p > 0.99). Interrater reliability was moderate, indicated by a single measures intraclass correlation coefficient of 0.66 (95% confidence interval: 0.58-0.73; p < 0.001). Image noise was lowest and signal-to-noise ratios were highest in non-UHR-PCD-CT reconstructions at either dose level (p < 0.001). This investigation demonstrates that superior depiction of trabecular microstructure and considerable denoising can be realized without additional radiation dose by employing a PCD for shoulder CT imaging. Allowing for UHR scans without dose penalty, PCD-CT appears as a promising alternative to EID-CT for shoulder trauma assessment in clinical routine.
Collapse
Affiliation(s)
- Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Karsten Sebastian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Nora Conrads
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
36
|
Patzer TS, Kunz AS, Huflage H, Conrads N, Luetkens KS, Pannenbecker P, Paul MM, Ergün S, Bley TA, Grunz JP. Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything. Diagnostics (Basel) 2023; 13:diagnostics13101677. [PMID: 37238160 DOI: 10.3390/diagnostics13101677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDIvol 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1-3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732-0.848; p < 0.001) and fracture assessability (0.880; 0.842-0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0-3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise.
Collapse
Affiliation(s)
- Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Nora Conrads
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Karsten Sebastian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Mila Marie Paul
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
37
|
Woisetschläger M, Booij R, Tesselaar E, Oei EHG, Schilcher J. Improved visualization of the bone-implant interface and osseointegration in ex vivo acetabular cup implants using photon-counting detector CT. Eur Radiol Exp 2023; 7:19. [PMID: 37121937 PMCID: PMC10149426 DOI: 10.1186/s41747-023-00335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Successful osseointegration of joint replacement implants is required for long-term implant survival. Accurate assessment of osseointegration could enable clinical discrimination of failed implants from other sources of pain avoiding unnecessary surgeries. Photon-counting detector computed tomography (PCD-CT) provides improvements in image resolution compared to conventional energy-integrating detector CT (EID-CT), possibly allowing better visualization of bone-implant-interfaces and osseointegration. The aim of this study was to assess the quality of visualization of bone-implant-interfaces and osseointegration in acetabular cup implants, using PCD-CT compared with EID-CT. METHODS Two acetabular implants (one cemented, one uncemented) retrieved during revision surgery were scanned using PCD-CT and EID-CT at equal radiation dose. Images were reconstructed using different reconstruction kernels and iterative strengths. Delineation of the bone-implant and bone-cement-interface as an indicator of osseointegration was scored subjectively for image quality by four radiologists on a Likert scale and assessed quantitatively. RESULTS Delineation of bone-implant and bone-cement-interfaces was better with PCD-CT compared with EID-CT (p ≤ 0.030). The highest ratings were given for PCD-CT at sharper kernels for the cemented cup (PCD-CT, median 5, interquartile range 4.25-5.00 versus EID-CT, 3, 2.00-3.75, p < 0.001) and the uncemented cup (5, 4.00-5.00 versus 2, 2-2, respectively, p < 0.001). The bone-implant-interface was 35-42% sharper and the bone-cement-interface was 28-43% sharper with PCD-CT compared with EID-CT, depending on the reconstruction kernel. CONCLUSIONS PCD-CT might enable a more accurate assessment of osseointegration of orthopedic joint replacement implants. KEY POINTS • The bone-implant interface ex vivo showed superior visualization using photon-counting detector computed tomography (PCD-CT) compared to energy-integrating detector computed tomography. • Harder reconstruction kernels in PCD-CT provide sharper images with lower noise levels. • These improvements in imaging might make it possible to visualize osseointegration in vivo.
Collapse
Affiliation(s)
- Mischa Woisetschläger
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Ronald Booij
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Tesselaar
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Schilcher
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Orthopedics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
38
|
Baffour FI, Glazebrook KN, Ferrero A, Leng S, McCollough CH, Fletcher JG, Rajendran K. Photon-Counting Detector CT for Musculoskeletal Imaging: A Clinical Perspective. AJR Am J Roentgenol 2023; 220:551-560. [PMID: 36259593 DOI: 10.2214/ajr.22.28418] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photon-counting detector (PCD) CT has emerged as a novel imaging modality that represents a fundamental shift in the way that CT systems detect x-rays. After pre-clinical and clinical investigations showed benefits of PCD CT for a range of imaging tasks, the U.S. FDA in 2021 approved the first commercial PCD CT system for clinical use. The technologic features of PCD CT are particularly well suited for musculo-skeletal imaging applications. Advantages of PCD CT compared with conventional energy-integrating detector (EID) CT include smaller detector pixels and excellent geometric dose efficiency that enable imaging of large joints and central skeletal anatomy at ultrahigh spatial resolution; advanced multienergy spectral postprocessing that allows quantification of gout deposits and generation of virtual noncalcium images for visualization of bone edema; improved metal artifact reduction for imaging of orthopedic implants; and higher CNR and suppression of electronic noise. Given substantially improved cortical and trabecular detail, PCD CT images more clearly depict skeletal abnormalities, including fractures, lytic lesions, and mineralized tumor matrix. The purpose of this article is to review, by use of clinical examples comparing EID CT and PCD CT, the technical features of PCD CT and their associated impact on musculoskeletal imaging applications.
Collapse
Affiliation(s)
- Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | | | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | | | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
39
|
Sonnow L, Salimova N, Behrendt L, Wacker FK, Örgel M, Plagge J, Weidemann F. Photon-counting CT of elbow joint fractures: image quality in a simulated post-trauma setting with off-center positioning. Eur Radiol Exp 2023; 7:15. [PMID: 36967394 PMCID: PMC10040392 DOI: 10.1186/s41747-023-00329-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) has the potential to provide superior image quality compared to energy-integrating detector computed tomography (EID-CT). We compared the two systems for elbow imaging in off-center arm positioning, 90° flexion, and cast fixation in a simulated post-trauma setting. METHODS The institutional review board approved the study protocol. In a cadaver study, an olecranon fracture was artificially created in ten whole arm specimens. Two different scanning positions were evaluated: (a) arm overhead; and (b) arm on top of the abdomen of a whole-body phantom. The ultra-high resolution mode with three dose protocols and two reconstruction kernels was applied. Two blinded radiologists independently evaluated fracture and trabecular bone delineation. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and cortical sharpness measurements were performed. Cohen κ correlations, Mann-Whitney U and Wilcoxon signed rank tests were used. A p value lower than 0.05 was considered statistically significant. RESULTS Dose-equivalent PCD-CT scans were rated better for fracture and trabecular bone evaluation (p < 0.001). SNR, CNR, and cortical sharpness were higher for all diagnostic (Br76) PCD-CT images (p < 0.001). The arm position had less effect on image quality in the PCD-CT compared to the EID-CT. The use of a sharp bone kernel (Br89) improved image quality ratings for PCD-CT. In the low-dose scan mode, PCD-CT resulted in more diagnostic scans (75%) compared to EID-CT (19%). CONCLUSIONS PCD-CT provided superior objective and subjective image quality for fracture and trabecular bone structures delineation of the elbow compared to EID-CT in a typical post-trauma setting. KEY POINTS • Photon-counting detector computed tomography (PCD-CT) preserved high image quality in elbow imaging with off-center positions. • PCD-CT was advantageous for bone evaluation in trauma elbows. • PCD-CT ultra-high-resolution mode and very sharp reconstruction kernels facilitated higher image quality.
Collapse
Affiliation(s)
- Lena Sonnow
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
| | - Nigar Salimova
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Lea Behrendt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Frank K Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcus Örgel
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Plagge
- Department of Orthopedic Surgery, Hannover Medical School at Diakovere Annastift, Hannover, Germany
| | | |
Collapse
|
40
|
Sartoretti T, Wildberger JE, Flohr T, Alkadhi H. Photon-counting detector CT: early clinical experience review. Br J Radiol 2023:20220544. [PMID: 36744809 DOI: 10.1259/bjr.20220544] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its development in the 1970s, X-ray CT has emerged as a landmark diagnostic imaging modality of modern medicine. Technological advances have been crucial to the success of CT imaging, as they have increasingly enabled improvements in image quality and diagnostic value at increasing radiation dose efficiency. With recent advances in engineering and physics, a novel technology has emerged with the potential to surpass several shortcomings and limitations of current CT systems. Photon-counting detector (PCD)-CT might substantially improve and expand the applicability of CT imaging by offering intrinsic spectral capabilities, increased spatial resolution, reduced electronic noise and improved image contrast. In this review we sought to summarize the first clinical experience of PCD-CT. We focused on most recent prototype and first clinically approved PCD-CT systems thereby reviewing initial publications and presenting corresponding clinical cases.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|