1
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
2
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Zinkevich NS, Fancher IS, Gutterman DD, Phillips SA. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS-induced ROS release in coronary artery disease. Microcirculation 2018; 24. [PMID: 28480622 DOI: 10.1111/micc.12380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/30/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES H2 O2 contributes to FID of human arterioles. This study is designed to examine the roles of mitochondria and NADPH oxidase in modulating the release of ROS and in mediating FID. We tested whether NADPH oxidase contributes to mitochondrial ROS generation in arterioles during CAD. METHODS Visceral adipose arterioles obtained from patients with or without CAD were cannulated and pressurized for videomicroscopic measurement of arteriolar diameters. Dilator responses and ROS production during flow were determined in the presence and absence of the NADPH oxidase inhibitor gp91ds-tat and the mitochondrial electron transport inhibitor rotenone. RESULTS Both dilation and H2 O2 generation during flow were reduced in the presence of rotenone (13.5±8% vs 97±% without rotenone) or gp91ds-tat in patients with CAD, while patients without CAD exhibited H2 O2 -independent dilations. Mitochondrial superoxide production during flow was attenuated by gp91ds-tat in arterioles from CAD patients. CONCLUSIONS These findings indicate that ROS produced by NADPH oxidase are an upstream component of the mitochondria-dependent pathway contributing to flow-dependent H2 O2 generation and dilation in peripheral microvessels from patients with CAD. We conclude that in CAD, both mitochondria and NADPH oxidase contribute to FID through a redox mechanism in visceral arterioles.
Collapse
Affiliation(s)
- Natalya S Zinkevich
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Health and Medicine, Carroll University, Waukesha, WI, USA
| | - Ibra S Fancher
- Department of Physical Therapy, Department of Medicine (Division of Pulmonary, Critical Care, Sleep and Allergy), University of Illinois at Chicago, Chicago, IL, USA
| | - David D Gutterman
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, Department of Medicine (Division of Endocrinology, Diabetes and Metabolism), Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Fancher IS, Ahn SJ, Adamos C, Osborn C, Oh MJ, Fang Y, Reardon CA, Getz GS, Phillips SA, Levitan I. Hypercholesterolemia-Induced Loss of Flow-Induced Vasodilation and Lesion Formation in Apolipoprotein E-Deficient Mice Critically Depend on Inwardly Rectifying K + Channels. J Am Heart Assoc 2018; 7:e007430. [PMID: 29502106 PMCID: PMC5866319 DOI: 10.1161/jaha.117.007430] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hypercholesterolemia-induced decreased availability of nitric oxide (NO) is a major factor in cardiovascular disease. We previously established that cholesterol suppresses endothelial inwardly rectifying K+ (Kir) channels and that Kir2.1 is an upstream mediator of flow-induced NO production. Therefore, we tested the hypothesis that suppression of Kir2.1 is responsible for hypercholesterolemia-induced inhibition of flow-induced NO production and flow-induced vasodilation (FIV). We also tested the role of Kir2.1 in the development of atherosclerotic lesions. METHODS AND RESULTS Kir2.1 currents are significantly suppressed in microvascular endothelial cells exposed to acetylated-low-density lipoprotein or isolated from apolipoprotein E-deficient (Apoe-/- ) mice and rescued by cholesterol depletion. Genetic deficiency of Kir2.1 on the background of hypercholesterolemic Apoe-/- mice, Kir2.1+/-/Apoe-/- exhibit the same blunted FIV and flow-induced NO response as Apoe-/- or Kir2.1+/- alone, but while FIV in Apoe-/- mice can be rescued by cholesterol depletion, in Kir2.1+/-/Apoe-/- mice cholesterol depletion has no effect on FIV. Endothelial-specific overexpression of Kir2.1 in arteries from Apoe-/- and Kir2.1+/-/Apoe-/- mice results in full rescue of FIV and NO production in Apoe-/- mice with and without the addition of a high-fat diet. Conversely, endothelial-specific expression of dominant-negative Kir2.1 results in the opposite effect. Kir2.1+/-/Apoe-/- mice also show increased lesion formation, particularly in the atheroresistant area of descending aorta. CONCLUSIONS We conclude that hypercholesterolemia-induced reduction in FIV is largely attributable to cholesterol suppression of Kir2.1 function via the loss of flow-induced NO production, whereas the stages downstream of flow-induced Kir2.1 activation appear to be mostly intact. Kir2.1 channels also have an atheroprotective role.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/physiopathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Hypercholesterolemia/physiopathology
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Nitric Oxide/metabolism
- Plaque, Atherosclerotic
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Signal Transduction
- Vasodilation
Collapse
Affiliation(s)
- Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| | - Crystal Adamos
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Catherine Osborn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| | - Myung-Jin Oh
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, IL
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, IL
| | | | | | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| |
Collapse
|
5
|
Leiva A, Fuenzalida B, Salsoso R, Barros E, Toledo F, Gutiérrez J, Pardo F, Sobrevia L. Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2016; 1862:536-544. [DOI: 10.1016/j.bbadis.2016.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/03/2016] [Accepted: 01/19/2016] [Indexed: 01/20/2023]
|
6
|
Korner G, Scherer T, Adamsen D, Rebuffat A, Crabtree M, Rassi A, Scavelli R, Homma D, Ledermann B, Konrad D, Ichinose H, Wolfrum C, Horsch M, Rathkolb B, Klingenspor M, Beckers J, Wolf E, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Blau N, Rozman J, Thöny B. Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to Pts variants leads to unusual body fat distribution and abdominal obesity in mice. J Inherit Metab Dis 2016; 39:309-19. [PMID: 26830550 DOI: 10.1007/s10545-015-9909-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15% of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90% reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.
Collapse
Affiliation(s)
- Germaine Korner
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Tanja Scherer
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Dea Adamsen
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Alexander Rebuffat
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Mark Crabtree
- BHF Centre of Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DU, Oxford, UK
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zürich, Switzerland
| | - Rossana Scavelli
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Daigo Homma
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Birgit Ledermann
- Division of Animal Facility, University of Zurich, Zürich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Hiroshi Ichinose
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Am Forum 8, 85354, Freising-Weihenstephan, Germany
- ZIEL - Center for Nutrition and Food Sciences, Technische Universität München, D-85350, Freising, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
- Dietmar-Hopp Metabolic Center, University Children's Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany.
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Am Forum 8, 85354, Freising-Weihenstephan, Germany.
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland.
- Children's Research Center (CRC), Zürich, Switzerland.
| |
Collapse
|
7
|
Leiva A, Fuenzalida B, Westermeier F, Toledo F, Salomón C, Gutiérrez J, Sanhueza C, Pardo F, Sobrevia L. Role for Tetrahydrobiopterin in the Fetoplacental Endothelial Dysfunction in Maternal Supraphysiological Hypercholesterolemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:5346327. [PMID: 26697136 PMCID: PMC4677232 DOI: 10.1155/2016/5346327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development.
Collapse
Affiliation(s)
- Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Francisco Westermeier
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, 8380492 Santiago, Chile
- Faculty of Science, Universidad San Sebastián, 7510157 Santiago, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, 3780000 Chillán, Chile
| | - Carlos Salomón
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Cellular Signaling and Differentiation Laboratory (CSDL), Health Sciences Faculty, Universidad San Sebastian, 7510157 Santiago, Chile
| | - Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
8
|
Hussein D, Starr A, Heikal L, McNeill E, Channon KM, Brown PR, Sutton BJ, McDonnell JM, Nandi M. Validating the GTP-cyclohydrolase 1-feedback regulatory complex as a therapeutic target using biophysical and in vivo approaches. Br J Pharmacol 2015; 172:4146-57. [PMID: 26014146 PMCID: PMC4543619 DOI: 10.1111/bph.13202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4 ) is an essential cofactor for nitric oxide biosynthesis. Substantial clinical evidence indicates that intravenous BH4 restores vascular function in patients. Unfortunately, oral BH4 has limited efficacy. Therefore, orally bioavailable pharmacological activators of endogenous BH4 biosynthesis hold significant therapeutic potential. GTP-cyclohydrolase 1 (GCH1), the rate limiting enzyme in BH4 synthesis, forms a protein complex with GCH1 feedback regulatory protein (GFRP). This complex is subject to allosteric feed-forward activation by L-phenylalanine (L-phe). We investigated the effects of L-phe on the biophysical interactions of GCH1 and GFRP and its potential to alter BH4 levels in vivo. EXPERIMENTAL APPROACH Detailed characterization of GCH1-GFRP protein-protein interactions were performed using surface plasmon resonance (SPR) with or without L-phe. Effects on systemic and vascular BH4 biosynthesis in vivo were investigated following L-phe treatment (100 mg·kg(-1) , p.o.). KEY RESULTS GCH1 and GFRP proteins interacted in the absence of known ligands or substrate but the presence of L-phe doubled maximal binding and enhanced binding affinity eightfold. Furthermore, the complex displayed very slow association and dissociation rates. In vivo, L-phe challenge induced a sustained elevation of aortic BH4 , an effect absent in GCH1(fl/fl)-Tie2Cre mice. CONCLUSIONS AND IMPLICATIONS Biophysical data indicate that GCH1 and GFRP are constitutively bound. In vivo, data demonstrated that L-phe elevated vascular BH4 in an endothelial GCH1 dependent manner. Pharmacological agents which mimic the allosteric effects of L-phe on the GCH1-GFRP complex have the potential to elevate endothelial BH4 biosynthesis for numerous cardiovascular disorders.
Collapse
Affiliation(s)
- D Hussein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - A Starr
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - L Heikal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - E McNeill
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | - K M Channon
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | - P R Brown
- The Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - B J Sutton
- The Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - J M McDonnell
- The Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| | - M Nandi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College LondonLondon, UK
| |
Collapse
|
9
|
Reverter E, Mesonero F, Seijo S, Martínez J, Abraldes JG, Peñas B, Berzigotti A, Deulofeu R, Bosch J, Albillos A, García-Pagán JC. Effects of Sapropterin on Portal and Systemic Hemodynamics in Patients With Cirrhosis and Portal Hypertension: A Bicentric Double-Blind Placebo-Controlled Study. Am J Gastroenterol 2015; 110:985-92. [PMID: 26077176 DOI: 10.1038/ajg.2015.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tetrahydrobiopterin (BH4), a cofactor of nitric oxide synthase, might have a role in the treatment of portal hypertension (PHT) as its administration improves endothelial nitric oxide generation and hepatic endothelial dysfunction, and reduces portal pressure in experimental models of cirrhosis. Sapropterin is an oral synthetic analogue of BH4 recently approved for the treatment of phenylketonuria. This study evaluated the safety and effects of sapropterin on hepatic and systemic hemodynamics in patients with cirrhosis and PHT. METHODS Forty patients with cirrhosis and PHT (hepatic venous pressure gradient (HVPG) ≥10 mm Hg) were randomly allocated to receive sapropterin (n=19) for 2 weeks (5 mg/kg/day increased to 10 at day 8) or placebo (n=21) in a double-blind multicenter clinical trial. Randomization was stratified according to concomitant treatment with β-adrenergic blockers. We studied at baseline and post-treatment splanchnic (HVPG and hepatic blood flow (HBF)) and systemic hemodynamics, endothelial dysfunction and oxidative stress markers (von Willebrand factor and malondialdehyde), liver function tests, and safety variables. RESULTS HVPG was not modified by either sapropterin (16.0±4.4 vs. 15.8±4.7 mm Hg) or placebo (16.0±4.6 vs. 15.5±4.9 mm Hg). HBF, systemic hemodynamics, endothelial dysfunction markers, and liver function tests remained unchanged. Sapropterin was well tolerated (no patient required dose adjustment or withdrawal), and adverse events were mild and similar between groups. CONCLUSIONS Sapropterin, an oral synthetic analogue of BH4, at the used dose did not reduce portal pressure in patients with cirrhosis. Sapropterin was safe and no serious adverse effects or deleterious systemic hemodynamic effects were observed.
Collapse
Affiliation(s)
- Enric Reverter
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Francisco Mesonero
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Susana Seijo
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier Martínez
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Juan G Abraldes
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Beatriz Peñas
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Annalisa Berzigotti
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ramon Deulofeu
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Department of Biochemistry and Molecular Genetics, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jaume Bosch
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Agustín Albillos
- 1] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain [2] Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, University of Alcalá, Madrid, Spain
| | - Joan Carles García-Pagán
- 1] Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain [2] Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
10
|
Tetrahydrobiopterin improves endothelial function in cardiovascular disease: a systematic review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:850312. [PMID: 25548592 PMCID: PMC4273464 DOI: 10.1155/2014/850312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
Background. Tetrahydrobiopterin (BH4) is a cofactor of nitric oxide synthase (NOS). Nitric oxide (NO) bioavailability is reduced during the early stage of vascular diseases, such as coronary artery disease, hypercholesterolemia, hypertension, and diabetic vasculopathy, and even throughout the entire progression of atherosclerosis. Methods. A literature search was performed using electronic databases (up to January 31, 2014), including MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL), using an established strategy. Results. Fourteen articles were selected with a total of 370 patients. Ten of the fourteen studies showed a significant improvement in the endothelial dysfunction of various cardiovascular disease groups with BH4 supplementation compared with the control groups or placebos. Three studies showed no positive outcome, and one study showed that low-dose BH4 had no effect but that high-dose BH4 did have a significantly different result. Conclusions. This review concludes that supplementation with BH4 and/or augmentation of the endogenous levels of BH4 will be a novel approach to improve the endothelial dysfunction observed in various cardiovascular diseases. BH4 might be considered to be a new therapeutic agent to prevent the initiation and progression of cardiovascular disease.
Collapse
|
11
|
Bruning RS, Sturek M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis 2014; 57:443-53. [PMID: 25446554 DOI: 10.1016/j.pcad.2014.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Every 34 seconds an American experiences a myocardial infarction or cardiac death. Approximately 80% of these coronary artery disease (CAD)-related deaths are attributable to modifiable behaviors, such as a lack of physical exercise training (ET). Regular ET decreases CAD morbidity and mortality through systemic and cardiac-specific adaptations. ET increases myocardial oxygen demand acting as a stimulus to increase coronary blood flow and thus myocardial oxygen supply, which reduces myocardial infarction and angina. ET augments coronary blood flow through direct actions on the vasculature that improve endothelial and coronary smooth muscle function, enhancing coronary vasodilation. Additionally, ET promotes collateralization, thereby, increasing blood flow to ischemic myocardium and also treats macrovascular CAD by attenuating the progression of coronary atherosclerosis and restenosis, potentially through stabilization of atherosclerotic lesions. In summary, ET can be used as a relatively safe and inexpensive way to prevent and treat CAD.
Collapse
Affiliation(s)
- Rebecca S Bruning
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120.
| |
Collapse
|
12
|
Siegrist PT, Koepfli P, Namdar M, Pazhenkottil AP, Nkoulou R, Lüscher TF, Kaufmann PA. Recovery mismatch between myocardial blood flow and cardiac workload after physical exercise: a positron emission tomography study. Eur Heart J Cardiovasc Imaging 2014; 15:1386-90. [PMID: 25187616 DOI: 10.1093/ehjci/jeu141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS We studied the interrelation between oxygen consumption and myocardial blood flow (MBF) during recovery. MBF is directly dependent on oxygen consumption. The latter is linearly related to the heart rate-blood pressure product (RPP, bpm × mmHg), an index reflecting external cardiac work. In the immediate post-exercise period, cardiac output decreases considerably. This is expected to be paralleled by a rapid fall in oxygen demand, rendering ischaemia unlikely. Thus, the phenomenon of ST-segment depression during recovery remains unexplained. METHODS AND RESULTS (15)O-labelled water and positron emission tomography were used to measure MBF in 14 young healthy volunteers (mean age 27 ± 3 years) during the following study conditions: (i) at rest, (ii) during a steady submaximal supine bicycle exercise stress within the scanner, and (iii) during recovery immediately after cessation of exercise. During recovery, RPP decreased by 43% (18 768 ± 1337 vs. 11 652 ± 3224, P < 0.001). In contrast, the associated decrease in MBF (2.52 ± 0.52 vs. 1.93 ± 0.50 mL/min/g, P < 0.001) and perfusion reserve (2.68 ± 0.51 vs. 2.03 ± 0.42, P < 0.001) was significantly less pronounced (-24%, P < 0.01), indicating a relative delay in MBF recovery compared with cardiac work load. CONCLUSION The mismatch between a rapid decrease in cardiac workload but preserved hyperaemic response early after cessation of physical exercise suggests an uncoupling of cardiac work and MBF during recovery.
Collapse
Affiliation(s)
- Patrick T Siegrist
- Nuclear Medicine, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Pascal Koepfli
- Nuclear Medicine, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Mehdi Namdar
- Nuclear Medicine, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Aju P Pazhenkottil
- Nuclear Medicine, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Rene Nkoulou
- Nuclear Medicine, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Cardiology, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Philipp A Kaufmann
- Nuclear Medicine, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
13
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Abstract
6R l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for several enzymes including phenylalanine hydroxylase and the nitric oxide synthases (NOS). Oral supplementation of BH4 has been successfully employed to treat subsets of patients with hyperphenylalaninaemia. More recently, research efforts have focussed on understanding whether BH4 supplementation may also be efficacious in cardiovascular disorders that are underpinned by reduced nitric oxide bioavailability. Whilst numerous preclinical and clinical studies have demonstrated a positive association between enhanced BH4 and vascular function, the efficacy of orally administered BH4 in human cardiovascular disease remains unclear. Furthermore, interventions that limit BH4 bioavailability may provide benefit in diseases where nitric oxide over production contributes to pathology. This review describes the pathways involved in BH4 bio-regulation and discusses other endogenous mechanisms that could be harnessed therapeutically to manipulate vascular BH4 levels.
Collapse
Affiliation(s)
- Anna Starr
- Pharmacology and Therapeutics Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street,London SE1 9NH, United Kingdom
| | | | | |
Collapse
|
15
|
Tang LL, Zheng JS. Effects of tetrahydrobiopterin on cerebral infarction after transient focal ischemia in rats. Neurol Res 2011; 33:1064-7. [PMID: 20487600 DOI: 10.1179/016164110x12700393823651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The present study investigated the effects of tetrahydrobiopterin (BH4) on cerebral infarction after transient focal ischemia in rats. METHODS Focal ischemia (1·5 hours) was created in male Sprague-Dawley rats (250-280 g) by middle cerebral artery occlusion. Some rats were treated with 20 mg/kg tetrahydrobiopterin by intraperitoneal injection 30 minutes before reperfusion. At 2, 6, and 12 hours of reperfusion, the brains were harvested for the nitric oxide synthase (NOS) activity and nitric oxide (NO) level assays. At 12 hours of reperfusion, the brains were harvested for infarct size measurement. RESULTS NOS activity and NO level were all augmented after reperfusion. BH4 treatment significantly further increased NOS activity and NO level. Cerebral infarct size was significantly bigger in BH4 treatment group compared to that in no treatment group. CONCLUSIONS The data indicate that BH4 enhances cerebral infarction after transient focal ischemia in rats, through NOS and NO pathway.
Collapse
Affiliation(s)
- Ling-Ling Tang
- First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
16
|
Crabtree MJ, Channon KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011; 25:81-8. [PMID: 21550412 PMCID: PMC5357050 DOI: 10.1016/j.niox.2011.04.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/08/2023]
Abstract
Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of L-arginine oxidation, to produce NO. Loss or oxidation of BH4 to 7,8-dihydrobiopterin (BH2) is associated with NOS uncoupling, resulting in the production of superoxide rather than NO. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR) can 'recycle' BH2, and thus regenerate BH4. It is therefore likely that net BH4 cellular bioavailability reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. Recent studies have implicated BH4 recycling in the direct regulation of eNOS uncoupling, showing that inhibition of BH4 recycling using DHFR-specific siRNA and methotrexate treatment leads to eNOS uncoupling in endothelial cells and the hph-1 mouse model of BH4 deficiency, even in the absence of oxidative stress. These studies indicate that not only BH4 level, but the recycling pathways regulating BH4 bioavailability represent potential therapeutic targets and will be discussed in this review.
Collapse
Affiliation(s)
- Mark J Crabtree
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | |
Collapse
|
17
|
Koepfli P, Wyss CA, Gaemperli O, Siegrist PT, Klainguti M, Schepis T, Namdar M, Bechir M, Hoefflinghaus T, Duru F, Kaufmann PA. Left bundle branch block causes relative but not absolute septal underperfusion during exercise. Eur Heart J 2009; 30:2993-9. [DOI: 10.1093/eurheartj/ehp372] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
18
|
Martin BJ, Anderson TJ. Risk prediction in cardiovascular disease: the prognostic significance of endothelial dysfunction. Can J Cardiol 2009; 25 Suppl A:15A-20A. [PMID: 19521569 DOI: 10.1016/s0828-282x(09)71049-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of new and emerging biomarkers in risk prediction has become a topic of significant interest and controversy in recent times. Currently, available models for risk prediction are reasonably good yet still misclassify a not insignificant portion of the population. The sheer number of new potential risk markers is daunting, and it is difficult to assess the importance of each one over and above the traditional risk factors. Endothelial function is one potential biomarker of risk that has been extensively studied. However, while it has demonstrated some utility in risk prediction, its use in daily clinical practice is yet to be clearly defined. The present review assesses the prognostic significance of measures of endothelial function.
Collapse
Affiliation(s)
- Billie-Jean Martin
- Department of Cardiac Sciences and Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta
| | | |
Collapse
|
19
|
Abstract
Quantification of regional myocardial blood flow and of its responses to targeted physiologic and pharmacologic interventions, which is now available with positron emitting tracers of blood flow and positron emission tomography (PET), extends the diagnostic potential of standard myocardial perfusion imaging. These noninvasive flow measurements serve as tools for quantifying functional consequences of epicardial coronary artery disease, as well as of impairments in microcirculatory reactivity that escape detection by standard perfusion imaging. Flow measurements are clinically useful for more comprehensively assessing the extent and severity of coronary vascular disease or impairments in microcirculatory function in noncoronary cardiac disease. Flow estimates in these disorders contain independent or unique prognostic information about future major cardiac events. Flow measurements are also useful for assessing the coronary risk, for predicting long-term cardiovascular events, and for monitoring the effectiveness of risk reduction strategies.
Collapse
Affiliation(s)
- Heinrich R Schelbert
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-6948, USA.
| |
Collapse
|
20
|
Glavas D, Bakovic D, Obad A, Palada I, Breskovic T, Valic Z, Brubakk AO, Dujic Z. Effects of tetrahydrobiopterin on venous bubble grade and acute diving-induced changes in cardiovascular function. Clin Physiol Funct Imaging 2009; 29:100-7. [PMID: 19076728 DOI: 10.1111/j.1475-097x.2008.00845.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Self-contained underwater breathing apparatus diving reduces cardiovascular function and increases pulmonary artery pressure (PAP) up to 3 days after a single dive. Acute antioxidants partially attenuated arterial endothelial dysfunction, whereas cardiac and PA functions were unaffected. We tested the hypothesis that acute tetrahydobiopterin (BH(4)), as a cofactor of endothelial nitric oxide (NO) synthase, reduces bubble grade (BG) and attenuates alteration in cardiovascular function after diving because of increased NO bioavailability. MATERIALS AND METHODS Mean PAP (mPAP), PA acceleration time and right ventricle ejection time, left ventricle ejection fraction (LV-EF) and BG were measured after oral placebo (P), vitamin C (C) or a combination of vitamin C and BH(4) (BH(4)) in a randomized, placebo controlled trial before and after field dive to 30 m of sea water for 30 min bottom time. RESULTS Eight recreational divers performed three dives with a 3-days period between them. Regarding the primary hypothesis, no difference was observed between post-dive changes in BG (2.1 +/- 2.2 bubbles cm(-2) for P, 3.4 +/- 3.9 for C and 3.6 +/- 2.1 for BH(4)), mPAP (25.6 +/- 6.5 mmHg for P, 25.9 +/- 8.6 for C and 22.6 +/- 3.5 for BH(4)) and LV-EF (62.6 +/- 4.6% for P, 61.4 +/- 3.9 for C and 61.6 +/- 3.7 for BH(4)) with all three conditions. CONCLUSION This suggests that co-administration of BH(4) and vitamin C does not improve heart and pulmonary artery function after diving.
Collapse
Affiliation(s)
- Duska Glavas
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Katusic ZS, d'Uscio LV, Nath KA. Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol Sci 2009; 30:48-54. [PMID: 19042039 PMCID: PMC2637534 DOI: 10.1016/j.tips.2008.10.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 02/07/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor required for the activity of endothelial nitric oxide (NO) synthase. Suboptimal concentrations of BH4 in the endothelium reduce the biosynthesis of NO, thus contributing to the pathogenesis of vascular endothelial dysfunction. Supplementation with exogenous BH4 or therapeutic approaches that increase endogenous amounts of BH4 can reduce or reverse endothelial dysfunction by restoring production of NO. Improvements in formulations of BH4 for oral delivery have stimulated clinical trials that test the efficacy of BH4 in the treatment of systemic hypertension, peripheral arterial disease, coronary artery disease, pulmonary arterial hypertension, and sickle cell disease. This review discusses ongoing progress in the translation of knowledge, accumulated in preclinical studies, into the clinical application of BH4 in the treatment of vascular diseases. This review also addresses the emerging roles of BH4 in the regulation of endothelial function and their therapeutic implications.
Collapse
Affiliation(s)
- Zvonimir S Katusic
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
22
|
Kaufmann PA, Rimoldi OE, Gnecchi-Ruscone T, Luscher TF, Camici PG. Systemic nitric oxide synthase inhibition improves coronary flow reserve to adenosine in patients with significant stenoses. Am J Physiol Heart Circ Physiol 2007; 293:H2178-82. [PMID: 17660388 DOI: 10.1152/ajpheart.01292.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the impact of systemic infusion of the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on coronary flow reserve (CFR) in patients with coronary artery disease (CAD). We have previously demonstrated that CFR to adenosine was significantly increased after systemic infusion of L-NMMA in normal volunteers but not in recently transplanted denervated hearts. At baseline, myocardial blood flow (MBF; ml x min(-1) x g(-1)) was measured at rest and during intravenous administration of adenosine (140 microg x kg(-1) x min(-1)) in 10 controls (47 +/- 5 yr) and 10 CAD patients (58 +/- 8 yr; P < 0.01 vs. controls) using positron emission tomography and (15)O-labeled water. Both MBF measurements were repeated during intravenous infusion of 10 mg/kg L-NMMA. CFR was calculated as the ratio of MBF during adenosine to MBF at rest. CFR was significantly higher in healthy volunteers than in CAD patients and increased significantly after L-NMMA in controls (4.00 +/- 1.10 to 6.15 +/- 1.35; P < 0.0001) and in patients, both in territories subtended by stenotic coronary arteries (>70% luminal diameter; 2.06 +/- 1.13 to 3.21 +/- 1.07; P < 0.01) and in remote segments (3.20 +/- 1.23 to 3.92 +/- 1.62; P < 0.05). In conclusion, CFR can be significantly increased in CAD by a systemic infusion of L-NMMA. Similarly to our previous findings in normal volunteers, this suggests that adenosine-induced hyperemia in CAD patients is constrained by a mechanism that can be relieved by systemic NOS inhibition with L-NMMA.
Collapse
Affiliation(s)
- Philipp A Kaufmann
- Medical Research Council Clinical Sciences Center, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Schindler TH, Zhang XL, Vincenti G, Mhiri L, Lerch R, Schelbert HR. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol 2007; 14:589-603. [PMID: 17679069 PMCID: PMC1995749 DOI: 10.1016/j.nuclcard.2007.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas H Schindler
- Nuclear Cardiology, Cardiovascular Center, University Hospital of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
24
|
Schindler TH, Zhang XL, Prior JO, Cadenas J, Dahlbom M, Sayre J, Schelbert HR. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Imaging 2007; 34:1178-88. [PMID: 17334762 DOI: 10.1007/s00259-007-0378-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE We investigated the intraobserver reproducibility of myocardial blood flow (MBF) measurements with PET at rest and during cold pressor test (CPT), and the interobserver agreement. METHODS Twenty normal volunteers were studied. Using (13)N-ammonia, MBF was measured at rest and during CPT and measurement was repeated in a 1-day session (short-term reproducibility; SR). After a follow-up of 2 weeks, MBF was measured again at rest and during CPT and compared with the initial baseline measurement (long-term reproducibility; LR). In addition, adenosine-induced hyperemic MBF increases were assessed. RESULTS Assessment of the SR did not show a significant absolute difference in MBF at rest, MBF during CPT or the endothelium-related change in MBF from rest to CPT (DeltaMBF) (0.09 +/- 0.10, 0.11 +/- 0.09, and 0.08 +/- 0.05 ml/g/min; p = NS), and they were linearly correlated (r = 0.72, r = 0.76 and r = 0.84; p < 0.0001). Corresponding values for standard error of the estimate (SEE), as indicative for the range of MBF measurement error, were 0.14, 0.14, and 0.09 ml/g/min. The LR yielded relatively higher but non-significant absolute differences in the MBF at rest, MBF during CPT and DeltaMBF (0.10 +/- 0.10, 0.14 +/- 0.10, and 0.19 +/- 0.10 ml/g/min; p = NS), and paired MBFs significantly correlated (r = 0.75, r = 0.71, and r = 0.60; p < 0.001). Corresponding SEEs were 0.13, 0.15, and 0.16 ml/g/min. The interobserver analysis yielded a high correlation for MBF at rest, MBF during CPT, and hyperemic MBF (r = 0.96, SEE=0.04; r = 0.78, SEE=0.11; and r = 0.87, SEE=0.28; p < 0.0001, respectively), and also a good interobserver correlation for DeltaMBF (r = 0.62, SEE=0.09; p < 0.003). CONCLUSION Short- and long-term MBF responses to CPT, as an index for endothelium-related coronary vasomotion, can be measured reproducibly with (13)N-ammonia PET. In addition, the high interobserver reproducibility for repeat analysis of MBF values suggests the measurements to be largely operator independent.
Collapse
Affiliation(s)
- Thomas H Schindler
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1735, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Schindler TH, Facta AD, Prior JO, Campisi R, Inubushi M, Kreissl MC, Zhang XL, Sayre J, Dahlbom M, Schelbert HR. PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. Eur J Nucl Med Mol Imaging 2006; 33:1140-9. [PMID: 16639609 DOI: 10.1007/s00259-006-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 12/16/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE We investigated whether a myocardial perfusion gradient during pharmacologically induced hyperemia also occurred during sympathetic stimulation with cold pressor testing (CPT), which commonly induces a paradoxical coronary vasoconstriction in individuals with coronary risk factors. METHODS Myocardial blood flow (MBF) was measured in absolute units (ml/g/min) with 13N-ammonia and PET at rest, during CPT, and during pharmacologic vasodilation in 59 participants with coronary risk factors ("at risk") and in 43 healthy individuals (controls). MBF was assessed globally as mean MBF, and in the mid and mid-distal myocardium of the left ventricle (LV). A decrease in MBF from mid to mid-distal LV myocardium was defined as MBF difference indicative of a perfusion gradient. RESULTS The change in mean MBF to CPT (DeltaMBF) in the at-risk group was significantly reduced compared with controls (0.05+/-0.19 vs 0.31+/-0.20 ml/g/min, p<0.0001), whereas mean MBF during pharmacologic vasodilation in the at-risk group tended to be lower than in controls (1.72+/-0.71 vs 2.00+/-0.64 ml/g/min, p=NS). Absolute MBFs during CPT and pharmacologic vasodilation were significantly lower in the mid-distal than in the mid LV myocardium, resulting in a significant MBF difference in the at-risk group (0.15+/-0.06 and 0.27+/-0.12 ml/g/min, p<0.0001) that was not observed in controls (0.007+/-0.05 and 0.014+/-0.10 ml/g/min, p=NS). In the at-risk group there was a significant correlation between the difference of mid to mid-distal MBF during CPT and that during pharmacologic vasodilation (r=0.43, p<0.004), suggesting functional alterations of epicardial vessels as the predominant cause for the observed MBF difference. CONCLUSION The relative decrease in MBF from the mid to the mid-distal left-ventricular myocardium suggests an intracoronary pressure decline during CPT and pharmacologic vasodilation, which is likely to reflect an impairment of flow-mediated epicardial vasomotor function.
Collapse
Affiliation(s)
- Thomas H Schindler
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, 10833 Le Conte Ave, 23-120 CHS, P.O. Box 173517, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Namdar M, Koepfli P, Grathwohl R, Siegrist PT, Klainguti M, Schepis T, Delaloye R, Wyss CA, Fleischmann SP, Gaemperli O, Kaufmann PA. Caffeine Decreases Exercise-Induced Myocardial Flow Reserve. J Am Coll Cardiol 2006; 47:405-10. [PMID: 16412869 DOI: 10.1016/j.jacc.2005.08.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/02/2005] [Accepted: 08/16/2005] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We studied the acute effect of caffeine on myocardial blood flow (MBF) at rest and exercise in healthy volunteers at normoxia and during acute exposure to simulated altitude. BACKGROUND Caffeine is a widely consumed stimulant, although its cardiovascular safety remains controversial and its effect on MBF is unknown. METHODS 15O-labeled H2O and positron emission tomography (PET) were used to measure regional MBF at rest and immediately after supine bicycle exercise in healthy volunteers at normoxia (n = 10; mean workload, 175 W; 98% predicted; mean age, 27 +/- 6 years) as well as during hypoxia, simulating an altitude of 4,500 m by inhalation of a mixture of 12.5% oxygen (n = 8; 148 W; 78% predicted; mean age, 29 +/- 4 years). Measurements were repeated 50 min after oral ingestion of caffeine (200 mg). Myocardial flow reserve (MFR) was calculated as the ratio of hyperemic to resting MBF. RESULTS Resting MBF was not affected by caffeine at normoxia (1.05 +/- 0.36 ml/min/g vs. 1.17 +/- 0.27 ml/min/g; p = NS), although it was significantly increased at hypoxia (1.71 +/- 0.41 ml/min/g vs. 2.22 +/- 0.49 ml/min/g; p < 0.001). By contrast, exercise-induced hyperemic MBF decreased significantly at normoxia (2.51 +/- 0.58 ml/min/g vs. 2.15 +/- 0.47 ml/min/g; p < 0.05) and hypoxia (5.15 +/- 0.79 ml/min/g vs. 3.98 +/- 0.83 ml/min/g; p < 0.005 vs. baseline; p < 0.005 vs. normoxia). The MFR decreased by 22% at normoxia (2.53 +/- 0.69 to 1.90 +/- 0.49; p < 0.01) and by 39% at hypoxia (3.13 +/- 0.60 to 1.87 +/- 0.45, p < 0.005; p < 0.05 vs. normoxia). CONCLUSIONS In healthy volunteers, a caffeine dose corresponding to two cups of coffee (200 mg) significantly decreased exercise-induced MFR at normoxia and was even more pronounced during exposure to altitude.
Collapse
Affiliation(s)
- Mehdi Namdar
- Cardiovascular Center, Nuclear Cardiology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|