1
|
Hong S, Lee DS, Bae GW, Jeon J, Kim HK, Rhee S, Jung KO. In Vivo Stem Cell Imaging Principles and Applications. Int J Stem Cells 2023; 16:363-375. [PMID: 37643761 PMCID: PMC10686800 DOI: 10.15283/ijsc23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.
Collapse
Affiliation(s)
- Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul, Korea
| | - Geun-Woo Bae
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Juhyeong Jeon
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
2
|
Fuchigami T, Haywood T, Gowrishankar G, Anders D, Namavari M, Wardak M, Gambhir SS. Synthesis and Characterization of 9-(4-[ 18F]Fluoro-3-(hydroxymethyl)butyl)-2-(phenylthio)-6-oxopurine as a Novel PET Agent for Mutant Herpes Simplex Virus Type 1 Thymidine Kinase Reporter Gene Imaging. Mol Imaging Biol 2021; 22:1151-1160. [PMID: 32691392 DOI: 10.1007/s11307-020-01517-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE [18F]FHBG has been used as a positron emission tomography (PET) imaging tracer for the monitoring of herpes simplex virus type 1 thymidine kinase (HSV1-tk), a reporter gene for cell and gene therapy in humans. However, this tracer shows inadequate blood-brain barrier (BBB) penetration and, therefore, would be limited for accurate quantification of reporter gene expression in the brain. Here, we report the synthesis and evaluation of 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)-2(phenylthio)-6-oxopurine ([18F]FHBT) as a new PET tracer for imaging reporter gene expression of HSV1-tk and its mutant HSV1-sr39tk, with the aim of improved BBB penetration. PROCEDURES [18F]FHBT was prepared by using a tosylate precursor and [18F]KF. The cellular uptake of [18F]FHBT was performed in HSV1-sr39tk-positive (+) or HSV1-sr39tk-negative (-) MDA-MB-231 breast cancer cells. The specificity of [18F]FHBT to assess HSV1-sr39tk expression was evaluated by in vitro blocking studies using 1 mM of ganciclovir (GCV). Penetration of [18F]FHBT and [18F]FHBG across the BBB was assessed by dynamic PET imaging studies in normal mice. RESULTS The tosylate precursor reacted with [18F]KF using Kryptofix2.2.2 followed by deprotection to give [18F]FHBT in 10 % radiochemical yield (decay-corrected). The uptake of [18F]FHBT in HSV1-sr39tk (+) cells was significantly higher than that of HSV1-sr39tk (-) cells. In the presence of GCV (1 mM), the uptake of [18F]FHBT was significantly decreased, indicating that [18F]FHBT serves as a selective substrate of HSV1-sr39TK. PET images and time-activity curves of [18F]FHBT in the brain regions showed similar initial brain uptakes (~ 12.75 min) as [18F]FHBG (P > 0.855). Slower washout of [18F]FHBT was observed at the later time points (17.75 - 57.75 min, P > 0.207). CONCLUSIONS Although [18F]FHBT showed no statistically significant improvement of BBB permeability compared with [18F]FHBG, we have demonstrated that the 2-(phenylthio)-6-oxopurine backbone can serve as a novel scaffold for developing HSV1-tk/HSV1-sr39tk reporter gene imaging agents for additional research in the future.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - David Anders
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Mohammad Namavari
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Mirwais Wardak
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA. .,Department of Bioengineering and Materials Science & Engineering, Bio-X Program, Stanford University, 318 Campus Dr., Room E150 Stanford, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Volpe A, Pillarsetty NVK, Lewis JS, Ponomarev V. Applications of nuclear-based imaging in gene and cell therapy: probe considerations. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:447-458. [PMID: 33718593 PMCID: PMC7907215 DOI: 10.1016/j.omto.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Several types of gene- and cell-based therapeutics are now emerging in the cancer immunotherapy, transplantation, and regenerative medicine landscapes. Radionuclear-based imaging can be used as a molecular imaging tool for repetitive and non-invasive visualization as well as in vivo monitoring of therapy success. In this review, we discuss the principles of nuclear-based imaging and provide a comprehensive overview of its application in gene and cell therapy. This review aims to inform investigators in the biomedical field as well as clinicians on the state of the art of nuclear imaging, from probe design to available radiopharmaceuticals and advances of direct (probe-based) and indirect (transgene-based) strategies in both preclinical and clinical settings. Notably, as the nuclear-based imaging toolbox is continuously expanding, it will be increasingly incorporated into the clinical setting where the distribution, targeting, and persistence of a new generation of therapeutics can be imaged and ultimately guide therapeutic decisions.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Naga Vara Kishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
5
|
Molecular Imaging of Gene Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Williams EM, Rich MH, Mowday AM, Ashoorzadeh A, Copp JN, Guise CP, Anderson RF, Flanagan JU, Smaill JB, Patterson AV, Ackerley DF. Engineering Escherichia coli NfsB To Activate a Hypoxia-Resistant Analogue of the PET Probe EF5 To Enable Non-Invasive Imaging during Enzyme Prodrug Therapy. Biochemistry 2019; 58:3700-3710. [PMID: 31403283 DOI: 10.1021/acs.biochem.9b00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) uses tumor-tropic vectors to deliver prodrug-converting enzymes such as nitroreductases specifically to the tumor environment. The nitroreductase NfsB from Escherichia coli (NfsB_Ec) has been a particular focal point for GDEPT and over the past 25 years has been the subject of several engineering studies seeking to improve catalysis of prodrug substrates. To facilitate clinical development, there is also a need to enable effective non-invasive imaging capabilities. SN33623, a 5-nitroimidazole analogue of 2-nitroimidazole hypoxia probe EF5, has potential for PET imaging exogenously delivered nitroreductases without generating confounding background due to tumor hypoxia. However, we show here that SN33623 is a poor substrate for NfsB_Ec. To address this, we used assay-guided sequence and structure analysis to identify two conserved residues that block SN33623 activation in NfsB_Ec and close homologues. Introduction of the rational substitutions F70A and F108Y into NfsB_Ec conferred high levels of SN33623 activity and enabled specific labeling of E. coli expressing the engineered enzyme. Serendipitously, the F70A and F108Y substitutions also substantially improved activity with the anticancer prodrug CB1954 and the 5-nitroimidazole antibiotic prodrug metronidazole, which is a potential biosafety agent for targeted ablation of nitroreductase-expressing vectors.
Collapse
Affiliation(s)
- Elsie M Williams
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Michelle H Rich
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand
| | - Janine N Copp
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand
| | - Christopher P Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences , The University of Auckland , Auckland 1023 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| | - David F Ackerley
- School of Biological Sciences , Victoria University of Wellington , Wellington 6012 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , Auckland 1023 , New Zealand
| |
Collapse
|
7
|
Positron emission tomography reporter gene strategy for use in the central nervous system. Proc Natl Acad Sci U S A 2019; 116:11402-11407. [PMID: 31123153 DOI: 10.1073/pnas.1901645116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is a growing need for monitoring or imaging gene therapy in the central nervous system (CNS). This can be achieved with a positron emission tomography (PET) reporter gene strategy. Here we report the development of a PET reporter gene system using the PKM2 gene with its associated radiotracer [18F]DASA-23. The PKM2 reporter gene was delivered to the brains of mice by adeno-associated virus (AAV9) via stereotactic injection. Serial PET imaging was carried out over 8 wk to assess PKM2 expression. After 8 wk, the brains were excised for further mRNA and protein analysis. PET imaging at 8 wk post-AAV delivery showed an increase in [18F]DASA-23 brain uptake in the transduced site of mice injected with the AAV mice over all controls. We believe PKM2 shows great promise as a PET reporter gene and to date is the only example that can be used in all areas of the CNS without breaking the blood-brain barrier, to monitor gene and cell therapy.
Collapse
|
8
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
9
|
Injected Human Muscle Precursor Cells Overexpressing PGC-1 α Enhance Functional Muscle Regeneration after Trauma. Stem Cells Int 2018. [PMID: 29531537 PMCID: PMC5827889 DOI: 10.1155/2018/4658503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While many groups demonstrated new muscle tissue formation after muscle precursor cell (MPC) injection, the capacity of these cells to heal muscle damage, for example, sphincter in stress urinary incontinence, in long-term is still limited. Therefore, the first goal of our project was to optimize the functional regenerative potential of hMPC by genetic modification to overexpress human peroxisome proliferator-activated receptor gamma coactivator 1-alpha (hPGC-1α), key regulator of exercise-mediated adaptation. Moreover, we aimed at establishing a feasible methodology for noninvasive PET visualization of implanted cells and their microenvironment in muscle crush injury model. PGC-1α-bioengineered muscles showed enhanced marker expression for myogenesis (α-actinin, MyHC, and Desmin), vascularization (VEGF), neuronal (ACHE), and mitochondrial (COXIV) activity. Consistently, use of hPGC-1α_hMPCs produced significantly increased contractile force one to three weeks postinjury. PET imaging showed distinct differences in radiotracer signals ([18F]Fallypride and [11C]Raclopride (both targeting dopamine 2 receptors (D2R)) and [64Cu]NODAGA-RGD (targeting neovascularization)) between GFP_hMPCs and hD2R_hPGC-1α_hMPCs. After muscle harvesting, inflammation levels were in parallel to radiotracer uptake amount, with significantly lower uptake in hPGC-1α overexpressing samples. In summary, we facilitated early functional muscle tissue regeneration, introducing a novel approach to improve skeletal muscle regeneration. Besides successful tracking of hMPCs in muscle crush injuries, we showed that in high-inflammation areas, the specificity of radioligands might be significantly reduced, addressing a possible bottleneck of neovascularization PET imaging.
Collapse
|
10
|
Haralampieva D, Betzel T, Dinulovic I, Salemi S, Stoelting M, Krämer SD, Schibli R, Sulser T, Handschin C, Eberli D, Ametamey SM. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering. J Nucl Med 2016; 57:1467-73. [PMID: 27199355 DOI: 10.2967/jnumed.115.170548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. METHODS In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. RESULTS Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally, sustained survival of the transplanted cells at different time points was confirmed histologically, with formation of muscle tissue at the site of injection. CONCLUSION Our proposed use of a signaling-deficient hD2R as a potent reporter for in vivo hMPC PET tracking by (18)F-fallypride is a significant step toward potential noninvasive tracking of hD2R hMPCs and bioengineered muscle tissues in the clinic.
Collapse
Affiliation(s)
- Deana Haralampieva
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, Zurich, Switzerland; and
| | - Thomas Betzel
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivana Dinulovic
- Focal Area of Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Souzan Salemi
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Meline Stoelting
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Tullio Sulser
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Handschin
- Focal Area of Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, Zurich, Switzerland; and
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, Zurich, Switzerland; and
| |
Collapse
|
11
|
Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016; 2016:9240652. [PMID: 26880997 PMCID: PMC4736428 DOI: 10.1155/2016/9240652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field.
Collapse
|
12
|
|
13
|
Peñuelas I, Gambhir SS. Imaging studies for evaluating gene therapy in translational research. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 2:335-43. [PMID: 24982010 DOI: 10.1016/j.ddtec.2005.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular imaging of gene expression in living subjects is leading to significant advances in the field of gene therapy. Three different technologies have been utilized for monitoring gene expression: optical imaging, radionuclide imaging and magnetic resonance imaging. In the present review, we focus on the latest developments including multimodality approaches and recent imaging of human gene therapy to noninvasively determine the location(s), magnitude and time-variation of gene therapy. Continued development should lead to greater use of these technologies in gene therapy and also help to shed light towards optimizing gene therapy in preclinical models and in the clinical setting.:
Collapse
Affiliation(s)
- Iván Peñuelas
- MicroPET Research Unit, CIMA-CUN, University of Navarra, Pamplona, Spain.
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford (MIPS), Departments of Radiology and Bioengineering, Bio-X Program, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
15
|
Lee SW, Lee SH, Biswal S. Magnetic resonance reporter gene imaging. Theranostics 2012; 2:403-12. [PMID: 22539936 PMCID: PMC3337732 DOI: 10.7150/thno.3634] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/09/2012] [Indexed: 11/05/2022] Open
Abstract
Molecular imaging has undergone an explosive advancement in recent years, due to the tremendous research efforts made to understand and visualize biological processes. Molecular imaging by definition assesses cellular and molecular processes in living subjects, with the targets of following metabolic, genomic, and proteomic events. Furthermore, reporter gene imaging plays a central role in this field. Many different approaches have been used to visualize genetic events in living subjects, such as, optical, radionuclide, and magnetic resonance imaging. Compared with the other techniques, magnetic resonance (MR)-based reporter gene imaging has not occupied center stage, despite its superior three-dimensional depictions of anatomical details. In this article, the authors review the principles and applications of various types of MR reporter gene imaging technologies and discuss their advantages and disadvantages.
Collapse
|
16
|
Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Am J Cancer Res 2012; 2:374-91. [PMID: 22509201 PMCID: PMC3326723 DOI: 10.7150/thno.3677] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/09/2012] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.
Collapse
|
17
|
Nguyen PK, Lan F, Wang Y, Wu JC. Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res 2011; 109:962-79. [PMID: 21960727 DOI: 10.1161/circresaha.111.242909] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cells have been touted as the holy grail of medical therapy, with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large-animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Department of Medicine, Division of Cardiology, Molecular Imaging Program at Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
18
|
Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK. Recent trends in antibody-based oncologic imaging. Cancer Lett 2011; 315:97-111. [PMID: 22104729 DOI: 10.1016/j.canlet.2011.10.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/27/2023]
Abstract
Antibodies, with their unmatched ability for selective binding to any target, are considered as potentially the most specific probes for imaging. Their clinical utility, however, has been limited chiefly due to their slow clearance from the circulation, longer retention in non-targeted tissues and the extensive optimization required for each antibody-tracer. The development of newer contrast agents, combined with improved conjugation strategies and novel engineered forms of antibodies (diabodies, minibodies, single chain variable fragments, and nanobodies), have triggered a new wave of antibody-based imaging approaches. Apart from their conventional use with nuclear imaging probes, antibodies and their modified forms are increasingly being employed with non-radioisotopic contrast agents (MRI and ultrasound) as well as newer imaging modalities, such as quantum dots, near infra red (NIR) probes, nanoshells and surface enhanced Raman spectroscopy (SERS). The review article discusses new developments in the usage of antibodies and their modified forms in conjunction with probes of various imaging modalities such as nuclear imaging, optical imaging, ultrasound, MRI, SERS and nanoshells in preclinical and clinical studies on the diagnosis, prognosis and therapeutic responses of cancer.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
19
|
Perin EC, Tian M, Marini FC, Silva GV, Zheng Y, Baimbridge F, Quan X, Fernandes MR, Gahremanpour A, Young D, Paolillo V, Mukhopadhyay U, Borne AT, Uthamanthil R, Brammer D, Jackson J, Decker WK, Najjar AM, Thomas MW, Volgin A, Rabinovich B, Soghomonyan S, Jeong HJ, Rios JM, Steiner D, Robinson S, Mawlawi O, Pan T, Stafford J, Kundra V, Li C, Alauddin MM, Willerson JT, Shpall E, Gelovani JG. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One 2011; 6:e22949. [PMID: 21912635 PMCID: PMC3164664 DOI: 10.1371/journal.pone.0022949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/01/2011] [Indexed: 12/22/2022] Open
Abstract
The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18)F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18)F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18)F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18)F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.
Collapse
Affiliation(s)
- Emerson C Perin
- The Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pañeda A, Collantes M, Beattie SG, Otano I, Snapper J, Timmermans E, Guembe L, Petry H, Lanciego JL, Benito A, Prieto J, Rodriguez-Pena MS, Peñuelas I, Gonzalez-Aseguinolaza G. Adeno-Associated Virus Liver Transduction Efficiency Measured by in Vivo [18F]FHBG Positron Emission Tomography Imaging in Rodents and Nonhuman Primates. Hum Gene Ther 2011; 22:999-1009. [DOI: 10.1089/hum.2010.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Astrid Pañeda
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain
| | - Maria Collantes
- Small Animal Imaging Research Unit, Center for Applied Medical Research, University Clinic of Navarra (CIMA-CUN), 31008 Pamplona, Spain
| | | | - Itzia Otano
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain
| | - Jolanda Snapper
- Amsterdam Molecular Therapeutics, Amsterdam, 1100 The Netherlands
| | - Eric Timmermans
- Amsterdam Molecular Therapeutics, Amsterdam, 1100 The Netherlands
| | - Laura Guembe
- Morphology and Imaging Unit, CIMA, 31008 Pamplona, Spain
| | - Harald Petry
- Amsterdam Molecular Therapeutics, Amsterdam, 1100 The Netherlands
| | | | - Alberto Benito
- Department of Radiology, University Clinic of Navarra, University of Navarra (UNAV), 31008 Pamplona, Spain
| | - Jesus Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain
- Liver Unit, and Center for Biomedical Research Network in Liver and Digestive Diseases (CIBERehd), University Clinic of Navarra, UNAV, 31008 Pamplona, Spain
| | | | - Iván Peñuelas
- Small Animal Imaging Research Unit, Center for Applied Medical Research, University Clinic of Navarra (CIMA-CUN), 31008 Pamplona, Spain
- Department of Nuclear Medicine, University Clinic of Navarra, UNAV, 31008 Pamplona, Spain
| | | |
Collapse
|
21
|
Noninvasive optical imaging of nitroreductase gene-directed enzyme prodrug therapy system in living animals. Gene Ther 2011; 19:295-302. [DOI: 10.1038/gt.2011.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Richard-Fiardo P, Franken PR, Harrington KJ, Vassaux G, Cambien B. The use of molecular imaging of gene expression by radiotracers in gene therapy. Expert Opin Biol Ther 2011; 11:1273-85. [DOI: 10.1517/14712598.2011.588596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Chen R, Parry JJ, Akers WJ, Berezin MY, El Naqa IM, Achilefu S, Edwards WB, Rogers BE. Multimodality imaging of gene transfer with a receptor-based reporter gene. J Nucl Med 2010; 51:1456-63. [PMID: 20720053 DOI: 10.2967/jnumed.109.063586] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Noninvasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor-enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. METHODS An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of (111)In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. RESULTS The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of (111)In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2. Although fluorescence was observed, there were discrepancies between in vivo imaging and ex vivo imaging as well as between nuclear imaging and fluorescent imaging. CONCLUSION These studies showed that the SSTR2-EGFP fusion construct can be used for in vivo nuclear and optical imaging of gene transfer.
Collapse
Affiliation(s)
- Ron Chen
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sangro B, Mazzolini G, Ruiz M, Ruiz J, Quiroga J, Herrero I, Qian C, Benito A, Larrache J, Olagüe C, Boan J, Peñuelas I, Sádaba B, Prieto J. A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer Gene Ther 2010; 17:837-43. [DOI: 10.1038/cgt.2010.40] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Baril P, Martin-Duque P, Vassaux G. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br J Pharmacol 2009; 159:761-71. [PMID: 19814733 DOI: 10.1111/j.1476-5381.2009.00412.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Biotherapies involve the utilization of antibodies, genetically modified viruses, bacteria or cells for therapeutic purposes. Molecular imaging has the potential to provide unique information that will guarantee their biosafety in humans and provide a rationale for the future development of new generations of reagents. In this context, non-invasive imaging of gene expression is an attractive prospect, allowing precise, spacio-temporal measurements of gene expression in longitudinal studies involving gene transfer vectors. With the emergence of cell therapies in regenerative medicine, it is also possible to track cells injected into subjects. In this context, the Na/I symporter (NIS) has been used in preclinical studies. Associated with a relevant radiotracer ((123)I(-), (124)I(-), (99m)TcO4(-)), NIS can be used to monitor gene transfer and the spread of selectively replicative viruses in tumours as well as in cells with a therapeutic potential. In addition to its imaging potential, NIS can be used as a therapeutic transgene through its ability to concentrate therapeutic doses of radionuclides in target cells. This dual property has applications in cancer treatment and could also be used to eradicate cells with therapeutic potential in the case of adverse events. Through experience acquired in preclinical studies, we can expect that non-invasive molecular imaging using NIS as a transgene will be pivotal for monitoring in vivo the exact distribution and pharmacodynamics of gene expression in a precise and quantitative way. This review highlights the applications of NIS in biotherapy, with a particular emphasis on image-guided radiotherapy, monitoring of gene and vector biodistribution and trafficking of stem cells.
Collapse
Affiliation(s)
- Patrick Baril
- Inserm U948, Université de Nantes, Nantes Atlantique Universités, EA4274, Institut des Maladies de l'Appareil Digestif, CHU Hôtel Dieu, Nantes, France.
| | | | | |
Collapse
|
26
|
Ghofrani HA, Barst RJ, Benza RL, Champion HC, Fagan KA, Grimminger F, Humbert M, Simonneau G, Stewart DJ, Ventura C, Rubin LJ. Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54:S108-S117. [PMID: 19555854 PMCID: PMC4883573 DOI: 10.1016/j.jacc.2009.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/16/2009] [Indexed: 02/02/2023]
Abstract
Over the past 2 decades, pulmonary arterial hypertension has evolved from a uniformly fatal condition to a chronic, manageable disease in many cases, the result of unparalleled development of new therapies and advances in early diagnosis. However, none of the currently available therapies is curative, so the search for new treatment strategies continues. With a deeper understanding of the genetics and the molecular mechanisms of pulmonary vascular disorders, we are now at the threshold of entering a new therapeutic era. Our working group addressed what can be expected in the near future. The topics span the understanding of genetic variations, novel antiproliferative treatments, the role of stem cells, the right ventricle as a therapeutic target, and strategies and challenges for the translation of novel experimental findings into clinical practice.
Collapse
Affiliation(s)
- Hossein A Ghofrani
- University of Giessen Lung Center, University Hospital Giessen and Marburg GmbH, Giessen, Germany; Medical Clinic IV and V, University Hospital Giessen and Marburg GmbH, Giessen, Germany.
| | | | - Raymond L Benza
- Drexel University College of Medicine, Section of Heart Failure, Transplantation, and Pulmonary Hypertension Program, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Hunter C Champion
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland
| | - Karen A Fagan
- Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama
| | - Friedrich Grimminger
- University of Giessen Lung Center, University Hospital Giessen and Marburg GmbH, Giessen, Germany; Medical Clinic IV and V, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Marc Humbert
- Université Paris-Sud, Service de Pneumologie, Hôpital Antoine-Béclère, Clamart, France
| | - Gérald Simonneau
- Université Paris-Sud, Service de Pneumologie, Hôpital Antoine-Béclère, Clamart, France
| | | | - Carlo Ventura
- University of Bologna, Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Institute of Cardiology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Lewis J Rubin
- University of California, San Diego, Medical Center, La Jolla, California
| |
Collapse
|
27
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Najjar AM, Nishii R, Maxwell DS, Volgin A, Mukhopadhyay U, Bornmann WG, Tong W, Alauddin M, Gelovani JG. Molecular-genetic PET imaging using an HSV1-tk mutant reporter gene with enhanced specificity to acycloguanosine nucleoside analogs. J Nucl Med 2009; 50:409-16. [PMID: 19223410 DOI: 10.2967/jnumed.108.058735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Imaging 2 different molecular-genetic events in a single subject by PET is essential in a variety of in vivo applications. Using herpes simplex virus-1 thymidine kinase (HSV1-tk) mutants with narrower substrate specificities in combination with wild-type HSV1-tk (wtHSV1-tk) would enable differential imaging with corresponding radiotracers, namely 2'-deoxy-2'-(18)F-fluoro-5-ethyl-1-beta-d-arabinofuranosyl-uracil ((18)F-FEAU) and the acycloguanosine derivative 9-(4-(18)F-fluoro-3-[hydroxymethyl]butyl)guanine ((18)F-FHBG). In this study, we evaluated wtHSV1-tk and the A168H mutant, which has been reported to exhibit enhanced acycloguanosine substrate catalytic activity and diminished pyrimidine phosphorylating activity, as PET reporter genes. METHODS Computational analysis was performed to assess the binding mode of FHBG and FEAU to wtHSV1-tk and the A168H variant. U87 cells were stably transduced with wtHSV1-tk or HSV1-tk(A168H) fused with green fluorescent protein and sorted to obtain equivalent transgene expression. In vitro uptake studies were performed to determine rates of substrate accumulation and retention. Nude mice bearing tumors expressing HSV1-tk variants were subsequently imaged using (18)F-FHBG and (18)F-FEAU. RESULTS Docking results indicate that binding of FHBG to the A168H variant is unaffected whereas the binding of FEAU is hindered because of a steric clash with the bulkier mutant residues. U87 cells expressing HSV1-tk(A168H) accumulated (18)F-FHBG in in vitro uptake studies at a 3-fold higher rate than did cells expressing wtHSV1-tk without any detectable accumulation of (3)H-FEAU. Furthermore, HSV1-tk(A168H) demonstrated no thymidine phosphorylation activity. In contrast, U87 cells expressing wtHSV1-tk preferentially accumulated (3)H-FEAU at an 18-fold higher rate than they did (18)F-FHBG. Tumors expressing wtHSV1-tk or HSV1-tk(A168H) were distinctly imaged with (18)F-FEAU or (18)F-FHBG, respectively. Hence, tumors expressing HSV1-tk(A168H) accumulated 8.4-fold more (18)F-FHBG than did tumors expressing wtHSV1-tk. In addition, wtHSV1-tk tumors, compared with HSV1-tk(A168H)-expressing tumors (which retained baseline levels of the radiotracer), preferentially accumulated (18)F-FEAU. CONCLUSION The FEAU and FHBG substrate discrimination capacity of the wtHSV1-tk and HSV1-tk(A168H) reporter enzymes was validated in vivo by PET of mice with tumor xenografts established from U87 cells expressing these different reporters. Thus, HSV1-tk(A168H) may potentially be used as a second reporter gene in combination with wtHSV1-tk to achieve differential PET.
Collapse
Affiliation(s)
- Amer M Najjar
- Experimental Diagnostic Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Molecular Imaging in Oncology. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Abstract
Cancer gene transfer is a relatively novel intervention strategy. In part because of this novelty, trials often present greater uncertainties than those investigating more conventional approaches. In the following review, I examine how this greater uncertainty might affect how clinical studies are designed, when they are initiated, their degree of risk, and whether such risk can be justified in terms of therapeutic benefit. The review also discusses two other ethical issues presented by gene transfer clinical research: fairness in subject selection and communications with the public. I conclude with a series of recommendations directed toward researchers, policymakers, and ethics committee members.
Collapse
Affiliation(s)
- Jonathan Kimmelman
- Department of Social Studies of Medicine, Clinical Trials Research Group, Biomedical Ethics Unit, McGill University, Faculty of Medicine, Montreal, QB, Canada
| |
Collapse
|
31
|
Molecular Imaging of Gene Expression and Cell Trafficking. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Shu CJ, Radu CG, Shelly SM, Vo DD, Prins R, Ribas A, Phelps ME, Witte ON. Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 2008; 21:155-65. [PMID: 19106231 PMCID: PMC2638874 DOI: 10.1093/intimm/dxn133] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer (AT) T-cell therapy provides significant clinical benefits in patients with advanced melanoma. However, approaches to non-invasively visualize the persistence of transferred T cells are lacking. We examined whether positron emission tomography (PET) can monitor the distribution of self-antigen-specific T cells engineered to express an herpes simplex virus 1 thymidine kinase (sr39tk) PET reporter gene. Micro-PET imaging using the sr39tk-specific substrate 9-[4-[(18)F]fluoro-3-(hydroxymethyl)-butyl]guanine ([(18)F]FHBG) enabled the detection of transplanted T cells in secondary lymphoid organs of recipient mice over a 3-week period. Tumor responses could be predicted as early as 3 days following AT when a >25-fold increase of micro-PET signal in the spleen and 2-fold increase in lymph nodes (LNs) were observed in mice receiving combined immunotherapy versus control mice. The lower limit of detection was approximately 7 x 10(5) T cells in the spleen and 1 x 10(4) T cells in LNs. Quantification of transplanted T cells in the tumor was hampered by the sr39tk-independent trapping of [(18)F]FHBG within the tumor architecture. These data support the feasibility of using PET to visualize the expansion, homing and persistence of transferred T cells. PET may have significant clinical utility by providing the means to quantify anti-tumor T cells throughout the body and provide early correlates for treatment efficacy.
Collapse
Affiliation(s)
- Chengyi J Shu
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ray S, Paulmurugan R, Patel MR, Ahn BC, Wu L, Carey M, Gambhir SS. Noninvasive imaging of therapeutic gene expression using a bidirectional transcriptional amplification strategy. Mol Ther 2008; 16:1848-56. [PMID: 18766175 DOI: 10.1038/mt.2008.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promoters that limit transgene expression to tumors play a vital role in cancer gene therapy. Although tumor specific, the human Survivin promoter (pSurv) elicits low levels of transcription. A bidirectional two-step transcriptional amplification (TSTA) system was designed to enhance expression of the therapeutic gene (TG) tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL or TR) and the reporter gene firefly luciferase (FL) from pSurv. An adenoviral vector carrying the enhanced targeting apparatus (Ad-pSurv-TR-G8-FL) was tested for efficiency and specificity of gene expression in cells and in living animals. Compared to the one-step systems (Ad-pSurv-FL or Ad-pSurv-TR), the bidirectional TSTA system showed tenfold higher expression of both the therapeutic and the reporter gene and their expression correlated in cells (R(2) = 0.99) and in animals (R(2) = 0.67). Noninvasive quantitative monitoring of magnitude and time variation of TRAIL gene expression was feasible by bioluminescence imaging of the transcriptionally linked FL gene in xenograft tumors following intratumoral adenoviral injection. Moreover, the TSTA adenovirus maintained promoter specificity in nontarget tissues following tail vein administration. These studies demonstrate the potential of the bidirectional TSTA system to achieve high levels of gene expression from a weak promoter, while preserving specificity and the ability to image expression of the TG noninvasively.
Collapse
Affiliation(s)
- Sunetra Ray
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Molecular imaging can allow the non-invasive assessment of biological and biochemical processes in living subjects. Such technologies therefore have the potential to enhance our understanding of disease and drug activity during preclinical and clinical drug development, which could aid decisions to select candidates that seem most likely to be successful or to halt the development of drugs that seem likely to ultimately fail. Here, with an emphasis on oncology, we review the applications of molecular imaging in drug development, highlighting successes and identifying key challenges that need to be addressed for successful integration of molecular imaging into the drug development process.
Collapse
|
35
|
Fontanellas A, Hervas-Stubbs S, Sampedro A, Collantes M, Azpilicueta A, Mauleón I, Pañeda A, Quincoces G, Prieto J, Melero I, Peñuelas I. PET imaging of thymidine kinase gene expression in the liver of non-human primates following systemic delivery of an adenoviral vector. Gene Ther 2008; 16:136-41. [DOI: 10.1038/gt.2008.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Abstract
Anatomically based technologies (computed tomography scans, magnetic resonance imaging, and so on) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular-imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy.
Collapse
|
37
|
Abstract
Multimodality molecular imaging continues to rapidly expand and is impacting many areas of biomedical research as well as patient management. Reporter-gene assays have emerged as a very general strategy for indirectly monitoring various intracellular events. Furthermore, reporter genes are being used to monitor gene/cell therapies, including the location(s), time variation, and magnitude of gene expression. This chapter reviews reporter gene technology and its major pre-clinical and clinical applications to date. The future appears quite promising for the continued expansion of the use of reporter genes in many evolving biomedically related arenas.
Collapse
Affiliation(s)
- Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 160 Ilsimri, Hwasun, Jeonnam 519-809, Republic of Korea.
| | | |
Collapse
|
38
|
Amthauer H, Ruf J. Nuclear medical methods for the diagnosis of pancreatic cancer: positron emission tomography. Recent Results Cancer Res 2008; 177:15-26. [PMID: 18084943 DOI: 10.1007/978-3-540-71279-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The functional imaging approach of nuclear medicine offers important information for the characterization of a tumor's pathobiology. In oncology, positron emission tomography (PET) especially has had great impact on the staging of tumor patients and the assessment of therapy. Both the development of new, tumor-specific, tracers and the introduction of by software- and hardware-driven image fusion emphasize the potential of this modality for an all-embracing diagnostic modality.
Collapse
Affiliation(s)
- H Amthauer
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Strahlenheilkunde, Germany
| | | |
Collapse
|
39
|
Chin FT, Namavari M, Levi J, Subbarayan M, Ray P, Chen X, Gambhir SS. Semiautomated radiosynthesis and biological evaluation of [18F]FEAU: a novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression. Mol Imaging Biol 2007; 10:82-91. [PMID: 18157580 DOI: 10.1007/s11307-007-0122-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 07/31/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
Abstract
2'-deoxy-2'-[(18)F]fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil ([(18)F]FEAU) is a promising radiolabeled nucleoside designed to monitor Herpes Simplex Virus Type 1 thymidine kinase (HSV1-tk) reporter gene expression with positron emission tomography (PET). However, the challenging radiosynthesis creates problems for being able to provide [(18)F]FEAU routinely. We have developed a routine method using a commercial GE TRACERlab FX-FN radiosynthesis module with customized equipment to provide [(18)F]FEAU. All radiochemical yields are decay corrected to end-of-bombardment and reported as means +/- SD. Radiofluorination (33 +/- 8%; n = 4), bromination (85 +/- 8%; n = 4), coupling reaction (83 +/- 6%; n = 4), base hydrolysis steps, and subsequent high-performance liquid chromatography purification afforded purified [(18)F]FEAU beta-anomer in 5 +/- 1% overall yield (n = 3 runs) after approximately 5.5 h and a beta/alpha-anomer ratio of 7.4. Radiochemical/chemical purities and specific activity exceeded 99% and 1.3 Ci/micromol (48 GBq/micromol), respectively. In cell culture, [(18)F]FEAU showed significantly (P < 0.05) higher accumulation in C6 cells expressing HSV1-tk/sr39tk as compared to wild-type C6 cells. Furthermore, [(18)F]FEAU showed slightly higher accumulation than 9-[4-[(18)F]fluoro-3-(hydroxymethyl)butylguanine ([(18)F]FHBG) in cells expressing HSV1-tk (P < 0.05), whereas [(18)F]FHBG showed significantly higher (P < 0.05) accumulation than [(18)F]FEAU in HSV1-sr39tk-expressing cells. micro-PET imaging of mice carrying tumor xenografts of C6 cells stably expressing HSV1-tk or HSV1-sr39tk are consistent with the cell uptake results. The [(18)F]FEAU mouse images also showed very low gastrointestinal signal with predominant renal clearance as compared to [(18)F]FHBG. The routine radiosynthesis of [(18)F]FEAU was successfully semiautomated using a commercial module along with customized equipment to provide the beta-anomer in modest yields. Although further studies are needed, early results also suggest [(18)F]FEAU is a promising PET radiotracer for monitoring HSV1-tk reporter gene expression.
Collapse
Affiliation(s)
- Frederick T Chin
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Pantaleo MA, Nannini M, Maleddu A, Fanti S, Ambrosini V, Nanni C, Boschi S, Biasco G. Conventional and novel PET tracers for imaging in oncology in the era of molecular therapy. Cancer Treat Rev 2007; 34:103-21. [PMID: 18055120 DOI: 10.1016/j.ctrv.2007.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/03/2007] [Accepted: 10/06/2007] [Indexed: 01/18/2023]
Abstract
In the last ten years, the development of several novel targeted drugs and the refinement of state of the art technologies such as the genomics and proteomics and their introduction to clinical practice have revolutionized the management of patients affected by cancer. However, everyday practice points out several clinical questions: the difficulty of response assessment to new drugs especially using standard RECIST criteria that do not provide information on biological, vascular or metabolic variations; the inadequate selection of patients who are likely to benefit from a targeted therapy excluding those with breast cancer and gastrointestinal stromal tumours; the need to know the global biological background of diseases especially in metastatic setting using repeatable non-invasive procedures. Molecular imaging could provide information on in vivo distribution of biological markers in response to targeted therapy and could improve the selection of patients before therapies. The aim of this review is to analyze the current role of conventional and innovative positron emission tomography (PET) radiotracers in clinical practice and to explore the promising perspectives of molecular imaging in cancer research.
Collapse
Affiliation(s)
- M A Pantaleo
- Institute of Hematology and Medical Oncology L. & A. Seragnoli, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yaghoubi SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 2007; 1:3069-75. [PMID: 17406570 DOI: 10.1038/nprot.2006.459] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The herpes simplex virus type 1 thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and to image intracellular molecular events and cell trafficking in living subjects. The expression of these PRGs can be imaged using 18F- or 124I-radiolabeled acycloguanosine or pyrimidine analog PET reporter probes (PRPs). This protocol describes the procedures for imaging HSV1-tk or HSV1-sr39tk PRG expression in living subjects with the acycloguanosine analog 9-4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG). [18F]FHBG is a high-affinity substrate for the HSV1-sr39TK enzyme with relatively low affinity for mammalian TK enzymes, resulting in improved detection sensitivity. Furthermore, [18F]FHBG is approved by the US Food and Drug Administration as an investigational new imaging agent and has been shown to detect HSV1-tk transgene expression in the liver tumors of patients. MicroPET imaging of each small animal can be completed in approximately 1.5 h, and each patient imaging session takes approximately 3 h.
Collapse
Affiliation(s)
- Shahriar S Yaghoubi
- Bio-X Program, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Clark Center, 318 Campus Drive, E150, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
42
|
Yaghoubi SS, Gambhir SS. Measuring herpes simplex virus thymidine kinase reporter gene expression in vitro. Nat Protoc 2007; 1:2137-42. [PMID: 17487205 DOI: 10.1038/nprot.2006.334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The herpes simplex 1 virus thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and for imaging intracellular molecular events and cell trafficking in living subjects. Two in vitro methods are available to assay gene expression of HSV1-tk or HSV1-sr39tk in cells or tissues. One method determines the level of HSV1-TK or HSV1-sr39TK enzyme activity in cell or tissue lysates by measuring the amount of the radiolabeled substrates that have been phosphorylated by these enzymes in a fixed amount of cell lysate protein after a fixed incubation time. The other method, called the 'cell-uptake assay', takes into account the natural uptake and efflux characteristics of the radiolabeled substrate by specific cells, in addition to the level of HSV1-TK or HSV1-sr39TK activity. Both of these assays can be used to validate molecular models in cultured cells, prior to studying them in living research subjects. Each of these assays can be completed in one day.
Collapse
Affiliation(s)
- Shahriar S Yaghoubi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Clark Center, 318 Campus Drive, E150, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
43
|
Abstract
In recent years, stem cell therapy for the treatment of heart disease has translated from the imagination of investigators to the bedside of patients. The initial results from trials evaluating cell therapy for the heart are encouraging. As this new field of cellular transplantation matures, it is imperative that novel methodologies for evaluating cell therapy are developed and applied to guide therapy. Molecular imaging is a discipline that is evolving to address these needs and is expected to play an increasing role in the characterization and assessment of cell therapy. This article provides a focused overview of clinical stem cell therapy for the heart, followed by a discussion of how novel molecular imaging techniques are presently being applied to monitor cell therapy.
Collapse
Affiliation(s)
- Ahmad Y Sheikh
- Department of Medicine, Division of Cardiology and Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Edwards Building, Room R-354, Stanford, CA 94305-5324, USA
| | | |
Collapse
|
44
|
Abstract
Drugs, surgery, and radiation are the traditional modalities of therapy in medicine. To these are being added new therapies based on cells and viruses or their derivatives. In these novel therapies, a cell or viral vector acts as a drug in its own right, altering the host or a disease process to bring about healing. Most of these advances originate from the significant recent advances in molecular medicine, but some have been around for some time. Blood transfusions and cowpox vaccinations are part of the history of medicine...but nevertheless are examples of cell- and viral-based therapies. This article focuses on the modern molecular incarnations of these therapies, and specifically on how imaging is used to track and guide these novel agents. We survey the literature dealing with imaging these new cell and viral particle therapies and provide a framework for understanding publications in this area. Leading technology of gene modifications are the fundamental modifications applied to make these new therapies amenable to imaging.
Collapse
Affiliation(s)
- Dawid Schellingerhout
- Neuroradiology Section, Department of Radiology and Experimental Diagnostic Imaging, Division of Diagnostic Imaging, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Abstract
Gene-marking studies were the first gene-transfer protocols approved for human use. Their intent was not directly therapeutic but rather to track the behavior and fate of cells in vivo, and to use this information to improve treatment protocols. For more than fifteen years, gene-marking studies using retroviral vectors have provided invaluable information about the biology of human hematopoietic cells and T lymphocytes, and have helped guide cell therapies intended to treat malignant disease. Although the safety record of marking studies has been impeccable, the development of leukemia by immunodeficient children treated with retroviral vectors cast a pall over the entire field and essentially brought the era of pure gene-marking studies to an abrupt end. Paradoxically, the impetus these events gave to studying retroviral integration sites in host cell DNA emphasized the additional information that marker studies could provide about the behavior of cells at the clonal level. As confidence has slowly returned, marker studies have reappeared, usually as components of gene therapy protocols in which a marker gene or sequence is incorporated to allow the modified cells to be tracked or imaged in vivo. Hence, gene marking continues to have much to offer in terms of our understanding of the behavior, fate, and safety of gene-modified cells in vivo.
Collapse
Affiliation(s)
- Siok-Keen Tey
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, Texas 77030, USA.
| | | |
Collapse
|
46
|
Carlson SK, Classic KL, Hadac EM, Bender CE, Kemp BJ, Lowe VJ, Hoskin TL, Russell SJ. In vivo quantitation of intratumoral radioisotope uptake using micro-single photon emission computed tomography/computed tomography. Mol Imaging Biol 2007; 8:324-32. [PMID: 17053863 DOI: 10.1007/s11307-006-0058-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE This study was undertaken to determine the ability of micro-single photon emission computed tomography (micro-SPECT)/computed tomography (CT) to accurately quantitate intratumoral radioisotope uptake in vivo and to compare these measurements with planar imaging and micro-SPECT imaging alone. PROCEDURES Human pancreatic cancer xenografts were established in 10 mice. Intratumoral radioisotope uptake was achieved via intratumoral injection of an attenuated measles virus vector expressing the NIS gene (MV-NIS). On various days after MV-NIS injection, (123)I planar and micro-SPECT/CT imaging was performed. Tumor activity was determined by dose calibrator measurements and region-of-interest (ROI) image analysis. Agreement and reproducibility of tumor activity measurements were assessed by Bland-Altman plots and Lin's concordance correlation coefficient (CCC). RESULTS Intratumoral radioisotope uptake was detected in all mice. Scatterplots demonstrate strong agreement (CCC = 0.93) between micro-SPECT/CT ROI image analysis and dose calibrator tumor activity measurements. The differences between dose calibrator activity measurements and those obtained with ROI image analysis of micro-SPECT alone and planar imaging are less accurate and more variable (CCC = 0.84 and 0.78, respectively). CONCLUSIONS Micro-SPECT/CT can be used to accurately quantify intratumoral radioisotope uptake in vivo and is more reliable than planar or micro-SPECT imaging alone.
Collapse
Affiliation(s)
- Stephanie K Carlson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 559005, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lu Y, Dang H, Middleton B, Campbell-Thompson M, Atkinson MA, Gambhir SS, Tian J, Kaufman DL. Long-Term Monitoring of Transplanted Islets Using Positron Emission Tomography. Mol Ther 2006; 14:851-6. [PMID: 16982215 DOI: 10.1016/j.ymthe.2006.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/03/2006] [Accepted: 08/17/2006] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation can restore glucose homeostasis in those with type 1 diabetes; however, most recipients eventually lose graft function. A noninvasive method to monitor islets following transplantation would enable assessment of their survival and aid the development of therapeutics to prolong graft survival. Here, we show that recombinant lentivirus can be used to engineer human islets to express a positron emission tomography (PET) reporter gene. Following transplantation into mice, transduced islets could be imaged in vivo using microPET and a radiolabeled probe approved by the FDA for clinical use in humans. The magnitude of signal from engineered islets implanted into the axillary cavity reflected the implanted islet mass. Signals from implanted islets decreased by approximately one-half during the first few weeks following transplantation, which may reflect islet cell death shortly after transplantation. Thereafter, the magnitude of signals from the implanted islets remained fairly constant when the recipients were repetitively reimaged over 90 days. Histological analysis of the implants showed healthy islets with PET reporter-expressing cells distributed throughout the islet architecture. These studies suggest that PET imaging of lentivirus-transduced islets could provide a safe and feasible method for long-term monitoring of islet graft survival.
Collapse
Affiliation(s)
- Yuxin Lu
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mari Aparici C. [Introduction to the molecular imaging]. REVISTA ESPANOLA DE MEDICINA NUCLEAR 2006; 25:394-409. [PMID: 17173791 DOI: 10.1157/13095176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- C Mari Aparici
- Stanford University Medical Center, Palo Alto, California, USA.
| |
Collapse
|
49
|
Abstract
AbstractMolecular-genetic imaging in living organisms has become a new field with the exceptional growth over the past 5 years. Modern imaging is based on three technologies: nuclear, magnetic resonance and optical imaging. Most current molecular-genetic imaging strategies are “indirect,” coupling a “reporter gene” with a complimentary “reporter probe.” The reporter transgene usually encodes for an enzyme, receptor or transporter that selectively interacts with a radiolabeled probe and results in accumulation of radioactivity in the transduced cell. In addition, reporter systems based on the expression of fluorescence or bioluminescence proteins are becoming more widely applied in small animal imaging. This review begins with a description of Positron Emission Tomography (PET)-based imaging genes and their complimentary radiolabeled probes that we think will be the first to enter clinical trials. Then we describe other imaging genes, mostly for optical imaging, which have been developed by investigators working with a variety of disease models in mice. Such optical reporters are unlikely to enter the clinic, at least not in the near-term. Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as “sensors” to monitor endogenous cell processes, including specific intracellular molecular-genetic events and the activity of signaling pathways, by regulating the magnitude of reporter gene expression.
Collapse
|