1
|
Outzen L, Ludolfs D, Irl M, Kossatz S, Maison W. Isopeptidic Desferrioxamine Analogues: The Role of Hydroxamate Spacing for Chelation of Zr 4. ChemMedChem 2025; 20:e202400890. [PMID: 39655362 PMCID: PMC11911295 DOI: 10.1002/cmdc.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
[89Zr]Zr4+ is a radionuclide of increasing clinical relevance for PET (positron emission tomography). However, an ideal chelator for stable Zr-chelation remains to be discovered. This study describes the solid-phase synthesis of octadentate Zr-chelators based on an isopeptidic (ip) scaffold derived from the natural siderophore desferrioxamine (DFOB). Several analogues with different spacers separating the chelating hydroxamates have been prepared and converted to [89Zr]Zr-complexes. The stability of these complexes was evaluated in human serum and in competition to excess of competing chelators. The assays revealed a beneficial effect of long hydroxamate spacing (9 atoms). Shorter spacing led to a decrease in complex stability. The most stable [89Zr]Zr-ipDFO complex had a high stability in challenging competition experiments with a large excess of EDTA for 72 h as determined by radio TLC and LC/MS. The straightforward synthesis, high complex stability and a modular character make ipDFO derivatives promising chelators for applications in targeted PET.
Collapse
Affiliation(s)
- Lasse Outzen
- Department of ChemistryUniversity of HamburgBundesstrasse 4520146HamburgGermany
| | - Darius Ludolfs
- Department of ChemistryUniversity of HamburgBundesstrasse 4520146HamburgGermany
| | - Maximilian Irl
- Department of Nuclear MedicineSchool of MedicineTUM University Hospital and Central Institute for Translational Cancer Research (TranslaTUM)Technical University MunichIsmaninger Straße 2281675MunichGermany
| | - Susanne Kossatz
- Department of Nuclear MedicineSchool of MedicineTUM University Hospital and Central Institute for Translational Cancer Research (TranslaTUM)Technical University MunichIsmaninger Straße 2281675MunichGermany
| | - Wolfgang Maison
- Department of ChemistryUniversity of HamburgBundesstrasse 4520146HamburgGermany
| |
Collapse
|
2
|
Enke JS, Bundschuh RA, Claus R, Lapa C. New PET Tracers for Lymphoma. PET Clin 2024; 19:463-474. [PMID: 38969567 DOI: 10.1016/j.cpet.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
While functional imaging with [18F]Fluoro-deoxy-glucose positron emission tomography (PET)/computed tomography is a well-established imaging modality in most lymphoma entities, novel tracers addressing cell surface receptors, tumor biology, and the microenvironment are being developed. Especially, with the emergence of immuno-PET targeting surface markers of lymphoma cells, a new imaging modality of immunotherapies is evolving, which might especially aid in relapsed and refractory disease stages. This review highlights different new PET tracers in indolent and aggressive lymphoma subtypes and summarizes the current state of immuno-PET imaging in lymphoma.
Collapse
Affiliation(s)
- Johanna S Enke
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Pathology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| |
Collapse
|
3
|
Lindeman SD, Booth OC, Tudi P, Schleinkofer TC, Moss JN, Kearney NB, Mukkamala R, Thompson LK, Modany MA, Srinivasarao M, Low PS. FAP Radioligand Linker Optimization Improves Tumor Dose and Tumor-to-Healthy Organ Ratios in 4T1 Syngeneic Model. J Med Chem 2024; 67:11827-11840. [PMID: 39013156 DOI: 10.1021/acs.jmedchem.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibroblast activation protein (FAP) has attracted considerable attention as a possible target for the radiotherapy of solid tumors. Unfortunately, initial efforts to treat solid tumors with FAP-targeted radionuclides have yielded only modest clinical responses, suggesting that further improvements in the molecular design of FAP-targeted radiopharmaceutical therapies (RPT) are warranted. In this study, we report several advances on the previously described FAP6 radioligand that increase tumor retention and accelerate healthy tissue clearance. Seven FAP6 derivatives with different linkers or albumin binders were synthesized, radiolabeled, and investigated for their effects on binding and cellular uptake. The radioligands were then characterized in 4T1 tumor-bearing Balb/c mice using both single-photon emission computed tomography (SPECT) and ex vivo biodistribution analyses to identify the conjugate with the best tumor retention and tumor-to-healthy organ ratios. The results reveal an optimized FAP6 radioligand that exhibits efficacy and safety properties that potentially justify its translation into the clinic.
Collapse
Affiliation(s)
- Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Owen C Booth
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pooja Tudi
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taylor C Schleinkofer
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson N Moss
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas B Kearney
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lauren K Thompson
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mollie A Modany
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- MorphImmune, Inc., 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| |
Collapse
|
4
|
Wuensche TE, Lyashchenko S, van Dongen GAMS, Vugts D. Good practices for 89Zr radiopharmaceutical production and quality control. EJNMMI Radiopharm Chem 2024; 9:40. [PMID: 38733556 PMCID: PMC11088613 DOI: 10.1186/s41181-024-00258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND During the previous two decades, PET imaging of biopharmaceuticals radiolabeled with zirconium-89 has become a consistent tool in preclinical and clinical drug development and patient selection, primarily due to its advantageous physical properties that allow straightforward radiolabeling of antibodies (89Zr-immuno-PET). The extended half-life of 78.4 h permits flexibility with respect to the logistics of tracer production, transportation, and imaging and allows imaging at later points in time. Additionally, its relatively low positron energy contributes to high-sensitivity, high-resolution PET imaging. Considering the growing interest in radiolabeling antibodies, antibody derivatives, and other compound classes with 89Zr in both clinical and pre-clinical settings, there is an urgent need to acquire valuable recommendations and guidelines towards standardization of labeling procedures. MAIN BODY This review provides an overview of the key aspects of 89Zr-radiochemistry and radiopharmaceuticals. Production of 89Zr, conjugation with the mostly used chelators and radiolabeling strategies, and quality control of the radiolabeled products are described in detail, together with discussions about alternative options and critical steps, as well as recommendations for troubleshooting. Moreover, some historical background on 89Zr-immuno-PET, coordination chemistry of 89Zr, and future perspectives are provided. This review aims to serve as a quick-start guide for scientists new to the field of 89Zr-immuno-PET and to suggest approaches for harmonization and standardization of current procedures. CONCLUSION The favorable PET imaging characteristics of 89Zr, its excellent availability due to relatively simple production and purification processes, and the development of suitable bifunctional chelators have led to the widespread use of 89Zr. The combination of antibodies and 89Zr, known as 89Zr-immuno-PET, has become a cornerstone in drug development and patient selection in recent years. Despite the advanced state of 89Zr-immuno-PET, new developments in chelator conjugation and radiolabeling procedures, application in novel compound classes, and improved PET scanner technology and quantification methods continue to reshape its landscape towards improving clinical outcomes.
Collapse
Affiliation(s)
- Thomas Erik Wuensche
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Serge Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Guus A M S van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Danielle Vugts
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Lin D, Lechermann LM, Huestis MP, Marik J, Sap JBI. Light-Driven Radiochemistry with Fluorine-18, Carbon-11 and Zirconium-89. Angew Chem Int Ed Engl 2024; 63:e202317136. [PMID: 38135665 DOI: 10.1002/anie.202317136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.
Collapse
Affiliation(s)
- Daniel Lin
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Current address: University of Southern California Department of Chemistry, Loker Hydrocarbon Research Institute, 837 Bloom Walk, Los Angeles, CA 90089, USA
| | - Laura M Lechermann
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Malcolm P Huestis
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jan Marik
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Discovery Chemistry, Genentech, Inc., DNA Way, South San Francisco, CA 94080, USA
| | - Jeroen B I Sap
- Department of Translational Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
6
|
Whetter JN, Śmiłowicz D, Boros E. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Acc Chem Res 2024; 57:933-944. [PMID: 38501206 DOI: 10.1021/acs.accounts.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.
Collapse
Affiliation(s)
- Jennifer N Whetter
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Ramogida C, Price E. Transition and Post-Transition Radiometals for PET Imaging and Radiotherapy. Methods Mol Biol 2024; 2729:65-101. [PMID: 38006492 DOI: 10.1007/978-1-0716-3499-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Radiometals are an exciting class of radionuclides because of the large number of metallic elements available that have medically useful isotopes. To properly harness radiometals, they must be securely bound by chelators, which must be carefully matched to the radiometal ion to maximize radiolabeling performance and the stability of the resulting complex. This chapter focuses on practical aspects of radiometallation chemistry including chelator selection, radiolabeling procedures and conditions, radiolysis prevention, purification, quality control, requisite equipment and reagents, and useful tips.
Collapse
Affiliation(s)
- Caterina Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
| | - Eric Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Khozeimeh Sarbisheh E, Summers KL, Salih AK, Cotelesage JJH, Zimmerling A, Pickering IJ, George GN, Price EW. Radiochemical, Computational, and Spectroscopic Evaluation of High-Denticity Desferrioxamine Derivatives DFO2 and DFO2p toward an Ideal Zirconium-89 Chelate Platform. Inorg Chem 2023; 62:2637-2651. [PMID: 36716427 DOI: 10.1021/acs.inorgchem.2c03573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Desferrioxamine (DFO) has long been considered the gold standard chelator for incorporating [89Zr]Zr4+ in radiopharmaceuticals for positron emission tomography (PET) imaging. To improve the stability of DFO with zirconium-89 and to expand its coordination sphere to enable binding of large therapeutic radiometals, we have synthesized the highest denticity DFO derivatives to date: dodecadentate DFO2 and DFO2p. In this study, we describe the synthesis and characterization of a novel DFO-based chelator, DFO2p, which is comprised of two DFO strands connected by an p-NO2-phenyl linker and therefore contains double the chelating moieties of DFO (potential coordination number up to 12 vs 6). The chelator DFO2p offers an optimized synthesis comprised of only a single reaction step and improves water solubility relative to DFO2, but the shorter linker reduces molecular flexibility. Both DFO2 and DFO2p, each with 6 potential hydroxamate ligands, are able to reach a more energetically favorable 8-coordinate environment for Zr(IV) than DFO. The zirconium(IV) coordination environment of these complexes were evaluated by a combination of density functional theory (DFT) calculations and synchrotron spectroscopy (extended X-ray absorption fine structure), which suggest the inner-coordination sphere of zirconium(IV) to be comprised of the outermost four hydroxamate ligands. These results also confirm a single Zr(IV) in each chelator, and the hydroxide ligands which complete the coordination sphere of Zr(IV)-DFO are absent from Zr(IV)-DFO2 and Zr(IV)-DFO2p. Radiochemical stability studies with zirconium-89 revealed the order of real-world stability to be DFO2 > DFO2p ≫ DFO. The zirconium-89 complexes of these new high-denticity chelators were found to be far more stable than DFO, and the decreased molecular flexibility of DFO2p, relative to DFO2, could explain its decreased stability, relative to DFO2.
Collapse
Affiliation(s)
- Elaheh Khozeimeh Sarbisheh
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5C9, Canada
| | - Kelly L Summers
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5C9, Canada.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| | - Akam K Salih
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5C9, Canada
| | - Julien J H Cotelesage
- Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| | - Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SKS7N 5A9, Canada
| | - Ingrid J Pickering
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5C9, Canada.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| | - Graham N George
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5C9, Canada.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SKS7N 5C9, Canada
| |
Collapse
|
10
|
Lee KH, Jung KH, Lee JH. Immuno-PET Imaging and Radioimmunotherapy of Lymphomas. Mol Pharm 2022; 19:3484-3491. [PMID: 36046954 DOI: 10.1021/acs.molpharmaceut.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monoclonal antibodies (Ab) have revolutionized the management of lymphomas, the most common hematologic malignancy in adults. Indeed, incorporation of rituximab into the regimen for indolent non-Hodgkin's lymphomas (NHLs) has dramatically improved treatment response and disease outcome. Yet, newer Ab therapeutics against promising antigen targets need to be developed to treat refractory or relapsed patients. Treatment efficacy can be further enhanced by conjugating toxic molecules to the Abs. Radioimmunotherapy (RIT) harnesses Abs as vehicles for targeted delivery of therapeutic radionuclide payloads for direct killing of targeted tumor cells. Positron emission tomography (PET) with radiolabeled Abs (called immuno-PET) can facilitate the development of new Ab therapeutics and RIT by providing pharmacokinetic and pharmacodynamic information and by quantifying tumor antigen level relevant for treatment decision. Immuno-PET has recently gravitated toward labeling Abs with 89Zr, a radiometal with a 3.3 day half-life that is trapped following Ab internalization and thus provides high-resolution PET images with excellent contrast. Immuno-PET methods against major lymphoma antigens including CD20 and other promising targets are currently under development. With continued improvements, immuno-PET has the potential to be used in lymphoma management as an imaging biomarker for patient selection and assessment of treatment response.
Collapse
Affiliation(s)
- Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, 50 Ilwon-dong, Gangnam-gu, Seoul 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, 50 Ilwon-dong, Gangnam-gu, Seoul 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| | - Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, 50 Ilwon-dong, Gangnam-gu, Seoul 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea
| |
Collapse
|
11
|
Triumbari EKA, Morland D, Laudicella R, Bauckneht M, Albano D, Annunziata S. Clinical Applications of Immuno-PET in Lymphoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143488. [PMID: 35884548 PMCID: PMC9316480 DOI: 10.3390/cancers14143488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary A systematic review of the published literature was performed to assess current clinicalapplications of immuno-PET in patients diagnosed with any histological type of lymphoma. The initial search yielded 1407 articles from PubMed/Medline and Scopus databases, but only 2 articles were found to comply with the inclusion criteria and 2 more were found during the cross-reference check. All four articles were deemed of sufficient methodological quality according to the QUADAS-2 assessment and were included in the review. Among the four included articles, three described the use of 89Zr-labelled antibodies targeting CD20+ relapsed/refractory B-cell lymphomas and one concerned the use of 68Ga-labelled mAb targeting CXCR4 in patients with non-Hodgkin lymphomas. Very limited literature data are currently available on the use of iPET in patients with lymphoma. However, iPET may represent a useful tool to non-invasively visualize the heterogeneous individual immunological environment, thus potentially guiding treatment-planning in lymphoma patients, and hence deserves further exploitation. Abstract Objective: Immuno-positron emission tomography (iPET) combines the sensitivity of the PET imaging technique and the targeting specificity of radio-labelled monoclonal antibodies (mAb). Its first clinical applications in humans were described in the late 1990s, and several pathologies have benefitted from this molecular imaging modality since then. Our scope was to assess current clinical applications of immuno-PET in patients with lymphoma. Therefore, a systematic review of the published literature was performed. Methods: PubMed/Medline and Scopus databases were independently searched by two nuclear medicine physicians, to identify studies describing the clinical use of immuno-PET in patients with lymphoma. Methodological quality of the included articles was assessed by using the Quality Assessment of Diagnostic Accuracy Studies criteria. The studies were then analyzed concerning the molecular target of interest. Results: The initial search yielded 1407 articles. After elimination of duplicates, 1339 titles/abstracts were evaluated. Only two articles were found to comply with the inclusion criteria and two more were found during the cross-reference check. Among the four included articles, three described the use of 89Zr-labelled antibodies targeting CD20+ relapsed/refractory B-cell lymphomas and one concerned the use of 68Ga-labelled mAb targeting CXCR4 in patients with non-Hodgkin lymphomas. Conclusions: Very limited literature data are currently available on the clinical use of iPET in patients with lymphoma. This technique is encountering obstacles in its wider use, possibly because of the need of specific facilities, unfavorable dosimetry, and unclear correlation of immuno-tracer biodistribution with patients’ clinical and tumors’ molecular characteristics. However, iPET may represent a useful tool to non-invasively visualize the heterogenous individual immunological environment, thus potentially guiding treatment-planning in lymphoma patients, and hence deserves further exploitation.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.M.); (S.A.)
| | - David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.M.); (S.A.)
- Service de Médecine nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Informationet de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria n1, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-320-032-0150
| | - Matteo Bauckneht
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy;
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Domenico Albano
- Nuclear Medicine, ASST SpedaliCivili Brescia, 25122 Brescia, Italy;
- Nuclear Medicine Department, University of Brescia, 25122 Brescia, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.M.); (S.A.)
| |
Collapse
|
12
|
Lacerda S, Zhang W, T. M. de Rosales R, Da Silva I, Sobilo J, Lerondel S, Tóth É, Djanashvili K. On the Versatility of Nanozeolite Linde Type L for Biomedical Applications: Zirconium-89 Radiolabeling and In Vivo Positron Emission Tomography Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32788-32798. [PMID: 35830285 PMCID: PMC9335405 DOI: 10.1021/acsami.2c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Porous materials, such as zeolites, have great potential for biomedical applications, thanks to their ability to accommodate positively charged metal-ions and their facile surface functionalization. Although the latter aspect is important to endow the nanoparticles with chemical/colloidal stability and desired biological properties, the possibility for simple ion-exchange enables easy switching between imaging modalities and/or combination with therapy, depending on the envisioned application. In this study, the nanozeolite Linde type L (LTL) with already confirmed magnetic resonance imaging properties, generated by the paramagnetic gadolinium (GdIII) in the inner cavities, was successfully radiolabeled with a positron emission tomography (PET)-tracer zirconium-89 (89Zr). Thereby, exploiting 89Zr-chloride resulted in a slightly higher radiolabeling in the inner cavities compared to the commonly used 89Zr-oxalate, which apparently remained on the surface of LTL. Intravenous injection of PEGylated 89Zr/GdIII-LTL in healthy mice allowed for PET-computed tomography evaluation, revealing initial lung uptake followed by gradual migration of LTL to the liver and spleen. Ex vivo biodistribution confirmed the in vivo stability and integrity of the proposed multimodal probe by demonstrating the original metal/Si ratio being preserved in the organs. These findings reveal beneficial biological behavior of the nanozeolite LTL and hence open the door for follow-up theranostic studies by exploiting the immense variety of metal-based radioisotopes.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071 Cedex 2, France
| | - Wuyuan Zhang
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, St Thomas’
Hospital, King’s College London, London SE1 7EH, U.K.
| | - Isidro Da Silva
- CEMHTI,
CNRS UPR3079, Université d’Orléans, Orléans 45071, France
| | - Julien Sobilo
- Centre
d’Imagerie du petit Animal, PHENOMIN-TAAM, CNRS UAR44, Orléans F-45071, France
| | - Stéphanie Lerondel
- Centre
d’Imagerie du petit Animal, PHENOMIN-TAAM, CNRS UAR44, Orléans F-45071, France
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071 Cedex 2, France
| | - Kristina Djanashvili
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071 Cedex 2, France
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Le Studium,
Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, Orléans 45000, France
| |
Collapse
|
13
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Dun Y, Huang G, Liu J, Wei W. ImmunoPET imaging of hematological malignancies: From preclinical promise to clinical reality. Drug Discov Today 2021; 27:1196-1203. [PMID: 34838729 DOI: 10.1016/j.drudis.2021.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
Immuno-positron emission tomography (immunoPET) imaging is a paradigm-shifting imaging technique for whole-body and all-lesion tumor detection, based on the combined specificity of tumor-targeting vectors [e.g., monoclonal antibodies (mAbs), nanobodies, and bispecific antibodies] and the sensitivity of PET imaging. By noninvasively, comprehensively, and serially revealing heterogeneous tumor antigen expression, immunoPET imaging is gradually improving the theranostic prospects for hematological malignancies. In this review, we summarize the available literature regarding immunoPET in imaging hematological malignancies. We also highlight the pros and cons of current conjugation strategies, and modular chemistry that can be leveraged to develop novel immunoPET probes for hematological malignancies. Lastly, we discuss the use of immunoPET imaging in guiding antibody drug development.
Collapse
Affiliation(s)
- Yiting Dun
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
15
|
Choiński J, Łyczko M. Prospects for the production of radioisotopes and radiobioconjugates for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.
Collapse
Affiliation(s)
| | - Monika Łyczko
- Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
16
|
Sarcan ET, Silindir-Gunay M, Ozer AY, Hartman N. 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07928-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Radiopharmaceuticals developed for 89Zr-Immuno-PET. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021; 445:214104. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Lee CR, Kim GG, Park SB, Kim SW. Synthesis of Hyaluronic Acid-Conjugated Fe 3O 4@CeO 2 Composite Nanoparticles for a Target-Oriented Multifunctional Drug Delivery System. MICROMACHINES 2021; 12:mi12091018. [PMID: 34577662 PMCID: PMC8466504 DOI: 10.3390/mi12091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
This study is based on the principle that superparamagnetic iron oxide nanoparticles (Fe3O4) can be used to target a specific area given that their magnetic properties emerge when an external magnetic field is applied. Cerium oxide (CeO2), which causes oxidative stress by generating reactive oxygen species (ROS) in the environment of tumor cells, was synthesized on the surface of superparamagnetic iron oxide nanoparticles to produce nanoparticles that selectively kill cancer cells. In addition, hyaluronic acid (HA) was coated on the cerium's surface to target CD44-overexpressing tumor cells, and natZr was chelated on the Fe3O4@CeO2 surface to show the usefulness of labeling the radioisotope 89Zr (T1/2 = 3.3 d). The synthesis of Fe3O4@CeO2 was confirmed by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Field Emission-Transmission Electron Microscope (FE-TEM). The coating of HA was confirmed by FT-IR, X-ray Photoelectron. Spectroscopy (XPS), FE-TEM, Energy-Dispersive X-ray Spectroscopy (EDS) and Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC). The sizes of the prepared nanoparticles were confirmed through FE-TEM and Field Emission-Scanning Electron (FE-SEM) (sizes of 15 to 30 nm), and it was confirmed that natZr was introduced onto the surface of the nanoparticles using EDS. The particle size of the dispersed material was limited through Dynamic Light Scattering (DLS) to about 148 nm in aqueous solution, which was suitable for the (enhanced permeation and retention) EPR effect. It was confirmed that the HA-coated nanoparticles have good dispersibility. Finally, a cytotoxicity evaluation confirmed the ability of CeO2 to generate ROS and target the delivery of HA. In conclusion, Fe3O4@CeO2 can effectively inhibit cancer cells through the activity of cerium oxide in the body when synthesized in nano-sized superparamagnetic coral iron that has magnetic properties. Subsequently, by labeling the radioactive isotope 89Zr, it is possible to create a theranostic drug delivery system that can be used for cancer diagnosis.
Collapse
Affiliation(s)
- Chang Ryong Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Korea; (C.R.L.); (G.G.K.)
| | - Gun Gyun Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Korea; (C.R.L.); (G.G.K.)
| | - Sung Bum Park
- Department of Safety Engineering, Dongguk University, Gyeongju 38066, Korea;
| | - Sang Wook Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju 38066, Korea; (C.R.L.); (G.G.K.)
- Correspondence: ; Tel.: +82-54-770-2216
| |
Collapse
|
20
|
Summers KL, Sarbisheh EK, Zimmerling A, Cotelesage JJH, Pickering IJ, George GN, Price EW. Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine: A Coordination Sphere Completed by Hydroxides. Inorg Chem 2020; 59:17443-17452. [PMID: 33183002 DOI: 10.1021/acs.inorgchem.0c02725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Positron emission tomography (PET) using radiolabeled, monoclonal antibodies has become an effective, noninvasive method for tumor detection and is a critical component of targeted radionuclide therapy. Metal ion chelator and bacterial siderophore desferrioxamine (DFO) is the gold standard compound for incorporation of zirconium-89 in radiotracers for PET imaging because it is thought to form a stable chelate with [89Zr]Zr4+. However, DFO may not bind zirconium-89 tightly in vivo, with free zirconium-89 reportedly liberated into the bones of experimental mouse models. Although high bone uptake has not been observed to date in humans, this potential instability has been proposed to be related to the unsaturated coordination sphere of [89Zr]Zr-DFO, which is thought to consist of the 3 hydroxamate groups of DFO and 1 or 2 water molecules. In this study, we have used a combination of X-ray absorption spectroscopy and density functional theory (DFT) geometry optimization calculations to further probe the coordination chemistry of this complex in solution. We find the extended X-ray absorption fine structure (EXAFS) curve fitting of an aqueous solution of Zr(IV)-DFO to be consistent with an 8-coordinate Zr with oxygen ligands. DFT calculations suggest that the most energetically favorable Zr(IV) coordination environment in DFO likely consists of the 3 hydroxamate ligands from DFO, each with bidentate coordination, and 2 hydroxide ligands. Further EXAFS curve fitting provides additional support for this model. Therefore, we propose that the coordination sphere of Zr(IV)-DFO is most likely completed by 2 hydroxide ligands rather than 2 water molecules, forming Zr(DFO)(OH)2.
Collapse
Affiliation(s)
- Kelly L Summers
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Elaheh Khozeimeh Sarbisheh
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9
| | - Amanda Zimmerling
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9
| | - Julien J H Cotelesage
- Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Ingrid J Pickering
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Graham N George
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9
| |
Collapse
|
21
|
Sarbisheh EK, Salih AK, Raheem SJ, Lewis JS, Price EW. A High-Denticity Chelator Based on Desferrioxamine for Enhanced Coordination of Zirconium-89. Inorg Chem 2020; 59:11715-11727. [PMID: 32799484 DOI: 10.1021/acs.inorgchem.0c01629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report a new high-denticity chelator based on the iron siderophore desferrioxamine (DFO). Our new chelator-DFO2-is acyclic and was designed and synthesized with the purpose of improving the coordination chemistry and radiolabeling performance with radioactive zirconium-89. The radionuclide zirconium-89 ([89Zr]Zr4+) has found wide use for positron emission tomography (PET) imaging when it is coupled with proteins, antibodies, and nanoparticles. DFO2 has a potential coordination number of 12, which uniquely positions this chelator for binding large, high-valent, and oxophilic metal ions. Following synthesis of the DFO2 chelator and the [natZr]Zr-(DFO2) complex we performed density functional theory calculations to study its coordination sphere, followed by zirconium-89 radiolabeling experiments for comparisons with the "gold standard" chelator DFO. DFO (CN 6) can coordinate with zirconium in a hexadentate fashion, leaving two open coordination sites where water is thought to coordinate (total CN 8). DFO2 (potential CN 12, dodecadentate) can saturate the coordination sphere of zirconium with four hydroxamate groups (CN 8), with no room left for water to directly coordinate, and only binds a single atom of zirconium per chelate. Following quantitative radiolabeling with zirconium-89, the preformed [89Zr]Zr-(DFO) and [89Zr]Zr-(DFO2) radiometal-chelate complexes were subjected to a battery of in vitro stability challenges, including human blood serum, apo-transferrin, serum albumin, iron, hydroxyapatite, and EDTA. One objective of these stability challenges was to determine if the increased denticity of DFO2 over that of DFO imparted improved complex stability, and another was to determine which of these assays is most relevant to perform with future chelators. In all of the assays DFO2 showed superior stability with zirconium-89, except for the iron challenge, where both DFO2 and DFO were identical. Substantial differences in stability were observed for human blood serum using a precipitation method of analysis, apo-transferrin, hydroxyapatite, and EDTA challenges. These results suggest that DFO2 is a promising next-generation scaffold for zirconium-89 chelators and holds promise for radiochemistry with even larger radionuclides, which we anticipate will expand the utility of DFO2 into theranostic applications.
Collapse
Affiliation(s)
- Elaheh Khozeimeh Sarbisheh
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Akam K Salih
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Shvan J Raheem
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
22
|
Yoon JK, Park BN, Ryu EK, An YS, Lee SJ. Current Perspectives on 89Zr-PET Imaging. Int J Mol Sci 2020; 21:ijms21124309. [PMID: 32560337 PMCID: PMC7352467 DOI: 10.3390/ijms21124309] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
89Zr is an emerging radionuclide that plays an essential role in immuno-positron emission tomography (PET) imaging. The long half-life of 89Zr (t1/2 = 3.3 days) is favorable for evaluating the in vivo distribution of monoclonal antibodies. Thus, the use of 89Zr is promising for monitoring antibody-based cancer therapies. Immuno-PET combines the sensitivity of PET with the specificity of antibodies. A number of studies have been conducted to investigate the feasibility of 89Zr immuno-PET imaging for predicting the efficacy of radioimmunotherapy and antibody therapies, imaging target expression, detecting target-expressing tumors, and the monitoring of anti-cancer chemotherapies. In this review, we summarize the current status of PET imaging using 89Zr in both preclinical and clinical studies by highlighting the use of immuno-PET for the targets of high clinical relevance. We also present 89Zr-PET applications other than immuno-PET, such as nanoparticle imaging and cell tracking. Finally, we discuss the limitations and the ongoing research being performed to overcome the remaining hurdles.
Collapse
Affiliation(s)
- Joon-Kee Yoon
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
- Correspondence: ; Tel.: +82-31-219-4303
| | - Bok-Nam Park
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
| | - Eun-Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, 162, Yeongudanji-ro, Cheongju 28119, Korea;
| | - Young-Sil An
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
| | - Su-Jin Lee
- Department of Nuclear Medicine & Molecular Imaging, Ajou University School of Medicine, Worldcup-ro 164, Suwon 16499, Korea; (B.-N.P.); (Y.-S.A.); (S.-J.L.)
| |
Collapse
|
23
|
Alnahwi A, Ait-Mohand S, Dumulon-Perreault V, Dory YL, Guérin B. Promising Performance of 4HMS, a New Zirconium-89 Octadendate Chelator. ACS OMEGA 2020; 5:10731-10739. [PMID: 32455192 PMCID: PMC7240819 DOI: 10.1021/acsomega.0c00207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Over the last decade, the interest in zirconium-89 (89Zr) as a positron-emitting radionuclide increased considerably because of its standardized production and its physical half-life (78.41 h), which matches the biological half-life of antibodies and its successful use in preclinical and clinical applications. So far, desferrioxamine (DFO), a commercially available chelator, has been mainly used as a bifunctional chelating system. However, there are some concerns regarding the in vivo stability of the [89Zr]Zr-DFO complex. In this study, we report the synthesis of an acyclic N-hydroxy-N-methyl succinamide-based chelator (4HMS) with 8 coordination sites and our first investigations into the use of this new chelator for 89Zr complexation. In vitro and in vivo comparative studies with [89Zr]Zr-4HMS and [89Zr]Zr-DFO are presented. The 4HMS chelator was synthesized in four steps starting with an excellent overall yield. Both chelators were quantitatively labeled with 89Zr within 5-10 min at pH 7 and room temperature; the molar activity of [89Zr]Zr-4HMS exceeded (>3 times) that of [89Zr]Zr-DFO. [89Zr]Zr-4HMS remained stable against transmetalation and transchelation and cleared from most tissues within 24 h. The kidney, liver, bone, and spleen uptakes were significantly low for this 89Zr-complex. Positron emission tomography images were in accordance with the results of the biodistribution in healthy mice. Based on DFT calculations, a rationale is provided for the high stability of 89Zr-4HMS. This makes 4HMS a promising chelator for future development of 89Zr-radiopharmaceuticals.
Collapse
Affiliation(s)
- Aiman
H. Alnahwi
- Department
of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health
Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Samia Ait-Mohand
- Department
of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health
Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Dumulon-Perreault
- Sherbrooke
Molecular Imaging Center (CIMS), CRCHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Laboratoire
de Synthèse Supramoléculaire. Department of Chemistry,
Institut de Pharmacologie, Université
de Sherbooke, 3001, 12e
Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Department
of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health
Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Sherbrooke
Molecular Imaging Center (CIMS), CRCHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
24
|
|
25
|
Zirconium-89 radio-nanochemistry and its applications towards the bioimaging of prostate cancer. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Teterin YA, Kazakov AG, Teterin AY, Severin AV, Dvorak SV, Maslakov KI, Ivanov KE. The study of Zr adsorption on nanodispersed hydroxyapatite: X-ray photoelectron study. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06586-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
What is the Best Radionuclide for Immuno-PET of Multiple Myeloma? A Comparison Study Between 89Zr- and 64Cu-Labeled Anti-CD138 in a Preclinical Syngeneic Model. Int J Mol Sci 2019; 20:ijms20102564. [PMID: 31137758 PMCID: PMC6567828 DOI: 10.3390/ijms20102564] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Although positron emission tomography (PET) imaging with 18-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker for the identification of myeloma cells and could be used in phenotype tumor imaging. In this study, we used an anti-CD138 murine antibody (9E7.4) radiolabeled with copper-64 (64Cu) or zirconium-89 (89Zr) and compared them in a syngeneic mouse model to select the optimal tracers for MM PET imaging. Then, 9E7.4 was conjugated to TE2A-benzyl isothiocyanate (TE2A) and desferrioxamine (DFO) chelators for 64Cu and 89Zr labeling, respectively. 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 antibodies were evaluated by PET imaging and biodistribution studies in C57BL/KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions and were compared to 18F-FDG-PET imaging. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 displayed comparable good tumor uptake of subcutaneous tumors. On the bone lesions, PET imaging with 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 showed higher uptake than with 18F-FDG-PET. Comparison of both 9E7.4 conjugates revealed higher nonspecific bone uptakes of 89Zr-DFO-9E7.4 than 64Cu-TE2A-9E7.4. Because of free 89Zr’s tropism for bone when using 89Zr-anti-CD138, 64Cu-anti-CD138 antibody had the most optimal tumor-to-nontarget tissue ratios for translation into humans as a specific new imaging radiopharmaceutical agent in MM.
Collapse
|
28
|
Immobilized Peptide on the Surface of Poly l-DOPA/Silica for Targeted Delivery of 5-Fluorouracil to Breast Tumor. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09834-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Analogues of desferrioxamine B (DFOB) with new properties and new functions generated using precursor-directed biosynthesis. Biometals 2019; 32:395-408. [PMID: 30701380 DOI: 10.1007/s10534-019-00175-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Desferrioxamine B (DFOB) is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator. Although DFOB has a long clinical history for the treatment of chronic iron overload, limitations encourage the development of new analogues. This review describes a recent body of work that has used precursor-directed biosynthesis (PDB) to access new DFOB analogues. PDB exploits the native biosynthetic machinery of a producing organism in culture medium augmented with non-native substrates that compete against native substrates during metabolite assembly. The method allows access to analogues of natural products using benign methods, compared to multistep organic synthesis. The disadvantages of PDB are the production of metabolites in low yield and the need to purify complex mixtures. Streptomyces pilosus medium was supplemented with different types of non-native diamine substrates to compete against native 1,5-diaminopentane to generate DFOB analogues containing alkene bonds, fluorine atoms, ether or thioether functional groups, or a disulfide bond. All analogues retained function as Fe(III) chelators and have properties that could broaden the utility of DFOB. These PDB studies have also added knowledge to the understanding of DFOB biosynthesis.
Collapse
|
30
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
31
|
McKnight BN, Viola-Villegas NT. 89 Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm 2018; 61:727-738. [PMID: 29341222 PMCID: PMC6050145 DOI: 10.1002/jlcr.3605] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
Therapeutic monoclonal antibodies have been used in cancer treatment for 30 years, with around 24 mAb and mAb:drug conjugates approved by the FDA to date. Despite their specificity, efficacy has remained limited, which, in part, derails nascent initiatives towards precision medicine. An image-guided approach to reinforce treatment decisions using immune positron emission tomography (immunoPET) companion diagnostic is warranted. This review provides a general overview of current translational research using Zr-89 immunoPET and opportunities for utilizing and harnessing this tool to its full potential. Patient case studies are cited to illustrate immunoPET probes as tools for profiling molecular signatures. Discussions on its utility in reinforcing clinical decisions as it relates to histopathological tumor assessment and standard diagnostic methods, and its potential as predictive biomarkers, are presented. We finally conclude with an overview of practical considerations to its utility in the clinic.
Collapse
Affiliation(s)
- Brooke N. McKnight
- Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
32
|
89Zr-labeled CEA-targeted IL-2 variant immunocytokine in patients with solid tumors: CEA-mediated tumor accumulation and role of IL-2 receptor-binding. Oncotarget 2018; 9:24737-24749. [PMID: 29872502 PMCID: PMC5973872 DOI: 10.18632/oncotarget.25343] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
Cergutuzumab amunaleukin (CEA-IL2v) is an immunocytokine directed against carcinoembryonic antigen (CEA) containing an IL2v-moiety with abolished IL-2 receptor (IL-2R) α binding. We describe the biodistribution and tumor accumulation of 89Zr-labeled CEA-IL2v. Twenty-four patients with advanced solid CEA positive (CEA+) or negative (CEA−) tumors received CEA-IL2v 6 mg (4 CEA+; 3 CEA−), 20 mg (9 CEA+), or 30 mg (4 CEA+; 4 CEA−) biweekly. In cycle 1, 2 mg of the total dose comprised 89Zr-CEA-IL2v (50 MBq) and serial 89Zr-PET imaging was conducted. Four CEA+ patients with visually confirmed 89Zr-CEA-IL2v tumor accumulation at 20 mg had repeated 89Zr-PET imaging during cycle 4. 89Zr-CEA-IL2v immuno-PET demonstrated preferential drug accumulation in CEA+ tumors (%ID/mLpeak CEA− 3.6 × 10−3 vs. CEA+ 6.7 ×∙10−3). There was a non-significant trend towards dose-dependent tumor uptake, with higher uptake at doses ≥20 mg. Biodistribution was dose- and CEA-independent with major accumulation in lymphoid tissue compatible with IL-2R binding. Reduced exposure and reduced tumor accumulation (%ID/mLpeak 57% lower) on cycle 4 vs. cycle 1 was consistent with peripheral expansion of immune cells. The findings of this immune PET imaging study with 89Zr-CEA-IL2v support the therapeutic concept of CEA-IL2v, confirming selective and targeted tumor accumulation with this novel immunocytokine.
Collapse
|
33
|
Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Med Res Rev 2018; 38:1837-1873. [PMID: 29635825 DOI: 10.1002/med.21498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Newly developed protein drugs that target tumor-associated antigens are often modified in order to increase their therapeutic effect, tumor exposure, and safety profile. During the development of protein drugs, molecular imaging is increasingly used to provide additional information on their in vivo behavior. As a result, there are increasing numbers of studies that demonstrate the effect of protein modification on whole body distribution and tumor uptake of protein drugs. However, much still remains unclear about how to interpret obtained biodistribution data correctly. Consequently, there is a need for more insight in the correct way of interpreting preclinical and clinical imaging data. Summarizing the knowledge gained to date may facilitate this interpretation. This review therefore provides an overview of specific protein properties and modifications that can affect biodistribution and tumor uptake of anticancer antibodies, antibody fragments, and nonimmunoglobulin scaffolds. Protein properties that are discussed in this review are molecular size, target interaction, FcRn binding, and charge. Protein modifications that are discussed are radiolabeling, fluorescent labeling drug conjugation, glycosylation, humanization, albumin binding, and polyethylene glycolation.
Collapse
Affiliation(s)
- Frank-Jan Warnders
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,PharmacoTherapy, Epidemiology & Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Abstract
The interest in zirconium-89 (89Zr) as a positron-emitting radionuclide has grown considerably over the last decade due to its standardized production, long half-life of 78.2 h, favorable decay characteristics for positron emission tomography (PET) imaging and its successful use in a variety of clinical and preclinical applications. However, to be utilized effectively in PET applications it must be stably bound to a targeting ligand, and the most successfully used 89Zr chelator is desferrioxamine B (DFO), which is commercially available as the iron chelator Desferal®. Despite the prevalence of DFO in 89Zr-immuno-PET applications, the development of new ligands for this radiometal is an active area of research. This review focuses on recent advances in zirconium-89 chelation chemistry and will highlight the rapidly expanding ligand classes that are under investigation as DFO alternatives.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
35
|
Rousseau J, Zhang Z, Wang X, Zhang C, Lau J, Rousseau E, Čolović M, Hundal-Jabal N, Bénard F, Lin KS. Synthesis and evaluation of bifunctional tetrahydroxamate chelators for labeling antibodies with 89 Zr for imaging with positron emission tomography. Bioorg Med Chem Lett 2018; 28:899-905. [DOI: 10.1016/j.bmcl.2018.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/26/2022]
|
36
|
Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2018; 45:15702-15724. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, 68Ga, 64Cu, 89Zr and 44Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics. A series of cyclic, cross-bridged and acyclic ligands will be discussed, such as CP256 which forms stable complexes with 68Ga under mild conditions and PCB-TE2A which has been shown to form a highly stable complex with 64Cu. 89Zr and 44Sc have seen significant development in recent years with a number of chelates being applied to each metal - eight coordinate di-macrocyclic terephthalamide ligands were found to rapidly produce more stable complexes with 89Zr than the widely used DFO.
Collapse
Affiliation(s)
- Thomas W Price
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| |
Collapse
|
37
|
Drude N, Tienken L, Mottaghy FM. Theranostic and nanotheranostic probes in nuclear medicine. Methods 2017; 130:14-22. [PMID: 28698069 DOI: 10.1016/j.ymeth.2017.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022] Open
|
38
|
Heskamp S, Raavé R, Boerman O, Rijpkema M, Goncalves V, Denat F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug Chem 2017; 28:2211-2223. [PMID: 28767228 PMCID: PMC5609224 DOI: 10.1021/acs.bioconjchem.7b00325] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Immuno-positron
emission tomography (immunoPET) with 89Zr-labeled antibodies
has shown great potential in cancer imaging.
It can provide important information about the pharmacokinetics and
tumor-targeting properties of monoclonal antibodies and may help in
anticipating on toxicity. Furthermore, it allows accurate dose planning
for individualized radioimmunotherapy and may aid in patient selection
and early-response monitoring for targeted therapies. The most commonly
used chelator for 89Zr is desferrioxamine (DFO). Preclinical
studies have shown that DFO is not an ideal chelator because the 89Zr–DFO complex is partly unstable in vivo, which results
in the release of 89Zr from the chelator and the subsequent
accumulation of 89Zr in bone. This bone accumulation interferes
with accurate interpretation and quantification of bone uptake on
PET images. Therefore, there is a need for novel chelators that allow
more stable complexation of 89Zr. In this Review, we will
describe the most recent developments in 89Zr radiochemistry,
including novel chelators and site-specific conjugation methods.
Collapse
Affiliation(s)
- Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - René Raavé
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Geert Grooteplein-Zuid 10, 6525 HP Nijmegen, The Netherlands
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS, Université Bourgogne Franche-Comté , F-21000 Dijon, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS, Université Bourgogne Franche-Comté , F-21000 Dijon, France
| |
Collapse
|
39
|
Rousseau J, Zhang Z, Dias GM, Zhang C, Colpo N, Bénard F, Lin KS. Design, synthesis and evaluation of novel bifunctional tetrahydroxamate chelators for PET imaging of 89 Zr-labeled antibodies. Bioorg Med Chem Lett 2017; 27:708-712. [DOI: 10.1016/j.bmcl.2017.01.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 01/12/2023]
|
40
|
Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01079f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined microbiology-chemistry approach has been used to generate a water-soluble chain-extended octadentate hydroxamic acid designed as a high affinity and selective Zr(iv) ligand.
Collapse
Affiliation(s)
| | - William Tieu
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Michael P. Gotsbacher
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Thomas J. Telfer
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute
- The University of Sydney
- Australia
| |
Collapse
|
41
|
Bailly C, Cléry PF, Faivre-Chauvet A, Bourgeois M, Guérard F, Haddad F, Barbet J, Chérel M, Kraeber-Bodéré F, Carlier T, Bodet-Milin C. Immuno-PET for Clinical Theranostic Approaches. Int J Mol Sci 2016; 18:ijms18010057. [PMID: 28036044 PMCID: PMC5297692 DOI: 10.3390/ijms18010057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 02/03/2023] Open
Abstract
Recent advances in molecular characterization of tumors have allowed identification of new molecular targets on tumor cells or biomarkers. In medical practice, the identification of these biomarkers slowly but surely becomes a prerequisite before any treatment decision, leading to the concept of personalized medicine. Immuno-positron emission tomography (PET) fits perfectly with this approach. Indeed, monoclonal antibodies (mAbs) labelled with radionuclides represent promising probes for theranostic approaches, offering a non-invasive solution to assess in vivo target expression and distribution. Immuno-PET can potentially provide useful information for patient risk stratification, diagnosis, selection of targeted therapies, evaluation of response to therapy, prediction of adverse effects or for titrating doses for radioimmunotherapy. This paper reviews some aspects and recent developments in labelling methods, biological targets, and clinical data of some novel PET radiopharmaceuticals.
Collapse
Affiliation(s)
- Clément Bailly
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Pierre-François Cléry
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Alain Faivre-Chauvet
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Mickael Bourgeois
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - François Guérard
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
| | - Ferid Haddad
- Groupement d'Intérêt Public Arronax, 1, rue Aronnax, CS 10112, 44817 Saint-Herblain, France.
| | - Jacques Barbet
- Groupement d'Intérêt Public Arronax, 1, rue Aronnax, CS 10112, 44817 Saint-Herblain, France.
| | - Michel Chérel
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO)-René Gauducheau, Boulevard Jacques Monod, 44805 Saint-Herblain, France.
| | - Françoise Kraeber-Bodéré
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest (ICO)-René Gauducheau, Boulevard Jacques Monod, 44805 Saint-Herblain, France.
| | - Thomas Carlier
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | - Caroline Bodet-Milin
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Inserm UMR 892, 8 quai Moncousu, 44007 Nantes, France.
- Department of Nuclear Medicine, CHU de Nantes, 1 place Alexis Ricordeau, 44093 Nantes, France.
| |
Collapse
|
42
|
England CG, Rui L, Cai W. Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging 2016; 44:517-532. [PMID: 27844106 DOI: 10.1007/s00259-016-3560-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Lymphoma is a complex disease that arises from cells of the immune system with an intricate pathology. While lymphoma may be classified as Hodgkin or non-Hodgkin, each type of tumor is genetically and phenotypically different and highly invasive tissue biopsies are the only method to investigate these differences. Noninvasive imaging strategies, such as immunoPET, can provide a vital insight into disease staging, monitoring treatment response in patients, and dose planning in radioimmunotherapy. ImmunoPET imaging with radiolabeled antibody-based tracers may also assist physicians in optimizing treatment strategies and enhancing patient stratification. Currently, there are two common biomarkers for molecular imaging of lymphoma, CD20 and CD30, both of which have been considered for investigation in preclinical imaging studies. In this review, we examine the current status of both preclinical and clinical imaging of lymphoma using radiolabeled antibodies. Additionally, we briefly investigate the role of radiolabeled antibodies in lymphoma therapy. As radiolabeled antibodies play critical roles in both imaging and therapy of lymphoma, the development of novel antibodies and the discovery of new biomarkers may greatly affect lymphoma imaging and therapy in the future.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
43
|
Taurone S, Galli F, Signore A, Agostinelli E, Dierckx RAJO, Minni A, Pucci M, Artico M. VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review). Int J Oncol 2016; 49:437-47. [PMID: 27277340 DOI: 10.3892/ijo.2016.3553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.
Collapse
Affiliation(s)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, 'Sapienza' University, Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', 'Sapienza' University, Rome, Italy
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonio Minni
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| | - Marcella Pucci
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, 'Sapienza' University, Rome, Italy
| |
Collapse
|
44
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
45
|
Radiation Dosimetry Study of [(89)Zr]rituximab Tracer for Clinical Translation of B cell NHL Imaging using Positron Emission Tomography. Mol Imaging Biol 2016; 17:539-47. [PMID: 25500766 DOI: 10.1007/s11307-014-0810-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE We evaluated the dosimetry of [(89)Zr]rituximab, an anti-CD20 immunoPET tracer to image B cell non-Hodgkin's lymphoma (NHL) using a humanized transgenic mouse model that expresses human CD20 transgenic mice (huCD20TM). PROCEDURES Rituximab was conjugated to desferrioxamine (Df) for radiolabeling of Zirconium-89. [(89)Zr]rituximab (2.8 ± 0.2 MBq) was tail vein-injected into huCD20T mice. Positron emission tomography (PET)/CT imaging was performed on the two groups of mice (blocking = 2 mg/kg pre-dose of rituximab and non-blocking; n = 5) at eight time points (1, 4, 24, 48, 72, 96, 120, and 168 h) post injection. RESULTS The novel [(89)Zr]rituximab PET tracer had good immunoreactivity, was stable in human serum, and was able to specifically target human CD20 in mice. The human equivalents of highest dose (mean ± SD) organs with and without pre-dose are liver (345 ± 284 μSv/MBq) and spleen (1165 ± 149 μSv/MBq), respectively. CONCLUSIONS Dosimetry of the human patient whole-body dose was found to be 145 MBq per annum, and the patient dose-limiting organ will be the liver (with rituximab pre-dose blocking) and spleen for non-blocking. The [(89)Zr]rituximab (t½ = 78.4 h) imaging of B cell NHL patients could permit the observation of targeting lesions in NHL patients over an extended period due to longer half-life as compared to the [(64)Cu] rituximab (t½ = 12.7 h).
Collapse
|
46
|
Krasikova RN, Aliev RA, Kalmykov SN. The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Wright BD, Whittenberg J, Desai A, DiFelice C, Kenis PJA, Lapi SE, Reichert DE. Microfluidic Preparation of a 89Zr-Labeled Trastuzumab Single-Patient Dose. J Nucl Med 2016; 57:747-52. [PMID: 26769862 DOI: 10.2967/jnumed.115.166140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (89)Zr-labeled antibodies are being investigated in several clinical trials; however, the time requirement for synthesis of clinical doses can hinder patient throughput because of scheduling difficulties. Additionally, low specific activity due to poor labeling efficiency can require larger amounts of the radiopharmaceutical to be administered, possibly leading to adverse side effects. Here, we describe the design and evaluation of a microfluidic reactor capable of synthesizing a single clinical dose of (89)Zr-labeled antibody. (89)Zr-labeled trastuzumab was chosen for this validation because it is currently being evaluated in clinical trials for imaging human epidermal growth factor receptor 2-positive cancer patients. METHODS A microreactor fabricated from polydimethylsiloxane/glass was silanated with trimethoxy(octadecyl) silane to reduce antibody adsorption. Desferrioxamine-p-benzyl-isothiocyanate (DFO-Bz-NCS) was conjugated to trastuzumab in an 8:1 molar ratio following the literature procedures using aseptic techniques. Radiolabeling was performed by pumping (89)Zr-oxalate and DFO-Bz-trastuzumab into the microfluidic reactor at a total rate of 20 μL/min in ratios varying from 1:37 to 1:592 mg:MBq at 37°C to achieve optimal labeling. RESULTS Silanated reactors showed low antibody adsorption in comparison to unmodified reactors (95% monoclonal antibody recovered vs. 0% recovered). Labeling of the modified trastuzumab was shown to be achievable at a specific activity above the reported literature value of 220 MBq/mg. A high radiochemical purity was achieved without an incubation period at specific activities of less than 148 MBq/mg; however, specific activities up to 592 MBq/mg could be achieved with an incubation period. Clinical doses were able to be prepared and passed all quality control guidelines set by the Food and Drug Administration. Samples were sterile, colorless, and radiochemically pure (100%); maintained the ability to bind to the intended receptor; formed a minimal amount of aggregates (1%-4%); and were completed within 45-60 min. CONCLUSION (89)Zr-labeled trastuzumab for use in a clinical setting was synthesized in a microfluidic reactor in under an hour while reducing the amount of handling required by a technician. Use of this compact platform not only could enable the use of radiolabeled antibodies to become a common practice, but also could spread the use of radiolabeled antibodies beyond locations with cyclotron facilities.
Collapse
Affiliation(s)
- Brian D Wright
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| | - Joseph Whittenberg
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amit Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Christina DiFelice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| | - Paul J A Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Suzanne E Lapi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| | - David E Reichert
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri; and
| |
Collapse
|
48
|
Deri MA, Ponnala S, Kozlowski P, Burton-Pye BP, Cicek HT, Hu C, Lewis JS, Francesconi LC. p-SCN-Bn-HOPO: A Superior Bifunctional Chelator for (89)Zr ImmunoPET. Bioconjug Chem 2015; 26:2579-91. [PMID: 26550847 DOI: 10.1021/acs.bioconjchem.5b00572] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zirconium-89 has an ideal half-life for use in antibody-based PET imaging; however, when used with the chelator DFO, there is an accumulation of radioactivity in the bone, suggesting that the (89)Zr(4+) cation is being released in vivo. Therefore, a more robust chelator for (89)Zr could reduce the in vivo release and the dose to nontarget tissues. Evaluation of the ligand 3,4,3-(LI-1,2-HOPO) demonstrated efficient binding of (89)Zr(4+) and high stability; therefore, we developed a bifunctional derivative, p-SCN-Bn-HOPO, for conjugation to an antibody. A Zr-HOPO crystal structure was obtained showing that the Zr is fully coordinated by the octadentate HOPO ligand, as expected, forming a stable complex. p-SCN-Bn-HOPO was synthesized through a novel pathway. Both p-SCN-Bn-HOPO and p-SCN-Bn-DFO were conjugated to trastuzumab and radiolabeled with (89)Zr. Both complexes labeled efficiently and achieved specific activities of approximately 2 mCi/mg. PET imaging studies in nude mice with BT474 tumors (n = 4) showed good tumor uptake for both compounds, but with a marked decrease in bone uptake for the (89)Zr-HOPO-trastuzumab images. Biodistribution data confirmed the lower bone activity, measuring 17.0%ID/g in the bone at 336 h for (89)Zr-DFO-trastuzumab while (89)Zr-HOPO-trastuzumab only had 2.4%ID/g. We successfully synthesized p-SCN-Bn-HOPO, a bifunctional derivative of 3,4,3-(LI-1,2-HOPO) as a potential chelator for (89)Zr. In vivo studies demonstrate the successful use of (89)Zr-HOPO-trastuzumab to image BT474 breast cancer with low background, good tumor to organ contrast, and, importantly, very low bone uptake. The reduced bone uptake seen with (89)Zr-HOPO-trastuzumab suggests superior stability of the (89)Zr-HOPO complex.
Collapse
Affiliation(s)
- Melissa A Deri
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States.,Department of Chemistry, Hunter College of the City University of New York , 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 Fifth Ave, New York, New York 10016, United States
| | - Shashikanth Ponnala
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States.,Department of Chemistry, Hunter College of the City University of New York , 695 Park Avenue, New York, New York 10065, United States
| | - Paul Kozlowski
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States.,Department of Chemistry, Hunter College of the City University of New York , 695 Park Avenue, New York, New York 10065, United States
| | - Benjamin P Burton-Pye
- Department of Chemistry, Hunter College of the City University of New York , 695 Park Avenue, New York, New York 10065, United States
| | - Huseyin T Cicek
- Department of Chemistry, Hunter College of the City University of New York , 695 Park Avenue, New York, New York 10065, United States
| | - Chunhua Hu
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Jason S Lewis
- Department of Radiology and the Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College of the City University of New York , 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , 365 Fifth Ave, New York, New York 10016, United States
| |
Collapse
|
49
|
Li C, Wang J, Hu J, Feng Y, Hasegawa K, Peng X, Duan X, Zhao A, Mikitsh JL, Muzykantov VR, Chacko AM, Pryma DA, Dunn SM, Coukos G. Development, optimization, and validation of novel anti-TEM1/CD248 affinity agent for optical imaging in cancer. Oncotarget 2015; 5:6994-7012. [PMID: 25051365 PMCID: PMC4196179 DOI: 10.18632/oncotarget.2188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tumor Endothelial Marker-1 (TEM1/CD248) is a tumor vascular marker with high therapeutic and diagnostic potentials. Immuno-imaging with TEM1-specific antibodies can help to detect cancerous lesions, monitor tumor responses, and select patients that are most likely to benefit from TEM1-targeted therapies. In particular, near infrared(NIR) optical imaging with biomarker-specific antibodies can provide real-time, tomographic information without exposing the subjects to radioactivity. To maximize the theranostic potential of TEM1, we developed a panel of all human, multivalent Fc-fusion proteins based on a previously identified single chain antibody (scFv78) that recognizes both human and mouse TEM1. By characterizing avidity, stability, and pharmacokinectics, we identified one fusion protein, 78Fc, with desirable characteristics for immuno-imaging applications. The biodistribution of radiolabeled 78Fc showed that this antibody had minimal binding to normal organs, which have low expression of TEM1. Next, we developed a 78Fc-based tracer and tested its performance in different TEM1-expressing mouse models. The NIR imaging and tomography results suggest that the 78Fc-NIR tracer performs well in distinguishing mouse- or human-TEM1 expressing tumor grafts from normal organs and control grafts in vivo. From these results we conclude that further development and optimization of 78Fc as a TEM1-targeted imaging agent for use in clinical settings is warranted.
Collapse
Affiliation(s)
- Chunsheng Li
- Ovarian Cancer Research Center, University of Pennsylvania; These authors contributed equally to this work
| | - Junying Wang
- Ovarian Cancer Research Center, University of Pennsylvania; Department of Immunology, Norman Bethune College of Medicine Jilin University; These authors contributed equally to this work
| | - Jia Hu
- Ovarian Cancer Research Center, University of Pennsylvania
| | - Yi Feng
- Department of Cancer Biology, University of Pennsylvania
| | - Kosei Hasegawa
- Saitama International Medical Center Saitama Medical University
| | - Xiaohui Peng
- Ovarian Cancer Research Center, University of Pennsylvania
| | - Xingmei Duan
- Ovarian Cancer Research Center, University of Pennsylvania
| | - Aizhi Zhao
- Ovarian Cancer Research Center, University of Pennsylvania
| | - John L Mikitsh
- Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania
| | | | - Ann-Marie Chacko
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania; Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania
| | - Daniel A Pryma
- Nuclear Medicine & Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania
| | - Steven M Dunn
- Ludwig Cancer Research Center, University of Lausanne
| | - George Coukos
- Ovarian Cancer Research Center, University of Pennsylvania; Ludwig Cancer Research Center, University of Lausanne
| |
Collapse
|
50
|
Ma MT, Meszaros LK, Paterson BM, Berry DJ, Cooper MS, Ma Y, Hider RC, Blower PJ. Tripodal tris(hydroxypyridinone) ligands for immunoconjugate PET imaging with (89)Zr(4+): comparison with desferrioxamine-B. Dalton Trans 2015; 44:4884-900. [PMID: 25351250 PMCID: PMC4357251 DOI: 10.1039/c4dt02978j] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023]
Abstract
Due to its long half-life (78 h) and decay properties (77% electron capture, 23% β(+), Emax = 897 keV, Eav = 397 keV, Eγ = 909 keV, Iγ = 100%) (89)Zr is an appealing radionuclide for immunoPET imaging with whole IgG antibodies. Derivatives of the siderophore desferrioxamine-B (H3DFO) are the most widely used bifunctional chelators for coordination of (89)Zr(4+) because the radiolabeling of the resulting immunoconjugates is rapid under mild conditions. (89)Zr-DFO complexes are reportedly stable in vitro but there is evidence that (89)Zr(4+) is released in vivo, and subsequently taken up by the skeleton. We have evaluated a novel tripodal tris(hydroxypyridinone) chelator, H3CP256 and its bifunctional maleimide derivative, H3YM103, for coordination of Zr(4+) and compared the NMR spectra, and the (89)Zr(4+) radiolabeling, antibody conjugation, serum stability and in vivo distribution of radiolabelled immunoconjugates with those of H3DFO and its analogues. H3CP256 coordinates (89)Zr(4+) at carrier-free concentrations forming [(89)Zr(CP256)](+). Both H3DFO and H3CP256 were efficiently radiolabelled using [(89)Zr(C2O4)4](4-) at ambient temperature in quantitative yield at pH 6-7 at millimolar concentrations of chelator. Competition experiments demonstrate that (89)Zr(4+) dissociates from [(89)Zr(DFO)](+) in the presence of one equivalent of H3CP256 (relative to H3DFO) at pH 6-7, resulting largely in [(89)Zr(CP256)](+). To assess the stability of H3DFO and H3YM103 immunoconjugates radiolabelled with (89)Zr, maleimide derivatives of the chelators were conjugated to the monoclonal antibody trastuzumab via reduced cysteine side chains. Both immunoconjugates were labelled with (89)Zr(4+) in >98% yield at high specific activities and the labeled immunoconjugates were stable in serum with respect to dissociation of the radiometal. In vivo studies in mice indicate that (89)Zr(4+) dissociates from YM103-trastuzumab with significant amounts of activity becoming associated with bones and joints (25.88 ± 0.58% ID g(-1) 7 days post-injection). In contrast, <8% ID g(-1) of (89)Zr activity becomes associated with bone in animals administered (89)Zr-DFO-trastuzumab over the course of 7 days. The tris(hydroxypyridinone) chelator, H3CP256, coordinates (89)Zr(4+) rapidly under mild conditions, but the (89)Zr-labelled immunoconjugate, (89)Zr-YM103-trastuzumab was observed to release appreciable amounts of (89)Zr(4+)in vivo, demonstrating inferior stability when compared with (89)Zr-DFO-trastuzumab. The significantly lower in vivo stability is likely to be a result of lower kinetic stability of the Zr(4+) tris(hydroxypyridinone complex) relative to that of DFO and its derivatives.
Collapse
Affiliation(s)
- Michelle T. Ma
- King's College London , Division of Imaging Sciences and Biomedical Engineering , 4th Floor Lambeth Wing , St Thomas’ Hospital , London SE1 7EH , UK .
| | - Levente K. Meszaros
- King's College London , Division of Imaging Sciences and Biomedical Engineering , 4th Floor Lambeth Wing , St Thomas’ Hospital , London SE1 7EH , UK .
| | - Brett M. Paterson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia
| | - David J. Berry
- King's College London , Division of Imaging Sciences and Biomedical Engineering , 4th Floor Lambeth Wing , St Thomas’ Hospital , London SE1 7EH , UK .
| | - Maggie S. Cooper
- King's College London , Division of Imaging Sciences and Biomedical Engineering , 4th Floor Lambeth Wing , St Thomas’ Hospital , London SE1 7EH , UK .
| | - Yongmin Ma
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou , 310053 , People's Republic of China
| | - Robert C. Hider
- King's College London , Institute of Pharmaceutical Science , Franklin Wilkins Building , Stamford St , London SE1 9NH , UK
| | - Philip J. Blower
- King's College London , Division of Imaging Sciences and Biomedical Engineering , 4th Floor Lambeth Wing , St Thomas’ Hospital , London SE1 7EH , UK .
- King's College London , Division of Chemistry , Britannia House , 7 Trinity St , London SE1 1DB , UK
| |
Collapse
|