1
|
Xie C, Peng L, Nie H, Yang T, Wu R, Zhang D, Wen F, Chen J, Xue L, Zhang X, Zha Z, Wang J. A heterodimeric radioligand labeled with gallium-68 targeting fibroblast activation protein. EJNMMI Res 2025; 15:52. [PMID: 40307510 PMCID: PMC12044090 DOI: 10.1186/s13550-025-01230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP) targeting radiotracers have emerged as promising agents for cancer imaging and therapy. Recent advancements have focused on optimizing these agents for better tumor targeting and enhanced theranostic efficacy. In this study, we introduced a novel heterodimeric radioligand labeled with gallium-68, which targets FAP. We aimed to evaluate its in vitro and in vivo performance, comparing its efficacy with monomeric FAPI derivatives. RESULTS The heterodimeric ligand BiFAPI was synthesized by conjugating a cyclic peptide with a quinoline-based motif via a DOTA chelator. [68 Ga]Ga-BiFAPI demonstrated high radiochemical purity (> 95%) and exceptional stability in physiological conditions, as well as in both PBS and serum. In vitro studies revealed that the binding affinity of BiFAPI was comparable to that of FAP2286 and FAPI-04. Notably, [68 Ga]Ga-BiFAPI exhibited superior cellular uptake, with rapid internalization and slower efflux rates. Micro-PET/CT imaging in tumor-bearing mice demonstrated significantly higher tumor uptake than [68 Ga]Ga-FAP2286 and [68 Ga]Ga-FAPI-04. Co-injection with a FAP inhibitor reduced tumor uptake, confirming the tracer's FAP specificity. In vitro autoradiography, immunohistochemistry, and Western blotting confirmed the correlation between radioactive tracer accumulation and FAP-positive regions. Biodistribution studies revealed high tumor-to-blood ratios and rapid clearance from non-target tissues, further supporting the tracer's favorable pharmacokinetics. CONCLUSION [68 Ga]Ga-BiFAPI demonstrated superior tumor-targeting properties, higher tumor uptake, and favorable pharmacokinetics compared to [68 Ga]Ga-FAP2286 and [68 Ga]Ga-FAPI-04. Its promising performance in preclinical models positioned it as a potentially valuable agent for FAP-targeted PET imaging and cancer theranostics.
Collapse
Affiliation(s)
- Chengde Xie
- MOE Key Laboratory of Resources and EnvironmentalSystems Optimization, College of Environmental Scienceand Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Lei Peng
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Hui Nie
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Tianhong Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Renbo Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Dake Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Fuhua Wen
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Junyu Chen
- MOE Key Laboratory of Resources and EnvironmentalSystems Optimization, College of Environmental Scienceand Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Lingyu Xue
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Zhihao Zha
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Jianjun Wang
- MOE Key Laboratory of Resources and EnvironmentalSystems Optimization, College of Environmental Scienceand Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| |
Collapse
|
2
|
Martin S, Schreck MV, Stemler T, Maus S, Rosar F, Burgard C, Schaefer-Schuler A, Ezziddin S, Bartholomä MD. Development of a homotrimeric PSMA radioligand based on the NOTI chelating platform. EJNMMI Radiopharm Chem 2024; 9:84. [PMID: 39661209 PMCID: PMC11635053 DOI: 10.1186/s41181-024-00314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The NOTI chelating scaffold can readily be derivatized for bioconjugation without impacting its metal complexation/radiolabeling properties making it an attractive building block for the development of multimeric/-valent radiopharmaceuticals. The objective of the study was to further explore the potential of the NOTI chelating platform by preparing and characterizing homotrimeric PSMA radioconjugates in order to identify a suitable candidate for clinical translation. RESULTS Altogether, three PSMA conjugates based on the NOTI-TVA scaffold with different spacer entities between the chelating unit and the Glu-CO-Lys PSMA binding motif were readily prepared by solid phase-peptide chemistry. Cell experiments allowed the identification of the homotrimeric conjugate 9 comprising NaI-Amc spacer with high PSMA binding affinity (IC50 = 5.9 nM) and high PSMA-specific internalization (17.8 ± 2.5%) compared to the clinically used radiotracer [68Ga]Ga-PSMA-11 with a IC50 of 18.5 nM and 5.2 ± 0.2% cell internalization, respectively. All 68Ga-labeled trimeric conjugates showed high metabolic stability in vitro with [68Ga]Ga-9 exhibiting high binding to human serum proteins (> 95%). Small-animal PET imaging revealed a specific tumor uptake of 16.0 ± 1.3% IA g-1 and a kidney uptake of 67.8 ± 8.4% IA g-1 for [68Ga]Ga-9. Clinical PET imaging allowed identification of all lesions detected by [68Ga]Ga-PSMA-11 together with a prolonged blood circulation as well as a significantly lower kidney and higher liver uptake of [68Ga]Ga-9 compared to [68Ga]Ga-PSMA-11. CONCLUSIONS Trimerization of the Glu-CO-Lys binding motif for conjugate 9 resulted in a ~ threefold higher binding affinity and cellular uptake as well as in an altered biodistribution profile compared to the control [68Ga]Ga-PSMA-11 due to its intrinsic high binding to serum proteins. To fully elucidate its biodistribution, future studies in combination with long-lived radionuclides, such as 64Cu, are warranted. Its prolonged biological half-life and favorable tumor-to-kidney ratio make this homotrimeric conjugate also a potential candidate for future radiotherapeutic applications in combination with therapeutic radionuclides such as 67Cu.
Collapse
Affiliation(s)
- Sebastian Martin
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue de Bugnon 25A, 1011, Lausanne, Switzerland
| | - Moritz-Valentin Schreck
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Tobias Stemler
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Florian Rosar
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Caroline Burgard
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Andrea Schaefer-Schuler
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, 66421, Homburg, Germany.
- Department of Nuclear Medicine, Saarland University, Kirrbergerstrasse, 66421, Homburg, Germany.
| |
Collapse
|
3
|
Taledaohan A, Tuohan MM, Jia R, Wang K, Chan L, Jia Y, Wang F, Wang Y. An RGD-Conjugated Prodrug Nanoparticle with Blood-Brain-Barrier Penetrability for Neuroprotection Against Cerebral Ischemia-Reperfusion Injury. Antioxidants (Basel) 2024; 13:1339. [PMID: 39594481 PMCID: PMC11591307 DOI: 10.3390/antiox13111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Cerebral ischemia-reperfusion injury significantly contributes to global morbidity and mortality. Loganin is a natural product with various neuroprotective effects; however, it lacks targeted specificity for particular cells or receptors, which may result in reduced therapeutic efficacy and an increased risk of side effects. To address the limitations of loganin, we developed LA-1, a novel compound incorporating an Arg-Gly-Asp (RGD) peptide to target integrin receptor αvβ3, enhancing brain-targeting efficacy. LA-1 exhibited optimal nanoscale properties, significantly improved cell viability, reduced ROS production, and enhanced survival rates in vitro. In vivo, LA-1 decreased infarct sizes, improved neurological function, and reduced oxidative stress and neuroinflammation. Proteomic analysis showed LA-1 modulates PI3K/Akt and Nrf2/HO-1 pathways, providing targeted neuroprotection. These findings suggest LA-1's potential for clinical applications in treating cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Maer Maer Tuohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Renbo Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Kai Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Liujia Chan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Feng Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (A.T.); (M.M.T.); (R.J.); (K.W.); (L.C.); (Y.J.)
- Department of Medicinal Chemistry, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, 10 Xi Tou Tiao, You An Men, Beijing 100069, China
| |
Collapse
|
4
|
Matus MF, Häkkinen H. Rational Design of Targeted Gold Nanoclusters with High Affinity to Integrin αvβ3 for Combination Cancer Therapy. Bioconjug Chem 2024. [PMID: 39008847 DOI: 10.1021/acs.bioconjchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unique attributes of targeted nano-drug delivery systems (TNDDSs) over conventional cancer therapies in suppressing off-target effects make them one of the most promising options for cancer treatment. There is evidence that the density of surface-conjugated ligands is a crucial factor in achieving the desired therapeutic efficacy of TNDDSs, but this is hardly manageable in conventional nanomaterials. In this context, ligand-protected gold nanoclusters (AuNCs) are excellent candidates for developing new TNDDSs with a unique control on their surface functionalities, thus helping to achieve enhanced delivery performance. Here, we study the interactions and binding free energies between ten different functionalized Au144(SR)60 (SR = thiolate ligand) nanoclusters and integrin αvβ3 using molecular dynamics simulations and the umbrella sampling method to obtain the optimal formulations. The AuNCs were functionalized with anticancer drugs (5-fluorouracil or signaling pathways inhibitors, such as capivasertib, linifanib, tanespimycin, and taselisib) and integrin-targeting peptides (RGD4C or QS13), and we identified the optimal mixed ligand layer to enhance their binding affinity to the cancer cell receptor. The results showed that changing the proportions of the same type of ligands on the surface of AuNCs led to differences of up to 38 kcal/mol in computed binding free energies. RGD4C as the targeting peptide resulted in greater affinity for αvβ3, and in most formulations studied, a higher amount of drug than peptide was needed. Polar and charged residues, such as Ser123, Asp150, Tyr178, Arg214, and Asp251 were found to play a significant role in AuNC binding. Our simulations also revealed that Mn2+ cations are crucial for stabilizing the αvβ3-AuNC complex. These findings demonstrate the potential of carefully designing the surface composition of TNDDSs to optimize their target affinity and specificity.
Collapse
Affiliation(s)
| | - Hannu Häkkinen
- Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
5
|
Quigley NG, Zierke MA, Ludwig BS, Richter F, Nguyen NT, Reissig F, Šimeček J, Kossatz S, Notni J. The importance of tyrosines in multimers of cyclic RGD nonapeptides: towards αvβ6-integrin targeted radiotherapeutics. RSC Med Chem 2024; 15:2018-2029. [PMID: 38911160 PMCID: PMC11187563 DOI: 10.1039/d4md00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
In a recent paper in this journal (RSC Med. Chem., 2023, 14, 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(NMe)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log D). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules. In the present work, we investigated whether a comparable effect also occurred for a series of 5 tetramers labeled with lutetium-177. We found that in contrast to the trimers, liver uptake of the tetramers was well correlated to their polarity, indicating that the unusual observations along the trimer series indeed was a unique feature, probably related to their particular symmetry. Since the Lu-177 labeled tetramers are also potential agents for treatment of a variety of αvβ6-integrin expressing cancers, these were evaluated in mice bearing human lung adenocarcinoma xenografts. Due to their tumor-specific uptake and retention in biodistribution and SPECT imaging experiments, these compounds are considered a step forward on the way to αvβ6-integrin-targeted anticancer agents. Furthermore, we noticed that the presence of tyrosines in general had a positive impact on the in vivo performance of our peptide multimers. In view of the fact that a corresponding rule was already proposed in the context of protein engineering, we argue in favor of considering peptide multimers as a special class of small or medium-sized proteins. In summary, we contend that the performance of peptide multimers is less determined by the in vitro characteristics (particularly, affinity and selectivity) of monomers, but rather by the peptides' suitability for the overall macromolecular design concept, and peptides containing tyrosines are preferred.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | | | - Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Frauke Richter
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Falco Reissig
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Jakub Šimeček
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research, (TranslaTUM), School of Medicine and Health, Technische Universität München Munich Germany
| | - Johannes Notni
- Institute of Pathology, School of Medicine and Health, Technische Universität München Munich Germany
- TRIMT GmbH Carl-Eschebach-Str. 7 D-01454 Radeberg Germany
| |
Collapse
|
6
|
Chakravarty R, Song W, Chakraborty S, Cai W. Fibroblast activation protein (FAP)-targeted radionuclide therapy: which ligand is the best? Eur J Nucl Med Mol Imaging 2023; 50:2935-2939. [PMID: 37452872 PMCID: PMC10428190 DOI: 10.1007/s00259-023-06338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| |
Collapse
|
7
|
Das S, Sahu S, Chakraborty A, Kamaleshwaran KK, Bannore TU, Damle A, Chakravarty R, Chakraborty S. A robust lyophilized kit for convenient one-step formulation of [ 68Ga]Ga-DOTA-E-[c(RGDfK)] 2 in hospital radiopharmacy for clinical PET imaging. Appl Radiat Isot 2023; 196:110725. [PMID: 36878089 DOI: 10.1016/j.apradiso.2023.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The present article describes the development of robust lyophilized kit for convenient formulation of [68Ga]Ga-DOTA-E-[c(RGDfK)]2 (E = glutamic acid, R = arginine, G = glycine, D = aspartic acid, f = phenylalanine, K = lysine) radiopharmaceutical for clinical use in non-invasive monitoring of malignancies overexpressing integrin αvβ3 receptors. Five batches of the kit were prepared with optimized kit contents, all of which showed high 68Ga-radiolabeling yield (>98%). Pre-clinical evaluation of the [68Ga]Ga-radiotracer in SCID mice bearing FTC133 tumour exhibited significant accumulation in the tumor xenograft. Preliminary human clinical investigation carried out in a 60 year old male patient with metastatic lung cancer revealed high radiotracer uptake in the tumor along with satisfactory target to non-target contrast. The developed kit formulation also showed a long shelf-life of at least 12 months on storage at 0 °C. All these results point towards the promising attributes of the developed kit formulation for convenient preparation of [68Ga]Ga-DOTA-E-[c(RGDfK)]2 for routine clinical use.
Collapse
Affiliation(s)
- Soumen Das
- Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Mumbai, India; Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - K K Kamaleshwaran
- Department of Nuclear Medicine and PET, Kovai Medical Centre and Hospital, Coimbatore, India
| | | | - Archana Damle
- Homi Bhabha National Institute, Mumbai, India; Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Rubel Chakravarty
- Homi Bhabha National Institute, Mumbai, India; Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Mumbai, India; Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
8
|
Shi J, Du S, Wang R, Gao H, Luo Q, Hou G, Zhou Y, Zhu Z, Wang F. Molecular imaging of HER2 expression in breast cancer patients using a novel peptide-based tracer 99mTc-HP-Ark2: a pilot study. J Transl Med 2023; 21:19. [PMID: 36631812 PMCID: PMC9835228 DOI: 10.1186/s12967-022-03865-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the temporal and spatial heterogeneity of human epidermal growth factor receptor 2 (HER2) expression in breast tumors, immunohistochemistry (IHC) cannot accurately reflect the HER2 status in real time, which may cause misguided treatment decisions. HER2-specific imaging can noninvasively determine HER2 status in primary and metastatic tumors. In this study, HER2 expression in breast cancer patients was determined in vivo by SPECT/CT of 99mTc-HP-Ark2, comparing with PET/CT of 18F-FDG lesion by lesion. METHODS A novel HER2-targeted peptide probe 99mTc-HP-Ark2 was constructed. Biodistribution and nanoScan SPECT/CT imaging were performed in mice models. The correlation between the quantified tumor uptake and HER2 expression in tumor cells was analyzed. In the pilot clinical study, a total of 34 breast cancer patients (mean age ± SD: 49 ± 10 y) suspected of having breast cancer according to mammography or ultrasonography were recruited at Peking Union Medical College Hospital, and 99mTc-HP-Ark2 SPECT/CT and 18F-FDG PET/CT were carried out with IHC and fluorescence in situ hybridization as validation. RESULTS Small animal SPECT/CT of 99mTc-HP-Ark2 clearly identified tumors with different HER2 expression. The quantified tumor uptake and tumor HER2 expression showed a significant linear correlation (r = 0.932, P < 0.01). Among the 36 primary lesions in the 34 patients, when IHC (2 +) or IHC (3 +) was used as the positive evaluation criterion, 99mTc-HP-Ark2 SPECT/CT imaging with a tumor-to-background ratio of 1.44 as the cutoff value reflected the HER2 status with sensitivity of 89.5% (17/19), specificity of 88.2% (15/17) and accuracy of 88.9% (32/36), while the 18F-FDG PET/CT showed sensitivity of 78.9% (15/19), specificity of 70.6% (12/17) and accuracy of 75.0% (27/36). In particular, 100% of IHC (3 +) tumors were all identified by 99mTc-HP-Ark2 SPECT/CT imaging. CONCLUSION 99mTc-HP-Ark2 SPECT/CT can provide a specific, noninvasive evaluation of HER2 expression in breast cancer, showing great potential to guide HER2-targeted therapies in clinical practice. CLINICALTRIALS gov Trial registration: NCT04267900. Registered 11th February 2020. Retrospectively registered, https://www. CLINICALTRIALS gov/ct2/results?pg=1&load=cart&id=NCT04267900 .
Collapse
Affiliation(s)
- Jiyun Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Luo
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Guozhu Hou
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China.
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
9
|
Zhang B, Zhang Y, Dang W, Xing B, Yu C, Guo P, Pi J, Deng X, Qi D, Liu Z. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A. J Nanobiotechnology 2022; 20:425. [PMID: 36153589 PMCID: PMC9509648 DOI: 10.1186/s12951-022-01628-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Poor in vivo targeting of tumors by chemotherapeutic drugs reduces their anti-cancer efficacy in the clinic. The discovery of over-expressed components on the tumor cell surface and their specific ligands provide a basis for targeting tumor cells. However, the differences in the expression levels of these receptors on the tumor cell surface limit the clinical application of anti-tumor preparations modified by a single ligand. Meanwhile, toxicity of chemotherapeutic drugs leads to poor tolerance to anti-tumor therapy. The discovery of natural active products antagonizing these toxic side effects offers an avenue for relieving cancer patients’ pain during the treatment process. Since the advent of nanotechnology, interventions, such as loading appropriate drug combinations into nano-sized carriers and multiple tumor-targeting functional modifications on the carrier surface to enhance the anti-tumor effect and reduce toxic and side effects, have been widely used for treating tumors.
Results
Nanocarriers containing doxorubicin hydrochloride (DOX) and salvianolic acid A (Sal A) are spherical with a diameter of about 18 nm; the encapsulation efficiency of both DOX and salvianolic acid A is greater than 80%. E-[c(RGDfK)2]/folic acid (FA) co-modification enabled nanostructured lipid carriers (NLC) to efficiently target a variety of tumor cells, including 4T1, MDA-MB-231, MCF-7, and A549 cells in vitro. Compared with other preparations (Sal A solution, NLC-Sal A, DOX solution, DOX injection, Sal A/DOX solution, NLC-DOX, NLC-Sal A/DOX, and E-[c(RGDfK)2]/FA-NLC-Sal A/DOX) in this experiment, the prepared E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had the best anti-tumor effect. Compared with the normal saline group, it had the highest tumor volume inhibition rate (90.72%), the highest tumor weight inhibition rate (83.94%), led to the highest proportion of apoptosis among the tumor cells (61.30%) and the lowest fluorescence intensity of proliferation among the tumor cells (0.0083 ± 0.0011). Moreover, E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had a low level of nephrotoxicity, with a low creatinine (Cre) concentration of 52.58 μmoL/L in the blood of mice, and no abnormalities were seen on pathological examination of the isolated kidneys at the end of the study. Sal A can antagonize the nephrotoxic effect of DOX. Free Sal A reduced the Cre concentration of the free DOX group by 61.64%. In NLC groups, Sal A reduced the Cre concentration of the DOX group by 42.47%. The E-[c(RGDfK)2]/FA modification reduced the side effects of the drug on the kidney, and the Cre concentration was reduced by 46.35% compared with the NLC-Sal A/DOX group. These interventions can potentially improve the tolerance of cancer patients to chemotherapy.
Conclusion
The E-[c(RGDfK)2]/FA co-modified DOX/Sal A multifunctional nano-drug delivery system has a good therapeutic effect on tumors and low nephrotoxicity and is a promising anti-cancer strategy.
Graphical Abstract
Collapse
|
10
|
Ebrahimi F, Hosseinimehr SJ. Homomultimer strategy for improvement of radiolabeled peptides and antibody fragments in tumor targeting. Curr Med Chem 2022; 29:4923-4957. [PMID: 35450521 DOI: 10.2174/0929867329666220420131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
A homomultimeric radioligand is composed of multiple identical ligands connected to the linker and radionuclide to detect a variety of overexpressed receptors on cancer cells. Multimer strategy holds great potential for introducing new radiotracers based on peptide and monoclonal antibody (mAb) derivatives in molecular imaging and therapy. It offers a reliable procedure for the preparation of biological-based targeting with diverse affinities and pharmacokinetics. In this context, we provide a useful summary and interpretation of the main results by a comprehensive look at multimeric radiopharmaceuticals in nuclear oncology. Therefore, there will be explanations for the strategy mechanisms and the main variables affecting the biodistribution results. The discussion is followed by highlights of recent work in the targeting of various types of receptors. The consequences are expressed based on comparing some parameters between monomer and multimer counterparts in each relevant section.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Li L, Chen X, Yu J, Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol 2022; 12:837952. [PMID: 35311120 PMCID: PMC8924613 DOI: 10.3389/fonc.2022.837952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a common feature of many physiological processes and pathological conditions. RGD-containing peptides can strongly bind to integrin αvβ3 expressed on endothelial cells in neovessels and several tumor cells with high specificity, making them promising molecular agents for imaging angiogenesis. Although studies of RGD-containing peptides combined with radionuclides, namely, 18F, 64Cu, and 68Ga for positron emission tomography (PET) imaging have shown high spatial resolution and accurate quantification of tracer uptake, only a few of these radiotracers have been successfully translated into clinical use. This review summarizes the RGD-based tracers in terms of accumulation in tumors and adjacent tissues, and comparison with traditional 18F-fluorodeoxyglucose (FDG) imaging. The value of RGD-based tracers for diagnosis, differential diagnosis, tumor subvolume delineation, and therapeutic response prediction is mainly discussed. Very low RGD accumulation, in contrast to high FDG metabolism, was found in normal brain tissue, indicating that RGD-based imaging provides an excellent tumor-to-background ratio for improved brain tumor imaging. However, the intensity of the RGD-based tracers is much higher than FDG in normal liver tissue, which could lead to underestimation of primary or metastatic lesions in liver. In multiple studies, RGD-based imaging successfully realized the diagnosis and differential diagnosis of solid tumors and also the prediction of chemoradiotherapy response, providing complementary rather than similar information relative to FDG imaging. Of most interest, baseline RGD uptake values can not only be used to predict the tumor efficacy of antiangiogenic therapy, but also to monitor the occurrence of adverse events in normal organs. This unique dual predictive value in antiangiogenic therapy may be better than that of FDG-based imaging.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Steiger K, Quigley NG, Groll T, Richter F, Zierke MA, Beer AJ, Weichert W, Schwaiger M, Kossatz S, Notni J. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Res 2021; 11:106. [PMID: 34636990 PMCID: PMC8506476 DOI: 10.1186/s13550-021-00842-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.
Collapse
Affiliation(s)
- Katja Steiger
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Neil Gerard Quigley
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Tanja Groll
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Frauke Richter
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | | | | | - Wilko Weichert
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Susanne Kossatz
- Klinik Für Nuklearmedizin Und Zentralinstitut Für Translationale Krebsforschung (TranslaTUM), Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Johannes Notni
- Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany. .,Experimental Radiopharmacy, Clinic for Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
13
|
Florea A, Mottaghy FM, Bauwens M. Molecular Imaging of Angiogenesis in Oncology: Current Preclinical and Clinical Status. Int J Mol Sci 2021; 22:5544. [PMID: 34073992 PMCID: PMC8197399 DOI: 10.3390/ijms22115544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
14
|
Battistini L, Bugatti K, Sartori A, Curti C, Zanardi F. RGD Peptide‐Drug Conjugates as Effective Dual Targeting Platforms: Recent Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Kelly Bugatti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| |
Collapse
|
15
|
Enhancing osteogenesis of adipose-derived mesenchymal stem cells using gold nanostructure/peptide-nanopatterned graphene oxide. Colloids Surf B Biointerfaces 2021; 204:111807. [PMID: 33964530 DOI: 10.1016/j.colsurfb.2021.111807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023]
Abstract
Graphene derivatives are highly promising materials for use in stem-cell-based regenerative therapies, particularly for bone regeneration. Herein, we report a graphene oxide (GO)-based hybrid platform (GOHP) that is highly effective for guiding the osteogenesis of human adipose-derived mesenchymal stem cells (hAMSCs). A GO-coated indium tin oxide (ITO) substrate was electrochemically modified with Au nanostructures (GNSs), following which a cysteine-modified quadruple-branched arginine-glycine-aspartic acid was self-assembled on the ITO-GO-GNS hybrid via Au-S bonds. The synthesized GOHP, with the highest density of GNSs (deposition time of 120 s), exhibited the highest osteogenic differentiation efficiency based on the osteogenic marker expression level, osteocalcin expression, and osteoblastic mineralisation. Remarkably, although GO is known to be less efficient than the high-quality pure graphene synthesised via chemical vapour deposition (CVD), the fabricated GOHP exhibited an efficiency similar to that of CVD-grown graphene in guiding the osteogenesis of hAMSCs. The total RNA sequencing results revealed that CVD graphene and GOHP induced the osteogenesis of hAMSCs by upregulating the transcription factors related to direct osteogenesis, Wnt activation, and extracellular matrix deposition. Considering that GO is easy to produce, cost-effective, and biocompatible, the developed GOHP is highly promising for treating various diseases/disorders, including osteoporosis, rickets, and osteogenesis imperfecta.
Collapse
|
16
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
17
|
Liolios C, Sachpekidis C, Kolocouris A, Dimitrakopoulou-Strauss A, Bouziotis P. PET Diagnostic Molecules Utilizing Multimeric Cyclic RGD Peptide Analogs for Imaging Integrin α vβ 3 Receptors. Molecules 2021; 26:molecules26061792. [PMID: 33810198 PMCID: PMC8005094 DOI: 10.3390/molecules26061792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Multimeric ligands consisting of multiple pharmacophores connected to a single backbone have been widely investigated for diagnostic and therapeutic applications. In this review, we summarize recent developments regarding multimeric radioligands targeting integrin αvβ3 receptors on cancer cells for molecular imaging and diagnostic applications using positron emission tomography (PET). Integrin αvβ3 receptors are glycoproteins expressed on the cell surface, which have a significant role in tumor angiogenesis. They act as receptors for several extracellular matrix proteins exposing the tripeptide sequence arginine-glycine-aspartic (RGD). Cyclic RDG peptidic ligands c(RGD) have been developed for integrin αvβ3 tumor-targeting positron emission tomography (PET) diagnosis. Several c(RGD) pharmacophores, connected with the linker and conjugated to a chelator or precursor for radiolabeling with different PET radionuclides (18F, 64Cu, and 68Ga), have resulted in multimeric ligands superior to c(RGD) monomers. The binding avidity, pharmacodynamic, and PET imaging properties of these multimeric c(RGD) radioligands, in relation to their structural characteristics are analyzed and discussed. Furthermore, specific examples from preclinical studies and clinical investigations are included.
Collapse
Affiliation(s)
- Christos Liolios
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Section of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis–Zografou, 15771 Athens, Greece;
- Correspondence: (C.L.); (P.B.)
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.S.); (A.D.-S.)
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Section of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis–Zografou, 15771 Athens, Greece;
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.S.); (A.D.-S.)
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
- Correspondence: (C.L.); (P.B.)
| |
Collapse
|
18
|
Martin S, Maus S, Stemler T, Rosar F, Khreish F, Holland JP, Ezziddin S, Bartholomä MD. Proof-of-Concept Study of the NOTI Chelating Platform: Preclinical Evaluation of 64Cu-Labeled Mono- and Trimeric c(RGDfK) Conjugates. Mol Imaging Biol 2021; 23:95-108. [PMID: 32856224 PMCID: PMC7782405 DOI: 10.1007/s11307-020-01530-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for the preparation of 68Ga- and 64Cu-based radiopharmaceuticals. Based on this platform, the chelator scaffold NOTI-TVA with three additional carboxylic acid groups for bioconjugation was synthesized and characterized. The primary aims of this proof-of-concept study were (1) to evaluate if trimeric radiotracers on the basis of the NOTI-TVA 6 scaffold can be developed, (2) to determine if the additional substituents for bioconjugation at the non-coordinating NH atoms of the imidazole residues of the building block NOTI influence the metal binding properties, and (3) what influence multiple targeting vectors have on the biological performance of the radiotracer. The cyclic RGDfK peptide that specifically binds to the αvß3 integrin receptor was selected as the biological model system. PROCEDURES Two different synthetic routes for the preparation of NOTI-TVA 6 were explored. Three c(RGDfK) peptide residues were conjugated to the NOTI-TVA 6 building block by standard peptide chemistry providing the trimeric bioconjugate NOTI-TVA-c(RGDfK)3 9. Labeling of 9 with [64Cu]CuCl2 was performed manually at pH 8.2 at ambient temperature. Binding affinities of Cu-8, the Cu2+ complex of the previously described monomer NODIA-Me-c(RGDfK) 8, and the trimer Cu-9 to integrin αvß3 were determined in competitive cell binding experiments in the U-87MG cell line. The pharmacokinetics of both 64Cu-labeled conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were determined by small-animal PET imaging and ex vivo biodistribution studies in mice bearing U-87MG xenografts. RESULTS Depending on the synthetic route, NOTI-TVA 6 was obtained with an overall yield up to 58 %. The bioconjugate 9 was prepared in 41 % yield. Both conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were radiolabeled quantitatively at ambient temperature in high molar activities of Am ~ 20 MBq nmol-1 in less than 5 min. Competitive inhibitory constants IC50 of c(RDGfK) 7, Cu-8, and Cu-9 were determined to be 159.5 ± 1.3 nM, 256.1 ± 2.1 nM, and 99.5 ± 1.1 nM, respectively. In small-animal experiments, both radiotracers specifically delineated αvß3 integrin-positive U-87MG tumors with low uptake in non-target organs and rapid blood clearance. The trimer [64Cu]Cu-9 showed a ~ 2.5-fold higher tumor uptake compared with the monomer [64Cu]Cu-8. CONCLUSIONS Functionalization of NOTI at the non-coordinating NH atoms of the imidazole residues for bioconjugation was straightforward and allowed the preparation of a homotrimeric RGD conjugate. After optimization of the synthesis, required building blocks to make NOTI-TVA 6 are now available on multi-gram scale. Modifications at the imidazole groups had no measurable impact on metal binding properties in vitro and in vivo suggesting that the NOTI scaffold is a promising candidate for the development of 64Cu-labeled multimeric/multifunctional radiotracers.
Collapse
Affiliation(s)
- Sebastian Martin
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue de Bugnon 25A, CH-1011, Lausanne, Switzerland
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Tobias Stemler
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Florian Rosar
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany
| | - Mark D Bartholomä
- Department of Nuclear Medicine, Saarland University - Medical Center, Kirrbergerstrasse, D-66421, Homburg, Germany.
- Department of Nuclear Medicine, University of Freiburg - Medical Center, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
19
|
Kaihani S, Sadeghzadeh N. Study of the 99m Tc-labeling conditions of 6-hydrazinonicotinamide-conjugated peptides from a new perspective: Introduction to the term radio-stoichiometry. J Labelled Comp Radiopharm 2020; 63:582-596. [PMID: 32997359 DOI: 10.1002/jlcr.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/20/2020] [Indexed: 11/07/2022]
Abstract
Specific tumor uptake of peptide radiopharmaceuticals depends on tumor binding affinity and their radiochemical purity. Several important parameters that influence the 99m Tc-labeling and consequently the radiochemical purity of 6-hydrazinonicotinamide (HYNIC)-conjugated peptide are radionuclide activity, the amount of peptide, the amount of coligands, and the amount of reducing agents (stannous ion). In this review article, we have attempted studying these parameters in the HYNIC-conjugated peptides (somatostatin, cholecystokinin/gastrin, bombesin, and RGD analogs) from a new perspective to obtain most used and optimized radio-stoichiometric relationships. One of the most important results in this review is that for 99m Tc-labeling of HYNIC-conjugated peptides, it is better to consider the most calculated mole ratio between technetium-99m and the peptide (mole ratio of technetium-99m to the peptide 1:200-400). The statistical results also show that among these 99m Tc-labeled peptides, the most used and favorable coligand is tricine/EDDA with two to one (2:1) mole ratio. These optimized radio-stoichiometric relationships, favorable coligand mole ratio, and applicable radiolabeling points can greatly improve the labeling process of the HYNIC-conjugated peptides, by reducing trial and error, increasing specific activity, and saving materials.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Quigley NG, Steiger K, Richter F, Weichert W, Hoberück S, Kotzerke J, Notni J. Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-Triveoctin. EJNMMI Res 2020; 10:133. [PMID: 33128636 PMCID: PMC7603442 DOI: 10.1186/s13550-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose As a major activator of transforming growth factor β (TGF-β), the RGD receptor αvβ8-integrin is involved in pathogenic processes related to TGF-β dysregulation, such as tumor growth, invasion, and radiochemoresistance, metastasis and tumor cell stemness, as well as epithelial-mesenchymal transition. The novel positron emission tomography (PET) radiopharmaceutical Ga-68-Triveoctin for in vivo mapping of αvβ8-integrin expression might enhance the prognosis of certain tumor entities, as well as support and augment TGF-β-targeted therapeutic approaches. Methods Monomeric and trimeric conjugates of cyclo(GLRGDLp(NMe)K(pent-4-ynoic amide)) were synthesized by click chemistry (CuAAC), labeled with Ga-68, and evaluated in MeWo (human melanoma) xenografted SCID mice by means of PET and ex-vivo biodistribution. αvβ8-integrin expression in murine tissues was determined by β8-IHC. A human subject received a single injection of 173 MBq of Ga-68-Triveoctin and underwent 3 subsequent PET/CT scans at 25, 45, and 90 min p.i.. Results The trimer Ga-68-Triveoctin exhibits a 6.7-fold higher αvβ8-integrin affinity than the monomer (IC50 of 5.7 vs. 38 nM, respectively). Accordingly, biodistribution showed a higher tumor uptake (1.9 vs. 1.0%IA/g, respectively) but a similar baseline upon blockade (0.25%IA/g for both). IHC showed an intermediate β8-expression in the tumor while most organs and tissues were found β8-negative. Low non-target tissue uptakes (< 0.4%IA/g) confirmed a low degree of unspecific binding. Due to its hydrophilicity (log D = − 3.1), Ga-68-Triveoctin is excreted renally and shows favorable tumor/tissue ratios in mice (t/blood: 6.7; t/liver: 6.8; t/muscle: 29). A high kidney uptake in mice (kidney-to-blood and -to-muscle ratios of 126 and 505, respectively) is not reflected by human PET (corresponding values are 15 and 30, respectively), which furthermore showed notable uptakes in coeliac and choroid plexus (SUVmean 6.1 and 9.7, respectively, 90 min p.i.). Conclusion Ga-68-Triveoctin enables sensitive in-vivo imaging αvβ8-integrin expression in murine tumor xenografts. PET in a human subject confirmed a favorable biodistribution, underscoring the potential of Ga-68-Triveoctin for mapping of αvβ8-integrin expression in a clinical setting.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Katja Steiger
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Frauke Richter
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Wilko Weichert
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Sebastian Hoberück
- Klinik Und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Klinik Und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Johannes Notni
- Institut für Pathologie Und Pathologische Anatomie, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany.
| |
Collapse
|
21
|
Quigley NG, Tomassi S, di Leva FS, Di Maro S, Richter F, Steiger K, Kossatz S, Marinelli L, Notni J. Click-Chemistry (CuAAC) Trimerization of an α v β 6 Integrin Targeting Ga-68-Peptide: Enhanced Contrast for in-Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. Chembiochem 2020; 21:2836-2843. [PMID: 32359011 PMCID: PMC7586803 DOI: 10.1002/cbic.202000200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Indexed: 12/21/2022]
Abstract
αv β6 Integrin is an epithelial transmembrane protein that recognizes latency-associated peptide (LAP) and primarily activates transforming growth factor beta (TGF-β). It is overexpressed in carcinomas (most notably, pancreatic) and other conditions associated with αv β6 integrin-dependent TGF-β dysregulation, such as fibrosis. We have designed a trimeric Ga-68-labeled TRAP conjugate of the αv β6 -specific cyclic pentapeptide SDM17 (cyclo[RGD-Chg-E]-CONH2 ) to enhance αv β6 integrin affinity as well as target-specific in-vivo uptake. Ga-68-TRAP(SDM17)3 showed a 28-fold higher αv β6 affinity than the corresponding monomer Ga-68-NOTA-SDM17 (IC50 of 0.26 vs. 7.4 nM, respectively), a 13-fold higher IC50 -based selectivity over the related integrin αv β8 (factors of 662 vs. 49), and a threefold higher tumor uptake (2.1 vs. 0.66 %ID/g) in biodistribution experiments with H2009 tumor-bearing SCID mice. The remarkably high tumor/organ ratios (tumor-to-blood 11.2; -to-liver 8.7; -to-pancreas 29.7) enabled high-contrast tumor delineation in PET images. We conclude that Ga-68-TRAP(SDM17)3 holds promise for improved clinical PET diagnostics of carcinomas and fibrosis.
Collapse
Affiliation(s)
- Neil Gerard Quigley
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Stefano Tomassi
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Francesco Saverio di Leva
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e FarmaceuticheUniversità degli Studi della Campania “Luigi Vanvitelli”Via A. Vivaldi 4381100CasertaItaly
| | - Frauke Richter
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Katja Steiger
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| | - Susanne Kossatz
- Klinik für Nuklearmedizin and TranslaTUMCentral Institute for Translational Cancer ResearchTechnische Universität MünchenIsmaninger Str. 2281675MünchenGermany
| | - Luciana Marinelli
- Dipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Johannes Notni
- Institute of PathologyTechnische Universität MünchenTrogerstrasse 1881675MünchenGermany
| |
Collapse
|
22
|
Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals (Basel) 2020; 13:ph13080173. [PMID: 32751666 PMCID: PMC7465997 DOI: 10.3390/ph13080173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past few years, an approach emerged that combines different receptor-specific peptide radioligands able to bind different target structures on tumor cells concomitantly or separately. The reason for the growing interest in this special field of radiopharmaceutical development is rooted in the fact that bispecific peptide heterodimers can exhibit a strongly increased target cell avidity and specificity compared to their corresponding monospecific counterparts by being able to bind to two different target structures that are overexpressed on the cell surface of several malignancies. This increase of avidity is most pronounced in the case of concomitant binding of both peptides to their respective targets but is also observed in cases of heterogeneously expressed receptors within a tumor entity. Furthermore, the application of a radiolabeled heterobivalent agent can solve the ubiquitous problem of limited tumor visualization sensitivity caused by differential receptor expression on different tumor lesions. In this article, the concept of heterobivalent targeting and the general advantages of using radiolabeled bispecific peptidic ligands for tumor imaging or therapy as well as the influence of molecular design and the receptors on the tumor cell surface are explained, and an overview is given of the radiolabeled heterobivalent peptides described thus far.
Collapse
|
23
|
Liu D, Liu J, Li C, Li W, Wang W, Liu J. Ultrasound-Aided Targeting Nanoparticles Loaded with miR-181b for Anti-Inflammatory Treatment of TNF-α-Stimulated Endothelial Cells. ACS OMEGA 2020; 5:17102-17110. [PMID: 32715195 PMCID: PMC7376683 DOI: 10.1021/acsomega.0c00823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Gene therapy is an emerging therapeutic strategy used in clinics. Ultrasound-mediated gene transfection possesses great potential as a secure and available approach for gene delivery. However, transfection efficiency and targeting ability remain challenging. In this study, we developed a kind of ultrasound-aided and targeting nanoparticles for microRNA delivery. These nanoparticles carrying nucleic acids were prepared with cationic poly-(amino acid) encapsulated with perfluoropentane. The formulated nanoparticles were stabilized with negatively charged PGA-PEG-RGD peptide coating. Ultrasound imaging and specific gene transfection using this nanocarrier could be implemented simultaneously. Upon treatment with ultrasound irradiation, phase transition was induced in the nanoparticles and they generated acoustic cavitation, resulting in enhanced gene transfection against the endothelial cells. With the overexpression of miR-181b loaded by the nanoparticles, the TNF-α-stimulated endothelial cells were effectively rescued from the inflammatory state through the protection of cell viability and suppression of cell adhesion.
Collapse
Affiliation(s)
- Donghong Liu
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Liu
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Li
- School
of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Li
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Wang
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- School
of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
24
|
Luo Q, Yang G, Gao H, Wang Y, Luo C, Ma X, Gao Y, Li X, Zhao H, Jia B, Shi J, Wang F. An Integrin Alpha 6-Targeted Radiotracer with Improved Receptor Binding Affinity and Tumor Uptake. Bioconjug Chem 2020; 31:1510-1521. [PMID: 32347718 DOI: 10.1021/acs.bioconjchem.0c00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we reported a 99mTc-labeled integrin α6-targeted peptide as the molecular imaging probe for tumor imaging by single-photon emission computed tomography (SPECT). We found that replacing Cys-Cys cyclized RWY peptide (sequence: cCRWYDENAC) with lactam-bridged cyclic cKiE peptide (sequence: cKRWYDENAisoE) did not sacrifice the integrin α6-binding affinity and specificity of cKiE radiotracer. To further improve the radiotracer's tumor targeting capability, the dimerized cKiE peptide (termed cKiE2) was designed, and the corresponding radiotracer 99mTc-cKiE2 was evaluated for tumor uptake and in vivo pharmacokinetics properties in tumor models. We found that cKiE2 showed higher binding affinity to integrin α6 than did monomeric RWY or cKiE peptide. The biodistribution results showed that the tumor uptake of 99mTc-cKiE2 was twice higher than that of 99mTc-RWY (3.20 ± 0.12 vs 1.26 ± 0.06 %ID/g, P < 0.001) at 0.5 h postinjection. The tumor to nontargeting tissue ratios were also enhanced in most normal organs. Specificity of 99mTc-cKiE2 for integrin α6 was demonstrated by competitive blocking of tumor uptake with excess cold peptide (3.20 ± 0.24 to 1.38 ± 0.23 %ID/g, P < 0.001). The integrin α6-positive tumors were clearly visualized by 99mTc-cKiE2/SPECT with low background except with a relatively high kidney uptake. The tumor uptake of 99mTc-cKiE2 correlates well with the tumor integrin α6 expression levels in a linear fashion (R2 = 0.9623). We also compared 99mTc-cKiE2 with an integrin αvβ3-targeted radiotracer 99mTc-3PRGD2 in the orthotopic hepatocellular carcinoma tumor models. We found that the orthotopic tumor was clearly visualized with 99mTc-cKiE2. 99mTc-3PRGD2 imaging did not show tumor contours in situ as clearly as 99mTc-cKiE2. The tumor-to-liver ratios of 99mTc-cKiE2 and 99mTc-3PRGD2 were 2.20 ± 0.17 and 0.85 ± 0.20. In conclusion, 99mTc-cKiE2 is an improved SPECT radiotracer for imaging integrin α6-positive tumors and has great potential for further clinical application.
Collapse
Affiliation(s)
- Qi Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangjie Yang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoda Li
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, People's Republic of China
| | - Huiyun Zhao
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, People's Republic of China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Fan Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
25
|
de Las Heras E, Boix-Garriga E, Bryden F, Agut M, Mora M, Sagristá ML, Boyle RW, Lange N, Nonell S. c(RGDfK)- and ZnTriMPyP-Bound Polymeric Nanocarriers for Tumor-Targeted Photodynamic Therapy. Photochem Photobiol 2020; 96:570-580. [PMID: 32104926 DOI: 10.1111/php.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022]
Abstract
Active targeting strategies are currently being extensively investigated in order to enhance the selectivity of photodynamic therapy. The aim of the present research was to evaluate whether the external decoration of nanopolymeric carriers with targeting peptides could add more value to a photosensitizer formulation and increase antitumor therapeutic efficacy and selectivity. To this end, we assessed PLGA-PLA-PEG nanoparticles (NPs) covalently attached to a hydrophilic photosensitizer 5-[4-azidophenyl]-10,15,20-tri-(N-methyl-4-pyridinium)porphyrinato zinc (II) trichloride (ZnTriMPyP) and also to c(RGDfK) peptides, in order to target αv β3 integrin-expressing cells. In vitro phototoxicity investigations showed that the ZnTriMPyP-PLGA-PLA-PEG-c(RGDfK) nanosystem is effective at submicromolar concentrations, is devoid of dark toxicity, successfully targets αv β3 integrin-expressing cells and is 10-fold more potent than related nanosystems where the PS is occluded instead of covalently bound.
Collapse
Affiliation(s)
| | | | - Francesca Bryden
- Department of Chemistry, University of Hull, Kingston upon Hull, UK
| | - Montserrat Agut
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Margarita Mora
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - M Lluïsa Sagristá
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ross W Boyle
- Department of Chemistry, University of Hull, Kingston upon Hull, UK
| | - Norbert Lange
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Santi Nonell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
26
|
Wang S, Tang Q, Ya H, Fan Y, Feng W, Du J, Fang S, Shi C. Study on the optical and biological properties in vitro ofIR808‐PEG‐FA. J Biomed Mater Res A 2020; 108:1816-1823. [DOI: 10.1002/jbm.a.36946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Sujun Wang
- College of Food and Drug, Luoyang Normal University Luoyang China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| | - Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal University Luoyang China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Wenjing Feng
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Jie Du
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Shengtao Fang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| |
Collapse
|
27
|
Imaging angiogenesis in patients with head and neck squamous cell carcinomas by [ 68Ga]Ga-DOTA-E-[c(RGDfK)] 2 PET/CT. Eur J Nucl Med Mol Imaging 2020; 47:2647-2655. [PMID: 32198613 PMCID: PMC7515959 DOI: 10.1007/s00259-020-04766-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 01/07/2023]
Abstract
Purpose Angiogenesis plays an important role in the growth and metastatic spread of solid tumours and is characterised by the expression of integrins on the cell surface of endothelial cells. Radiolabelled RGD peptides specifically target angiogenesis-related αvβ3 integrins, expressed on the activated endothelial cells of sprouting blood vessels. Here, we validated the feasibility of 68Ga[Ga]-DOTA-E-[c(RGDfK)]2 (68Ga-RGD) PET/CT to visualise angiogenesis in patients with oral squamous cell carcinoma (OSCC). Methods Ten patients with OSCC and scheduled for surgical resection including elective neck dissection received an intravenously administration of 68Ga-RGD (42 ± 8 μg; 214 ± 9 MBq). All patients subsequently underwent dynamic (n = 5) or static PET/CT imaging (n = 5) for 60 min or for 4 min/bed position at 30, 60 and 90 min after injection, respectively. Quantitative tracer uptake in tumour lesions was expressed as standardised uptake values (SUV). Additionally, tumour tissue was immunohistochemically stained for αvβ3 integrin to assess the expression pattern. Results 68Ga-RGD tumour accumulation was observed in all patients. At 60 min post injection, tumour SUVmax ranged between 4.0 and 12.7. Tracer accumulation in tumour tissue plateaued at 10 min after injection. Uptake in background tissue did not change over time, resulting in tumour-to-muscle tissue of 6.4 ± 0.7 at 60 min post injection. Conclusions 68Ga-RGD PET/CT of αvβ3 integrin expression in OSCC patients is feasible with adequate tumour-to-background ratios. It will provide more insight in angiogenesis as a hallmark of the head and neck squamous cell carcinomas’ tumour microenvironment. Trial registration https://eudract.ema.europa.eu no. 2015-000917-31 Electronic supplementary material The online version of this article (10.1007/s00259-020-04766-2) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Zhang L, Shan X, Meng X, Gu T, Guo L, An X, Jiang Q, Ge H, Ning X. Novel Integrin αvβ3-Specific Ligand for the Sensitive Diagnosis of Glioblastoma. Mol Pharm 2019; 16:3977-3984. [DOI: 10.1021/acs.molpharmaceut.9b00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lei Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xue Shan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Xia Meng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Tingting Gu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Leilei Guo
- Center of Advanced Pharmaceuticals and Biomaterials, Collaborative Innovation Center of China Pharmaceutical University and National Center for Nanoscience and Technology, China Pharmaceutical University, 210093 Nanjing, China
| | - Xueying An
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
30
|
68Ga-labeled dimeric and trimeric cyclic RGD peptides as potential PET radiotracers for imaging gliomas. Appl Radiat Isot 2019; 148:168-177. [DOI: 10.1016/j.apradiso.2019.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
|
31
|
Gao H, Luo C, Yang G, Du S, Li X, Zhao H, Shi J, Wang F. Improved in Vivo Targeting Capability and Pharmacokinetics of 99mTc-Labeled isoDGR by Dimerization and Albumin-Binding for Glioma Imaging. Bioconjug Chem 2019; 30:2038-2048. [DOI: 10.1021/acs.bioconjchem.9b00323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Rezazadeh F, Sadeghzadeh N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem Biol Drug Des 2018; 93:205-221. [PMID: 30299570 DOI: 10.1111/cbdd.13413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 09/23/2018] [Indexed: 01/16/2023]
Abstract
Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
33
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
34
|
Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Sci Rep 2018; 8:8126. [PMID: 29802410 PMCID: PMC5970177 DOI: 10.1038/s41598-018-26593-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Strategic delivery of IRDye 700DX (photosensitizer) is a key for improving its effect in photodynamic therapy. In this study, we have synthesized IRDye 700DX-conjugated polymers containing multiple cyclic RGD peptides to deliver IRDye 700DX selectively to tumor cells and tumor-associated blood vessels overexpressing αvβ3 integrin. Our polymer has a backbone of hydrophilic poly(ethylene glycol)-poly(L-glutamic acid) block copolymer, and cyclic RGD peptides are conjugated to side chains of the poly(L-glutamic acid) while IRDye 700DX is conjugated to the terminal of poly(ethylene glycol). The polymers exhibited selective accumulation to the target sites in a subcutaneous solid tumor, and the accumulation was augmented with the increased number of cyclic RGD peptides. More importantly, the polymer containing 15 cyclic RGD peptides in one construct revealed preferential accumulation on the tumor-associated blood vessels without compromising penetration to deep portions of the tumor, thereby drastically inhibiting tumor growth upon photoirradiation, while the polymer containing 5 cyclic RGD peptides showed moderate antitumor activity despite efficient accumulation in the tumor with almost homogenous intratumoral distribution. These results suggest that controlling the intratumoral distribution of IRDye 700DX is critical for successful PDT, and our polymer containing multiple cyclic RGD peptides may be a promising carrier for this spatial control.
Collapse
|
35
|
Lobeek D, Franssen GM, Ma MT, Wester HJ, Decristoforo C, Oyen WJG, Boerman OC, Terry SYA, Rijpkema M. In Vivo Characterization of 4 68Ga-Labeled Multimeric RGD Peptides to Image α vβ 3 Integrin Expression in 2 Human Tumor Xenograft Mouse Models. J Nucl Med 2018; 59:1296-1301. [PMID: 29626124 DOI: 10.2967/jnumed.117.206979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
αvβ3 integrins play an important role in angiogenesis and cell migration in cancer and are highly expressed on the activated endothelial cells of newly formed blood vessels. Here, we compare the targeting characteristics of 4 68Ga-labeled multimeric cyclic arginine-glycine-aspartate (RGD)-based tracers in an αvβ3 integrin-expressing tumor model and a tumor model in which αvβ3 integrin is expressed solely on the neovasculature. Methods: Female BALB/c nude mice were subcutaneously injected with SK-RC-52 (αvβ3 integrin-positive) or FaDu (αvβ3 integrin-negative) tumor cells. 68Ga-labeled DOTA-(RGD)2, TRAP-(RGD)3, FSC-(RGD)3, or THP-(RGD)3 was intravenously administered to the mice (0.5 nmol per mouse, 10-20 MBq), followed by small-animal PET/CT imaging and ex vivo biodistribution studies 1 h after injection. Nonspecific uptake of the tracers in both models was determined by coinjecting an excess of unlabeled DOTA-(RGD)2 (50 nmol) along with the radiolabeled tracers. Results: Imaging and biodistribution data showed specific uptake in the tumors for each tracer in both models. Tumor uptake of 68Ga-FSC-(RGD)3 was significantly higher than that of 68Ga-DOTA-(RGD)2, 68Ga-TRAP-(RGD)3, or 68Ga-THP-(RGD)3 in the SK-RC-52 model but not in the FaDu model, in which 68Ga-FSC-(RGD)3 showed significantly higher tumor uptake than 68Ga-TRAP-(RGD)3 Most importantly, differences were also observed in normal tissues and in tumor-to-blood ratios. Conclusion: All tracers showed sufficient targeting of αvβ3 integrin expression to allow for tumor detection. Although the highest tumor uptake was found for 68Ga-FSC-(RGD)3 and 68Ga-THP-(RGD)3 in the SK-RC-52 and FaDu models, respectively, selection of the optimal tracer for specific diagnostic applications also depends on tumor-to-blood ratio and uptake in normal tissues; these factors should therefore also be considered.
Collapse
Affiliation(s)
- Daphne Lobeek
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Michelle T Ma
- Department of Imaging Chemistry and Biology, King's College London, London, United Kingdom
| | - Hans-Jürgen Wester
- Pharmazeutische Radiochemie, Technische Universität München, Garching, Germany
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria; and
| | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.,Institute of Cancer Research and Royal Marsden NHS Trust, Department of Nuclear Medicine, London, United Kingdom
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, King's College London, London, United Kingdom
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Zhang P, Zhang Y, Li B, Zhang H, Lin H, Deng Z, Tan B. Cell-assembled nanoclusters of MSC-targeting Gd-DOTA-peptide as a T 2 contrast agent for MRI cell tracking. J Pept Sci 2018; 24:e3077. [PMID: 29582508 DOI: 10.1002/psc.3077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 12/28/2022]
Abstract
A cyclic peptide CC9 that targets cell membrane of mesenchymal stem cells (MSCs) is coupled with Gd-DOTA to yield a Gd-DOTA-CC9 complex as MRI contrast agent. It is used to label human MSCs (hMSCs) via electroporation. Electroporation-labeling of hMSCs with Gd-DOTA-CC9 induces cell-assembly of Gd-DOTA-CC9 nanoclusters in the cytoplasm, significantly promotes cell-labeling efficacy and intracellular retention time of the agent. In vitro MRI of labeled hMSCs exhibits significant signal reduction under T2 -weighted MRI, which can allow long-term tracking of labeled cell transplants in in vivo migration. The labeling strategy is safe in cytotoxicity and differentiation potential.
Collapse
Affiliation(s)
- Pengli Zhang
- College of Sciences, Shanghai University, Shanghai, 200444, China.,CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yanhui Zhang
- CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Binbin Li
- CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hailu Zhang
- CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haixia Lin
- College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zongwu Deng
- CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bo Tan
- CAS Key Laboratory of Nano-Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
37
|
Tornesello AL, Buonaguro L, Tornesello ML, Buonaguro FM. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:1282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, 80131 Napoli, Italy.
| |
Collapse
|
38
|
Abstract
Background Integrin-targeting radiopharmaceuticals have potential broad applications, spanning from cancer theranostics to cardiovascular diseases. We have previously reported preclinical dosimetry results of 68Ga-NODAGA-RGDyK in mice. This study presents the first human dosimetry of 68Ga-NODAGA-RGDyK in the five consecutive patients included in a clinical imaging protocol of carotid atherosclerotic plaques. Five male patients underwent whole-body time-of-flight (TOF) PET/CT scans 10, 60 and 120 min after tracer injection (200 MBq). Quantification of 68Ga activity concentration was first validated by a phantom study. To be used as input in OLINDA/EXM, time-activity curves were derived from manually drawn regions of interest over the following organs: brain, thyroid, lungs, heart, liver, spleen, stomach, kidneys, red marrow, pancreas, small intestine, colon, urinary bladder and whole body. A separate dosimetric analysis was performed for the choroid plexuses. Female dosimetry was extrapolated from male data. Effective doses (EDs) were estimated according to both ICRP60 and ICRP103 assuming 30-min and 1-h voiding cycles. Results The body regions receiving the highest dose were urinary bladder, kidneys and choroid plexuses. For a 30-min voiding cycle, the EDs were 15.7 and 16.5 μSv/MBq according to ICRP60 and ICRP103, respectively. The extrapolation to female dosimetry resulted in organ absorbed doses 17% higher than those of male patients, on average. The 1-h voiding cycle extrapolation resulted in EDs of 19.3 and 19.8 μSv/MBq according to ICRP60 and ICRP103, respectively. A comparison is made with previous mouse dosimetry and with other human studies employing different RGD-based radiopharmaceuticals. Conclusions According to ICRP60/ICRP103 recommendations, an injection of 200 MBq 68Ga-NODAGA-RGDyK leads to an ED in man of 3.86/3.92 mSv. For future therapeutic applications, specific attention should be directed to delivered dose to kidneys and potentially also to the choroid plexuses. Trial registration Clinical trial.gov, NCT01608516
Collapse
|
39
|
de Oliveira EA, Lazovic J, Guo L, Soto H, Faintuch BL, Akhtari M, Pope W. Evaluation of Magnetonanoparticles Conjugated with New Angiogenesis Peptides in Intracranial Glioma Tumors by MRI. Appl Biochem Biotechnol 2017; 183:265-279. [PMID: 28281182 DOI: 10.1007/s12010-017-2443-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/20/2017] [Indexed: 01/12/2023]
Abstract
Angiogenesis plays a critical role in progression of malignant gliomas. The development of glioma-specific labeling molecules that can aid detection and visualization of angiogenesis can help surgical planning and improve treatment outcome. The aim of this study was to evaluate if two peptides (GX1 and RGD-GX1) linked to angiogenesis can be used as an MR-imaging markers of angiogenesis. MR imaging was performed in U87 glioblastoma-bearing NOD-SCID mice at different time points between 15 and 120 min post-injection to visualize particle distribution. GX1 and RGD-GX1 exhibited the highest accumulation in U87 glioblastoma at 120 min post i.v. administration. GX1-conjugated agents lead to higher decrease in transverse relaxation time (T 2) (i.e., stronger contrast enhancement) than RGD-GX1-conjugated agents in U87 glioblastoma tumor model. In addition, we tested if U87-IDH1R132 mutated cell line had different pattern of GX1 or RGD-GX1 particle accumulation. Responses in U87-IDH1WT followed a similar pattern with GX1 contrast agents; however, lower contrast enhancement was observed with RGD-GX1 agents. The specific binding of these peptides to human glioblastoma xenograft in the brain was confirmed by magnetic resonance imaging. The contrast enhancement following injection of magnetonanoparticles conjugated to GX1 peptide matched well with CD31 staining and iron staining.
Collapse
Affiliation(s)
- Erica Aparecida de Oliveira
- Radiopharmacy Center, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes 2242, São Paulo, SP, 05508-000, Brazil. .,School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580 Bloco 17, São Paulo, SP, 05508-900, Brazil.
| | - Jelena Lazovic
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lea Guo
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bluma Linkowski Faintuch
- Radiopharmacy Center, Institute of Energy and Nuclear Research, Av. Prof. Lineu Prestes 2242, São Paulo, SP, 05508-000, Brazil
| | - Massoud Akhtari
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen school of Medicine, University of California, Los Angeles, CA, USA
| | - Whitney Pope
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
40
|
|
41
|
Pallarola D, Platzman I, Bochen A, Cavalcanti-Adam EA, Axmann M, Kessler H, Geiger B, Spatz JP. Focal adhesion stabilization by enhanced integrin-cRGD binding affinity. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/bnm-2016-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractIn this study we investigate the impact of ligand presentation by various molecular spacers on integrin-based focal adhesion formation. Gold nanoparticles (AuNPs) arranged in hexagonal patterns were biofunctionalized with the same ligand head group, cyclic Arg-Gly-Asp [
Collapse
|
42
|
Dong X, Yu Y, Wang Q, Xi Y, Liu Y. Interaction Mechanism and Clustering among RGD Peptides and Integrins. Mol Inform 2016; 36. [DOI: 10.1002/minf.201600069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Xiuli Dong
- Soft Matter Research Center; Department of Chemistry; Zhejiang University; Hangzhou 310027 PR China
- College of Pharmacy; Binzhou Medical University; Yantai 264003 PR China
| | - Yuping Yu
- Soft Matter Research Center; Department of Chemistry; Zhejiang University; Hangzhou 310027 PR China
| | - Qi Wang
- Soft Matter Research Center; Department of Chemistry; Zhejiang University; Hangzhou 310027 PR China
| | - Ying Xi
- Department of Pharmaceutics; Peking University; Beijing 100191 PR China
| | - Yingchun Liu
- Soft Matter Research Center; Department of Chemistry; Zhejiang University; Hangzhou 310027 PR China
| |
Collapse
|
43
|
Sartori A, Portioli E, Battistini L, Calorini L, Pupi A, Vacondio F, Arosio D, Bianchini F, Zanardi F. Synthesis of Novel c(AmpRGD)-Sunitinib Dual Conjugates as Molecular Tools Targeting the α vβ 3 Integrin/VEGFR2 Couple and Impairing Tumor-Associated Angiogenesis. J Med Chem 2016; 60:248-262. [PMID: 27997164 DOI: 10.1021/acs.jmedchem.6b01266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On the basis of a previously discovered anti-αVβ3 integrin peptidomimetic (c(AmpRGD)) and the clinically approved antiangiogenic kinase inhibitor sunitinib, three novel dual conjugates were synthesized (compounds 1-3), featuring the covalent and robust linkage between these two active modules. In all conjugates, the ligand binding competence toward αVβ3 (using both isolated receptors and αVβ3-overexpressing endothelial progenitor EP cells) and the kinase inhibitory activity (toward both isolated kinases and EPCs) remained almost untouched and comparable to the activity of the single active units. Compounds 1-3 showed interesting antiangiogenesis properties in an in vitro tubulogenic assay; furthermore, dimeric-RGD conjugate 3 strongly inhibited in vivo angiogenesis in Matrigel plug assays in FVB mice. These results offer proof-of-concept of how the covalent conjugation of two angiogenesis-related small modules may result in novel and stable molecules, which impair tumor-related angiogenesis with equal or even superior ability as compared to the single modules or their simple combinations.
Collapse
Affiliation(s)
- Andrea Sartori
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Elisabetta Portioli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Lucia Battistini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Lido Calorini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Alberto Pupi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy.,Centro Interdipartimentale per lo Sviluppo Preclinico dell'Imaging Molecolare (CISPIM), Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche , Via Golgi 19, 20133 Milano, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy.,Centro Interdipartimentale per lo Sviluppo Preclinico dell'Imaging Molecolare (CISPIM), Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Franca Zanardi
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
44
|
Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, Esposito I, Weichert W, Kessler H, Wester HJ. In Vivo PET Imaging of the Cancer Integrin αvβ6 Using 68Ga-Labeled Cyclic RGD Nonapeptides. J Nucl Med 2016; 58:671-677. [DOI: 10.2967/jnumed.116.182824] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
|
45
|
Guo Z, Gao M, Song M, Shi C, Zhang P, Xu D, You L, Zhuang R, Su X, Liu T, Du J, Zhang X. Synthesis and Evaluation of (99m)Tc-Labeled Dimeric Folic Acid for FR-Targeting. Molecules 2016; 21:molecules21060817. [PMID: 27338334 PMCID: PMC6274367 DOI: 10.3390/molecules21060817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023] Open
Abstract
The folate receptor (FR) is overexpressed in a wide variety of human tumors. In our study, the multimeric concept was used to synthesize a dimeric folate derivative via a click reaction. The novel folate derivative (HYNIC-D1-FA2) was radiolabeled with 99mTc using tricine and trisodium triphenylphosphine-3,3′,3″-trisulfonate (TPPTS) as coligands (99mTc-HYNIC-D1-FA2) and its in vitro physicochemical properties, ex vivo biodistribution and in vivo micro-SPECT/CT imaging as a potential FR targeted agent were evaluated. It is a hydrophilic compound (log P = −2.52 ± 0.13) with high binding affinity (IC50 = 19.06 nM). Biodistribution in KB tumor-bearing mice showed that 99mTc-HYNIC-D1-FA2 had high uptake in FR overexpressed tumor and kidney at all time-points, and both of them could obviously be inhibited when blocking with free FA in the blocking studies. From the in vivo micro-SPECT/CT imaging results, good tumor uptake of 99mTc-HYNIC-D1-FA2 was observed in KB tumor-bearing mice and it could be blocked obviously. Based on the results, this new radiolabeled dimeric FA tracer might be a promising candidate for FR-targeting imaging with high affinity and selectivity.
Collapse
Affiliation(s)
- Zhide Guo
- Department of Isotopes, China Institute of Atomic Energy, P. O. Box 2108, Beijing 102413, China.
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Mengna Gao
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Manli Song
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Changrong Shi
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Pu Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Duo Xu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Linyi You
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Rongqiang Zhuang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Affiliated of Xiamen University, Hubin South Road, Xiamen 361004, China.
| | - Ting Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| | - Jin Du
- Department of Isotopes, China Institute of Atomic Energy, P. O. Box 2108, Beijing 102413, China.
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Rd, Xiamen 361102, China.
| |
Collapse
|
46
|
Kondo N, Temma T, Shimizu Y, Ono M, Saji H. Radioiodinated Peptidic Imaging Probes for in Vivo Detection of Membrane Type-1 Matrix Metalloproteinase in Cancers. Biol Pharm Bull 2016; 38:1375-82. [PMID: 26328493 DOI: 10.1248/bpb.b15-00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) plays pivotal roles in tumor progression and metastasis, and holds great promise as an early biomarker for malignant tumors. Therefore, the ability to evaluate MT1-MMP expression could be valuable for molecular biological and clinical studies. For this purpose, we aimed to develop short peptide-based nuclear probes because of their facile radiosynthesis, chemically uniform structures, and high specific activity, as compared to antibody-based probes, which could allow them to be more effective for in vivo MT1-MMP imaging. To the best of our knowledge, there have been no reports of radiolabeled peptide probes for the detection of MT1-MMP in cancer tissues. In this study, we designed and prepared four probes which consist of a MT1-MMP-specific binding peptide sequence (consisting of L or D amino acid isomers) and an additional cysteine (at the N or C-terminus) for conjugation with N-(m-[(123/125)I]iodophenyl) maleimide. We investigated probe affinity, probe stability in mice plasma, and probe biodistribution in tumor-bearing mice. Finally, in vivo micro single photon emission computed tomography (SPECT) imaging and ex vivo autoradiography were performed. Consequently, [(123)I]I-DC, a D-form peptide probe radioiodinated at the C-terminus, demonstrated greater than 1000-fold higher specific activity than previously reported antibody probes, and revealed comparably moderate binding affinity. [(125)I]I-DC showed higher stability as expected, and [(123)I]I-DC successfully identified MT1-MMP expressing tumor tissue by SPECT imaging. Furthermore, ex vivo autoradiographic analysis revealed that the radioactivity distribution profiles corresponded to MT1-MMP-positive areas. These findings suggest that [(123)I]I-DC is a promising peptide probe for the in vivo detection of MT1-MMP in cancers.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | |
Collapse
|
47
|
Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. BIOPHYSICS REPORTS 2016; 2:1-20. [PMID: 27819026 PMCID: PMC5071373 DOI: 10.1007/s41048-016-0021-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022] Open
Abstract
The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind αvβ5, α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Fan Wang
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
48
|
Wan J, Alewood PF. Peptide-Decorated Dendrimers and Their Bioapplications. Angew Chem Int Ed Engl 2016; 55:5124-34. [PMID: 26990715 DOI: 10.1002/anie.201508428] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/01/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Jingjing Wan
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| | - Paul F. Alewood
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| |
Collapse
|
49
|
Comparison of biological properties of 99mTc-labeled cyclic RGD Peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol 2016; 43:661-669. [PMID: 27556955 DOI: 10.1016/j.nucmedbio.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. METHODS HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. RESULTS 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200GBq/μmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. CONCLUSION Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors.
Collapse
|
50
|
Grassin A, Jourdan M, Dumy P, Boturyn D. Influence of Pre-organised Architecture on Cell Adhesion by Using Multivalent RGD Compounds. Chembiochem 2016; 17:515-20. [DOI: 10.1002/cbic.201500495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Adrien Grassin
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| | - Muriel Jourdan
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| | - Pascal Dumy
- IBMM UMR 5247; Ecole Nationale Supérieure de Chimie de Montpellier; 8 rue de l'École Normale 34090 Montpellier France
| | - Didier Boturyn
- DCM UMR 5250; Université Grenoble Alpes-CNRS; 570 rue de la Chimie B. P. 53 38041 Grenoble cedex 9 France
| |
Collapse
|