1
|
Alenezi A, Alhamad H, Alenezi A, Khan MU. Hypoxia Imaging in Lung Cancer: A PET-Based Narrative Review for Clinicians and Researchers. Pharmaceuticals (Basel) 2025; 18:459. [PMID: 40283896 PMCID: PMC12030053 DOI: 10.3390/ph18040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Hypoxia plays a critical role in lung cancer progression and treatment resistance by contributing to aggressive tumor behavior and poor therapeutic response. Molecular imaging, particularly positron emission tomography (PET), has become an essential tool for noninvasive hypoxia detection, providing valuable insights into tumor biology and aiding in personalized treatment strategies. Objective: This narrative review explores recent advancements in PET imaging for detecting hypoxia in lung cancer, with a focus on the development, characteristics, and clinical applications of various radiotracers. Findings: Numerous PET-based hypoxia radiotracers have been investigated, each with distinct pharmacokinetics and imaging capabilities. Established tracers such as 18F-Fluoromisonidazole (18F-FMISO) remain widely used, while newer alternatives like 18F-Fluoroazomycin Arabinoside (18F-FAZA) and 18F-Flortanidazole (18F-HX4) demonstrate improved clearance and image contrast. Additionally, 64Cu-ATSM has gained attention for its rapid tumor uptake and hypoxia selectivity. The integration of PET with hybrid imaging modalities, such as PET/CT and PET/MRI, enhances the spatial resolution and functional interpretation, making hypoxia imaging a promising approach for guiding radiotherapy, chemotherapy, and targeted therapies. Conclusions: PET imaging of hypoxia offers significant potential in lung cancer diagnosis, treatment planning, and therapeutic response assessment. However, challenges remain, including tracer specificity, quantification variability, and standardization of imaging protocols. Future research should focus on developing next-generation radiotracers with enhanced specificity, optimizing imaging methodologies, and leveraging multimodal approaches to improve clinical utility and patient outcomes.
Collapse
Affiliation(s)
- Ahmad Alenezi
- Radiologic Sciences Department, Kuwait University, Kuwait City 31470, Kuwait
| | - Hamad Alhamad
- Occupational Therapy Department, Kuwait University, Jabriya 31470, Kuwait
| | - Aishah Alenezi
- Radiologic Sciences Department, Kuwait University, Kuwait City 31470, Kuwait
| | - Muhammad Umar Khan
- Nuclear Medicine Department, Jahra Hospital, Ministry of Health, Al Jahra 03200, Kuwait
| |
Collapse
|
2
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
4
|
Bo T, Yasui H, Shiga T, Shibata Y, Fujimoto M, Suzuki M, Higashikawa K, Miyamoto N, Inanami O, Kuge Y. Eribulin improves tumor oxygenation demonstrated by 18F-DiFA hypoxia imaging, leading to radio-sensitization in human cancer xenograft models. Eur J Nucl Med Mol Imaging 2021; 49:821-833. [PMID: 34468781 DOI: 10.1007/s00259-021-05544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Eribulin, an inhibitor of microtubule dynamics, is known to show antitumor effects through its remodeling activity in the tumor vasculature. However, the extent to which the improvement of tumor hypoxia by eribulin affects radio-sensitivity remains unclear. We utilized 1-(2,2-dihydroxymethyl-3-18F-fluoropropyl)-2-nitroimidazole (18F-DiFA), a new PET probe for hypoxia, to investigate the effects of eribulin on tumor hypoxia and evaluate the radio-sensitivity during eribulin treatment. METHODS Mice bearing human breast cancer MDA-MB-231 cells or human lung cancer NCI-H1975 cells were administered a single dose of eribulin. After administration, mice were injected with 18F-DiFA and pimonidazole, and tumor hypoxia regions were analyzed. For the group that received combined treatment with radiation, 18F-DiFA PET/CT imaging was performed before tumors were locally X-irradiated. Tumor size was measured every other day after irradiation. RESULTS Eribulin significantly reduced 18F-DiFA accumulation levels in a dose-dependent manner. Furthermore, the reduction in 18F-DiFA accumulation levels by eribulin was most significant 7 days after treatment. These results were also supported by reduction of the pimonidazole-positive hypoxic region. The combined treatment showed significant retardation of tumor growth in comparison with the control, radiation-alone, and drug-alone groups. Importantly, tumor growth after irradiation was inversely correlated with 18F-DiFA accumulation. CONCLUSION These results demonstrated that 18F-DiFA PET/CT clearly detected eribulin-induced tumor oxygenation and that eribulin efficiently enhanced the antitumor activity of radiation by improving tumor oxygenation.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.,Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan. .,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.
| | - Tohru Shiga
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Yuki Shibata
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Masaki Fujimoto
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
6
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
7
|
Wang L, Wang H, Shen K, Park H, Zhang T, Wu X, Hu M, Yuan H, Chen Y, Wu Z, Wang Q, Li Z. Development of Novel 18F-PET Agents for Tumor Hypoxia Imaging. J Med Chem 2021; 64:5593-5602. [PMID: 33901402 DOI: 10.1021/acs.jmedchem.0c01962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor hypoxia is a major factor responsible for tumor progression, metastasis, invasion, and treatment resistance, leading to low local tumor control and recurrence after radiotherapy in cancers. Here,18F-positron emission tomography (PET) probes are developed for visualizing viable hypoxic cells in biopsies. Pimonidazole derivatives and nitroimidazole-based agents bearing sulfonyl linkers were evaluated. A small-animal PET study showed that the tumor uptake of [18F]-23 [poly(ethylene glycols) (PEG)-sulfonyl linker] of 3.36 ± 0.29%ID/g was significantly higher (P < 0.01) than that of [18F]-20 (piperazine-linker tracer, 2.55 ± 0.49%ID/g) at 2 h postinjection in UPPL tumors. The tumor-to-muscle uptake ratio of [18F]-23 (2.46 ± 0.48 at 2 h pi) was well improved compared with that of [18F]-FMISO (1.25 ± 0.14 at 2 h pi). A comparable distribution pattern was observed between ex vivo autoradiography of [18F]-23 and pimonidazole staining of the neighboring slice, indicating that [18F]-23 is a promising PET agent for hypoxia imaging.
Collapse
Affiliation(s)
- Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States.,Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Kun Shen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hyejin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tao Zhang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Mei Hu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
8
|
Shimizu Y, Nakai Y, Iikuni S, Watanabe H, Nakamoto Y, Ono M. Synthesis and evaluation of gallium-68-labeled nitroimidazole-based imaging probes for PET diagnosis of tumor hypoxia. Ann Nucl Med 2021; 35:360-369. [PMID: 33423155 DOI: 10.1007/s12149-020-01573-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE In this study, we designed and synthesized four novel 68Ga-radiolabeled compounds ([68Ga]DN-3, [68Ga]DN-4, [68Ga]NN-3, and [68Ga]NN-4) composed of a nitroimidazole and two types of bifunctional chelates (DOTA or NOTA) via several alkyl linkers of different length. Then, we evaluated their properties as hypoxia imaging probes for positron emission tomography (PET) compared with conventional compounds ([68Ga]DN-2 and [68Ga]NN-2). METHODS The precursors of 68Ga-radiolabeled compounds were synthesized through a two-step reaction, and then reacted with 68GaCl3 to be 68Ga-radiolabeled compounds. FaDu cells were treated with 68Ga-radiolabeled compounds and then incubated under normoxic (21% O2) or hypoxic (1% O2) conditions. The radioactivity of these cells was measured 2 h after incubation. The biodistribution and PET/CT imaging of 68Ga-radiolabeled compounds in FaDu-bearing Balb/c nude mice were evaluated 2 h after intravenous injection. RESULTS The 68Ga-radiolabeled compounds were synthesized with radiochemical purities over 95%. In the in vitro study, the levels of 68Ga-radiolabeled compounds were significantly higher in hypoxic cells than in normoxic cells. In hypoxic cells, the compounds we designed in this study demonstrated higher accumulation than the conventional compounds. In the in vivo biodistribution study, [68Ga]DN-3 exhibited the highest accumulation in tumor. In the in vivo PET/CT imaging study, the tumor tissues of the FaDu-xenografted mice were visualized at 2 h after intravenous administration of 68Ga-radiolabeled compounds. CONCLUSIONS Our study suggested that the length of the linkers connecting nitroimidazole to a bifunctional chelate affect PET imaging of hypoxic tumors with 68Ga-radiolabeled compounds.
Collapse
Affiliation(s)
- Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yukihiro Nakai
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Scarpelli ML, Healey DR, Fuentes A, Kodibagkar VD, Quarles CC. Correlation of Tumor Hypoxia Metrics Derived from 18F-Fluoromisonidazole Positron Emission Tomography and Pimonidazole Fluorescence Images of Optically Cleared Brain Tissue. Tomography 2020; 6:379-388. [PMID: 33364428 PMCID: PMC7744194 DOI: 10.18383/j.tom.2020.00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is a widely used noninvasive imaging modality for assessing hypoxia. We describe the first spatial comparison of FMISO PET with an ex vivo reference standard for hypoxia across whole tumor volumes. Eighteen rats were orthotopically implanted with C6 or 9L brain tumors and made to undergo FMISO PET scanning. Whole brains were excised, sliced into 1-mm-thick sections, optically cleared, and fluorescently imaged for pimonidazole using an in vivo imaging system. FMISO maximum tumor uptake, maximum tumor-to-cerebellar uptake (TCmax), and hypoxic fraction (extracted 110 minutes after FMISO injection) were correlated with analogous metrics derived from pimonidazole fluorescence images. FMISO SUVmax was not significantly different between C6 and 9L brain tumors (P = .70), whereas FMISO TCmax and hypoxic fraction were significantly greater for C6 tumors (P < .01). FMISO TCmax was significantly correlated with the maximum tumor pimonidazole intensity (ρ = 0.76, P < .01), whereas FMISO SUVmax was not. FMISO tumor hypoxic fraction was significantly correlated with the pimonidazole-derived hypoxic fraction (ρ = 0.78, P < .01). Given that FMISO TCmax and tumor hypoxic fraction had strong correlations with the pimonidazole reference standard, these metrics may offer more reliable measures of tumor hypoxia than conventional PET uptake metrics (SUVmax). The voxel-wise correlation between FMISO uptake and pimonidazole intensity for a given tumor was strongly dependent on the tumor's TCmax (ρ = 0.81, P < .01) and hypoxic fraction (ρ = 0.85, P < .01), indicating PET measurements within individual voxels showed greater correlation with pimonidazole reference standard in tumors with greater hypoxia.
Collapse
Affiliation(s)
- Matthew L. Scarpelli
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Debbie R. Healey
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Alberto Fuentes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Vikram D. Kodibagkar
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| |
Collapse
|
10
|
Leger S, Zwanenburg A, Leger K, Lohaus F, Linge A, Schreiber A, Kalinauskaite G, Tinhofer I, Guberina N, Guberina M, Balermpas P, von der Grün J, Ganswindt U, Belka C, Peeken JC, Combs SE, Boeke S, Zips D, Richter C, Krause M, Baumann M, Troost EG, Löck S. Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC. Cancers (Basel) 2020; 12:cancers12103047. [PMID: 33086761 PMCID: PMC7589463 DOI: 10.3390/cancers12103047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Radiomic risk models are usually based on imaging features, which are extracted from the entire gross tumour volume (GTVentire). This approach does not explicitly consider the complex biological structure of the tumours. Therefore, in this retrospective study, we investigated the prognostic value of radiomic analyses based on different tumour sub-volumes using computed tomography imaging of patients with locally advanced head and neck squamous cell carcinoma who were treated with primary radio-chemotherapy. The GTVentire was cropped by different margins to define the rim and corresponding core sub-volumes of the tumour. Furthermore, the best performing tumour rim sub-volume was extended into surrounding tissue with different margins. As a result, the models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed an improved performance compared to models based on the corresponding tumour core. This indicates that the consideration of tumour sub-volumes may help to improve radiomic risk models. Abstract Imaging features for radiomic analyses are commonly calculated from the entire gross tumour volume (GTVentire). However, tumours are biologically complex and the consideration of different tumour regions in radiomic models may lead to an improved outcome prediction. Therefore, we investigated the prognostic value of radiomic analyses based on different tumour sub-volumes using computed tomography imaging of patients with locally advanced head and neck squamous cell carcinoma. The GTVentire was cropped by different margins to define the rim and the corresponding core sub-volumes of the tumour. Subsequently, the best performing tumour rim sub-volume was extended into surrounding tissue with different margins. Radiomic risk models were developed and validated using a retrospective cohort consisting of 291 patients in one of the six Partner Sites of the German Cancer Consortium Radiation Oncology Group treated between 2005 and 2013. The validation concordance index (C-index) averaged over all applied learning algorithms and feature selection methods using the GTVentire achieved a moderate prognostic performance for loco-regional tumour control (C-index: 0.61 ± 0.04 (mean ± std)). The models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed higher median performances (C-index: 0.65 ± 0.02 and 0.64 ± 0.05, respectively), while models based on the corresponding tumour core volumes performed less (C-index: 0.59 ± 0.01). The difference in C-index between the 5 mm tumour rim and the corresponding core volume showed a statistical trend (p = 0.10). After additional prospective validation, the consideration of tumour sub-volumes may be a promising way to improve prognostic radiomic risk models.
Collapse
Affiliation(s)
- Stefan Leger
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence:
| | - Alex Zwanenburg
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
| | - Karoline Leger
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Lohaus
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annett Linge
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Schreiber
- Department of Radiotherapy, Hospital Dresden-Friedrichstadt, 01067 Dresden, Germany;
| | - Goda Kalinauskaite
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 10117 Berlin, Germany; (G.K.); (I.T.)
- Department of Radiooncology and Radiotherapy, Charité University Hospital, 10117 Berlin, Germany
| | - Inge Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 10117 Berlin, Germany; (G.K.); (I.T.)
- Department of Radiooncology and Radiotherapy, Charité University Hospital, 10117 Berlin, Germany
| | - Nika Guberina
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 45147 Essen, Germany; (N.G.); (M.G.)
- Department of Radiotherapy, University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maja Guberina
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 45147 Essen, Germany; (N.G.); (M.G.)
- Department of Radiotherapy, University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 60596 Frankfurt, Germany; (P.B.); (J.v.d.G.)
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Jens von der Grün
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 60596 Frankfurt, Germany; (P.B.); (J.v.d.G.)
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Ute Ganswindt
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 81377 Munich, Germany; (U.G.); (C.B.); (J.C.P.); (S.E.C.)
- Department of Radiation Oncology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Clinical Cooperation Group, Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum, 81377 Munich, Germany
- Department of Radiation Oncology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 81377 Munich, Germany; (U.G.); (C.B.); (J.C.P.); (S.E.C.)
- Department of Radiation Oncology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Clinical Cooperation Group, Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum, 81377 Munich, Germany
| | - Jan C. Peeken
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 81377 Munich, Germany; (U.G.); (C.B.); (J.C.P.); (S.E.C.)
- Department of Radiation Oncology, Technische Universität München, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 81377 Munich, Germany; (U.G.); (C.B.); (J.C.P.); (S.E.C.)
- Department of Radiation Oncology, Technische Universität München, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Simon Boeke
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 72076 Tübingen, Germany; (S.B.); (D.Z.)
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 72076 Tübingen, Germany; (S.B.); (D.Z.)
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Richter
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Mechthild Krause
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Michael Baumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Esther G.C. Troost
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Steffen Löck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (A.Z.); (K.L.); (F.L.); (A.L.); (C.R.); (M.K.); (M.B.); (E.G.C.T.); (S.L.)
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus and Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
11
|
A Novel PET Probe "[ 18F]DiFA" Accumulates in Hypoxic Region via Glutathione Conjugation Following Reductive Metabolism. Mol Imaging Biol 2019; 21:122-129. [PMID: 29845425 DOI: 10.1007/s11307-018-1214-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Hypoxia in tumor has close relationship with angiogenesis and tumor progression. Previously, we developed 2,2-dihydroxymethyl-3-[18F]fluoropropyl-2-nitroimidazole ([18F]DiFA) as a novel positron emission tomography (PET) probe for diagnosis of hypoxia. In this study, we elucidated whether the accumulation of [18F]DiFA in cells is dependent on the hypoxic state and revealed how [18F]DiFA accumulates in hypoxic cells in combination with imaging mass spectrometry (IMS). PROCEDURES FaDu human head and neck cancer cells were treated with [18F]DiFA and then incubated under normoxia (21% O2) or hypoxia (1% O2) for 2 h. The cells were extracted using methanol, and the radioactivities of the precipitates (macromolecule fraction) and supernatants (low-molecular-weight fraction) were measured. FaDu-bearing mice were injected intravenously with [18F]DiFA and with pimonidazole 1 h later. The tumors were excised 2 h after the injection of [18F]DiFA. Autoradiography, IMS, and immunohistochemical (IHC) staining for pimonidazole were performed with serial tumor sections. RESULTS In the in vitro study, the radioactivity of FaDu cells was significantly higher under hypoxia than that under normoxia (0.53 ± 0.02 vs. 0.27 ± 0.02 %dose/mg protein, p < 0.05). The radioactivity of the low-molecular-weight fraction was 66.3 ± 0.6% in the hypoxic cell. In the in vivo study, [18F]DiFA accumulated in the tumor tissues existed mainly as low-molecular-weight compounds (90.4 ± 0.9%). In addition, the glutathione conjugate of reductive DiFA metabolite (amino-DiFA-GS) existed in tumor tissues revealed by the IMS study, and the distribution pattern of amino-DiFA-GS was very similar to that of the radioactivity and the positive staining area of pimonidazole. CONCLUSIONS Our results suggest that [18F]DiFA undergoes the glutathione conjugation reaction following reductive metabolism in hypoxic cells, which leads hypoxia-specific PET imaging with [18F]DiFA.
Collapse
|
12
|
Repeat FMISO-PET imaging weakly correlates with hypoxia-associated gene expressions for locally advanced HNSCC treated by primary radiochemotherapy. Radiother Oncol 2019; 135:43-50. [PMID: 31015169 DOI: 10.1016/j.radonc.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypoxia is an important factor of tumour resistance to radiotherapy, chemotherapy and potentially immunotherapy. It can be measured e.g. by positron emission tomography (PET) imaging or hypoxia-associated gene expressions from tumour biopsies. Here we correlate [18F]fluoromisonidazole (FMISO)-PET/CT imaging with hypoxia-associated gene expressions on a cohort of 50 head and neck squamous cell carcinoma (HNSCC) patients and compare their prognostic value for response to radiochemotherapy (RCTx). METHODS FMISO-PET/CT images of 50 HNSCC patients were acquired at four time-points before and during RCTx. For 42 of these patients, hypoxia-associated gene expressions were evaluated by nanoString technology based on a biopsy obtained before any treatment. The FMISO-PET parameters tumour-to-background ratio and hypoxic volume were correlated to the expressions of 58 hypoxia-associated genes using the Spearman correlation coefficient ρ. Three hypoxia-associated gene signatures were compared regarding their correlation with the FMISO-PET parameters using their median expression. In addition, the correlation with tumour volume was analysed. The impact of both hypoxia measurement methods on loco-regional tumour control (LRC) and overall survival (OS) was assessed by Cox regression. RESULTS The median expression of hypoxia-associated genes was weakly correlated to hypoxia measured by FMISO-PET imaging (ρ ≤ 0.43), with higher correlations to imaging after weeks 1 and 2 of treatment (p < 0.001). Moderate correlations were obtained between FMISO-PET imaging and tumour volume (ρ ≤ 0.69). Prognostic models for LRC and OS based on the FMISO-PET parameters could not be improved by including hypoxia classifiers. CONCLUSION We observed low correlations between hypoxia FMISO-PET parameters and expressions of hypoxia-associated genes. Since FMISO-PET showed a superior patient stratification, it may be the preferred biomarker over hypoxia-associated genes for stratifying patients with locally advanced HNSCC treated by primary RCTx.
Collapse
|
13
|
Shimizu Y. [Accumulation Mechanism of 2-Nitroimidazole-based Hypoxia Imaging Probes Revealed by Imaging Mass Spectrometry]. YAKUGAKU ZASSHI 2018; 138:1345-1352. [PMID: 30381642 DOI: 10.1248/yakushi.18-00146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia in tumor tissues plays a pivotal role in tumor progression and angiogenesis, and is associated with cancer therapeutic resistance. For the diagnosis of hypoxia, non-invasive imaging techniques, especially positron emission tomography (PET) with 2-nitroimidazole-based probes, are used, since 2-nitroimidazole-based probes are considered to undergo reductive metabolism on their 2-nitroimidazole moiety and become trapped in hypoxic cells. However, the detailed mechanism of their accumulation remains unclear because of the difficulty in estimating the metabolites by radioisotopic analysis. Imaging mass spectrometry (IMS) can distinguish the distribution patterns of the drug and its metabolites. To clarify the accumulation mechanism of 2-nitroimidazole-based probes in hypoxic cells, we evaluated [18F]fluoromisonidazole (FMISO), a 2-nitroimidazole-based PET probe, in combination with radioisotopic analysis and IMS. We found that the glutathione conjugate of reduced FMISO (amino-FMISO-GS) was the main FMISO metabolite, and was specifically distributed in the hypoxic regions of tumors. The same phenomenon was observed when we examined another 2-nitroimidazole-based probe, pimonidazole. The in vitro cellular uptake study revealed that FMISO accumulation in hypoxic cells depends on the cell type. In those cells exhibiting higher FMISO uptake, the reactive glutathione level and enzyme (glutathione S-transferase; GST) activity catalyzing the glutathione conjugation reaction was significantly higher, whereas the expression level of the efflux transporter (multidrug resistance-associated protein 1; MRP1) was significantly lower. Our study suggests that 2-nitroimidazole-based probes accumulate in hypoxic cells via glutathione conjugation following reductive metabolism, which depends not only on the glutathione conjugation capacity of the cells but also on hypoxic conditions.
Collapse
|
14
|
Kiraga Ł, Cheda Ł, Taciak B, Różańska K, Tonecka K, Szulc A, Kilian K, Górka E, Rogulski Z, Rygiel TP, Król M. Changes in hypoxia level of CT26 tumors during various stages of development and comparing different methods of hypoxia determination. PLoS One 2018; 13:e0206706. [PMID: 30412628 PMCID: PMC6226158 DOI: 10.1371/journal.pone.0206706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate hypoxia level at various tumor developmental stages and to compare various methods of hypoxia evaluation in pre-clinical CT26 tumor model. Using three methods of hypoxia determination, we evaluated hypoxia levels during CT26 tumor development in BALB/c mice from day 4 till day 19, in 2-3 days intervals. Molecular method was based on the analysis of selected genes expression related to hypoxia (HIF1A, ANGPTL4, TGFB1, VEGFA, ERBB3, CA9) or specific for inflammation in hypoxic sites (CCL2, CCL5) at various time points after CT26 cancer cells inoculation. Imaging methods of hypoxia evaluation included: positron-emission tomography (PET) imaging using [18F]fluoromisonidazole ([18F]FMISO) and a fluorescence microscope imaging of pimonidazole (PIMO)-positive tumor areas at various time points. Our results showed that tumor hypoxia at molecular level was relatively high at early stage of tumor development as reflected by initially high HIF1A and VEGFA expression levels and their subsequent decrease. However, imaging methods (both PET and fluorescence microscopy) showed that hypoxia increased till day 14 of tumor development. Additionally, necrotic regions dominated the tumor tissue at later stages of development, decreasing the number of hypoxic areas and completely eliminating normoxic regions (observed by PET). These results showed that molecular methods of hypoxia determination are more sensitive to show changes undergoing at cellular level, however in order to measure and visualize hypoxia in the whole organ, especially at later stages of tumor development, PET is the preferred tool. Furthermore we concluded, that during development of tumor, two peaks of hypoxia occur.
Collapse
Affiliation(s)
- Łukasz Kiraga
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Łukasz Cheda
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Bartłomiej Taciak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kamila Różańska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Tonecka
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Szulc
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | - Emilia Górka
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Rogulski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tomasz P. Rygiel
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
15
|
How to Modulate Tumor Hypoxia for Preclinical In Vivo Imaging Research. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4608186. [PMID: 30420794 PMCID: PMC6211155 DOI: 10.1155/2018/4608186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is related with tumor aggressiveness, chemo- and radiotherapy resistance, and thus a poor clinical outcome. Therefore, over the past decades, every effort has been made to develop strategies to battle the negative prognostic influence of tumor hypoxia. For appropriate patient selection and follow-up, noninvasive imaging biomarkers such as positron emission tomography (PET) radiolabeled ligands are unprecedentedly needed. Importantly, before being able to implement these new therapies and potential biomarkers into the clinical setting, preclinical in vivo validation in adequate animal models is indispensable. In this review, we provide an overview of the different attempts that have been made to create differential hypoxic in vivo cancer models with a particular focus on their applicability in PET imaging studies.
Collapse
|
16
|
FMISO-PET-based lymph node hypoxia adds to the prognostic value of tumor only hypoxia in HNSCC patients. Radiother Oncol 2018; 130:97-103. [PMID: 30293643 DOI: 10.1016/j.radonc.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE This secondary analysis of the prospective study on repeat [18F]fluoromisonidazole (FMISO)-PET in patients with locally advanced head and neck squamous cell carcinomas (HNSCC) assessed the prognostic value of synchronous hypoxia in primary tumor (Tu) and lymph node metastases (LN), and evaluated whether the combined reading was of higher prognostic value than that of primary tumor hypoxia only. METHODS This analysis included forty-five LN-positive HNSCC patients. FMISO-PET/CTs were performed at baseline, weeks 1, 2 and 5 of radiochemotherapy. Based on a binary scale, Tu and LN were categorized as hypoxic or normoxic, and two prognostic parameters were defined: Tu-hypoxia (independent of the LN oxygenation status) and synchronous Tu-and-LN-hypoxia. In fifteen patients with large LN (N = 21), additional quantitative analyses of FMISO-PET/CTs were performed. Imaging parameters at different time-points were correlated to the endpoints, i.e., locoregional control (LRC), local control (LC), regional control (RC) and time to progression (TTP). Survival curves were estimated using the cumulative incidence function. Univariable and multivariable Cox regression was used to evaluate the prognostic impact of hypoxia on the endpoints. RESULTS Synchronous Tu-and-LN-hypoxia was a strong adverse prognostic factor for LC, LRC and TTP at any of the four time-points (p ≤ 0.004), whereas Tu-hypoxia only was significantly associated with poor LC and LRC in weeks 2 and 5 (p ≤ 0.047), and with TTP in week 1 (p = 0.046). The multivariable analysis confirmed the prognostic value of synchronous Tu-and-LN-hypoxia regarding LRC (HR = 14.8, p = 0.017). The quantitative FMISO-PET/CT parameters correlated with qualitative hypoxia scale and RC (p < 0.001, p ≤ 0.033 at week 2, respectively). CONCLUSIONS This secondary analysis suggests that combined reading of primary tumor and LN hypoxia adds to the prognostic information of FMSIO-PET in comparison to primary tumor assessment alone in particular prior and early during radiochemotherapy. Confirmation in ongoing trials is needed before using this marker for personalized radiation oncology.
Collapse
|
17
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
18
|
Farolfi A, Ghedini P, Fanti S. Highlights from 2017: impactful topics published in the Annals of Nuclear Medicine. Eur J Nucl Med Mol Imaging 2018; 46:217-223. [PMID: 30267115 DOI: 10.1007/s00259-018-4169-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
The aim of the review is to highlight articles published in 2017 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. Among all published manuscripts during the past year, we conducted a subjective selection of the most relevant topics. Fourteen fascinating articles are included in this review, ranging in topic from preclinical to clinical arenas.
Collapse
Affiliation(s)
- Andrea Farolfi
- Metropolitan Nuclear Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Via Pietro Albertoni 15, 40138, Bologna, Italy.
| | - Pietro Ghedini
- Metropolitan Nuclear Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Via Pietro Albertoni 15, 40138, Bologna, Italy
| | - Stefano Fanti
- Metropolitan Nuclear Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Via Pietro Albertoni 15, 40138, Bologna, Italy
| |
Collapse
|
19
|
Shi K, Bayer C, Astner ST, Gaertner FC, Vaupel P, Schwaiger M, Huang SC, Ziegler SI. Quantitative Analysis of [ 18F]FMISO PET for Tumor Hypoxia: Correlation of Modeling Results with Immunohistochemistry. Mol Imaging Biol 2017; 19:120-129. [PMID: 27379986 DOI: 10.1007/s11307-016-0975-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Quantitative evaluation of tumor hypoxia based on H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO) positron emission tomography (PET) can deliver important information for treatment planning in radiotherapy. However, the merits and limitations of different analysis methods in revealing the underlying physiological feature are not clear. This study aimed to assess these quantitative analysis methods with the support of immunohistological data. PROCEDURES Sixteen nude mice bearing xenografted human squamous cell carcinomas (FaDu or CAL-33) were scanned using 2-h dynamic [18F]FMISO PET. Tumors were resected and sliced, and the hypoxia marker pimonidazole was immunostained followed by H&E staining. The pimonidazole signal was segmented using a k-means clustering algorithm, and the hypoxic fraction (HF) was calculated as the hypoxic area/viable tumor-tissue-area ratio pooled over three tissue slices from the apical, center, and basal layers. PET images were analyzed using various methods including static analysis [standard uptake value (SUV), tumor-to-blood ratio (T/B), tumor-to-muscle ratio (T/M)] and kinetic modeling (Casciari αk A , irreversible and reversible two-tissue compartment k 3, Thorwarth w A k 3, Patlak K i , Logan V d , Cho K), and correlated with HF. RESULTS No significant correlation was found for static analysis. A significant correlation between k 3 of the irreversible two-tissue compartment model and HF was observed (r = 0.61, p = 0.01). The correlation between HF and αk A of the Casciari model could be improved through reducing local minima by testing more sets of initial values (r = 0.59, p = 0.02) or by reducing the model complexity by fixing three parameters (r = 0.63, p = 0.0008). CONCLUSIONS With support of immunohistochemistry data, this study shows that various analysis methods for [18F]FMISO PET perform differently for assessment of tumor hypoxia. A better fitting quality does not necessarily mean a higher physiological correlation. Hypoxia PET analysis needs to consider both the mathematical stability and physiological fidelity. Based on the results of this study, preference should be given to the irreversible two-tissue compartment model as well as the Casciari model with reduced parameters.
Collapse
Affiliation(s)
- Kuangyu Shi
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse. 22, 81675, Munich, Germany.
| | - Christine Bayer
- Department of Radiooncology and Radiotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabrina T Astner
- Department of Radiooncology and Radiotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian C Gaertner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse. 22, 81675, Munich, Germany
| | - Peter Vaupel
- Department of Radiooncology and Radiotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse. 22, 81675, Munich, Germany
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse. 22, 81675, Munich, Germany
| |
Collapse
|
20
|
Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0248-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, Krause M, Steinbach J, Kotzerke J, Zips D, Troost EGC, Baumann M. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol 2017; 124:533-540. [PMID: 28843726 DOI: 10.1016/j.radonc.2017.08.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoxia is a well recognised parameter of tumour resistance to radiotherapy, a number of anticancer drugs and potentially immunotherapy. In a previously published exploration cohort of 25 head and neck squamous cell carcinoma (HNSCC) patients on [18F]fluoromisonidazole positron emission tomography (FMISO-PET) we identified residual tumour hypoxia during radiochemotherapy, not before start of treatment, as the driving mechanism of hypoxia-mediated therapy resistance. Several quantitative FMISO-PET parameters were identified as potential prognostic biomarkers. Here we present the results of the prospective validation cohort, and the overall results of the study. METHODS FMISO-PET/CT images of further 25 HNSCC patients were acquired at four time-points before and during radiochemotherapy (RCHT). Peak standardised uptake value, tumour-to-background ratio, and hypoxic volume were analysed. The impact of the potential prognostic parameters on loco-regional tumour control (LRC) was validated by the concordance index (ci) using univariable and multivariable Cox models based on the exploration cohort. Log-rank tests were employed to compare the endpoint between risk groups. RESULTS The two cohorts differed significantly in several baseline parameters, e.g., tumour volume, hypoxic volume, HPV status, and intercurrent death. Validation was successful for several FMISO-PET parameters and showed the highest performance (ci=0.77-0.81) after weeks 1 and 2 of treatment. Cut-off values for the FMISO-PET parameters could be validated after week 2 of RCHT. Median values for the residual hypoxic volume, defined as the ratio of the hypoxic volume in week 2 of RCHT and at baseline, stratified patients into groups of significantly different LRC when applied to the respective other cohort. CONCLUSION Our study validates that residual tumour hypoxia during radiochemotherapy is a major driver of therapy resistance of HNSCC, and that hypoxia after the second week of treatment measured by FMISO-PET may serve as biomarker for selection of patients at high risk of loco-regional recurrence after state-of-the art radiochemotherapy.
Collapse
Affiliation(s)
- Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Rosalind Perrin
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jörg Steinbach
- National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls Universität Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany.
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Masaki Y, Shimizu Y, Yoshioka T, Nishijima KI, Zhao S, Higashino K, Numata Y, Tamaki N, Kuge Y. FMISO accumulation in tumor is dependent on glutathione conjugation capacity in addition to hypoxic state. Ann Nucl Med 2017; 31:596-604. [PMID: 28695498 PMCID: PMC5622914 DOI: 10.1007/s12149-017-1189-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE 18F-fluoromisonidazole (FMISO), a well-known PET imaging probe for diagnosis of hypoxia, is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of the nitro group. Previously, we showed the majority of 18F-FMISO was incorporated into low-molecular-weight metabolites in hypoxic tumors, and the glutathione conjugate of reduced FMISO (amino-FMISO-GS) distributed in the tumor hypoxic regions as revealed by imaging mass spectrometry (IMS). The present study was conducted to clarify whether FMISO is metabolized to amino-FMISO-GS within tumor cells and how amino-FMISO-GS contributes to FMISO accumulation in hypoxic cells. We also evaluated the relationship between FMISO accumulation and the glutathione conjugation-related factors in the cells. METHODS Tumor cells (FaDu, LOVO, and T24) were treated with 18F-FMISO and incubated under normoxic or hypoxic conditions for 4 h. The FMISO metabolites were analyzed with LC-ESI-MS. Several glutathione conjugation-related factors of tumor cells were evaluated in vitro. FaDu tumor-bearing mice were intravenously injected with 18F-FMISO and the tumors were excised at 4 h post-injection. Autoradiography, IMS and histologic studies were performed. RESULTS Amino-FMISO-GS was the main contributor to FMISO incorporated in hypoxic FaDu cells in vitro and in vivo. Total FMISO uptake levels and amino-FMISO-GS levels were highest in FaDu, followed by LOVO, and then T24 (total uptake: 0.851 ± 0.009 (FaDu), 0.617 ± 0.021 (LOVO) and 0.167 ± 0.006 (T24) % dose/mg protein; amino-FMISO-GS: 0.502 ± 0.035 (FaDu), 0.158 ± 0.013 (LOVO), and 0.007 ± 0.001 (T24) % dose/mg protein). The glutathione level of FaDu was significantly higher than those of LOVO and T24. The enzyme activity of glutathione-S-transferase catalyzing the glutathione conjugation reaction in FaDu was similar levels to that in LOVO, and was higher than that in T24. Quantitative RT-PCR analysis revealed that the expression levels of efflux transporters of the glutathione conjugate (multidrug resistance-associated protein 1) were lowest in FaDu, followed by LOVO, and then T24. CONCLUSIONS FMISO accumulates in hypoxic cells through reductive metabolism followed by glutathione conjugation. We illustrated the possibility that increased production and decreased excretion of amino-FMISO-GS contribute to FMISO accumulation in tumor cells under hypoxic conditions.
Collapse
Affiliation(s)
- Yukiko Masaki
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoichi Shimizu
- Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan.
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Songji Zhao
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Nagara Tamaki
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, 060-0815, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
23
|
Challapalli A, Carroll L, Aboagye EO. Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging 2017; 5:225-253. [PMID: 28596947 PMCID: PMC5437135 DOI: 10.1007/s40336-017-0231-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Hypoxia is a condition of insufficient oxygen to support metabolism which occurs when the vascular supply is interrupted, or when a tumour outgrows its vascular supply. It is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. This review provides an overview of hypoxia imaging with Positron emission tomography (PET), with an emphasis on the biological relevance, mechanism of action, highlighting advantages, and limitations of the currently available hypoxia radiotracers. METHODS A comprehensive PubMed literature search was performed, identifying articles relating to biological significance and measurement of hypoxia, MRI methods, and PET imaging of hypoxia in preclinical and clinical settings, up to December 2016. RESULTS A variety of approaches have been explored over the years for detecting and monitoring changes in tumour hypoxia, including regional measurements with oxygen electrodes placed under CT guidance, MRI methods that measure either oxygenation or lactate production consequent to hypoxia, different nuclear medicine approaches that utilise imaging agents the accumulation of which is inversely related to oxygen tension, and optical methods. The advantages and disadvantages of these approaches are reviewed, along with individual strategies for validating different imaging methods. PET is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. CONCLUSION Even though hypoxia could have significant prognostic and predictive value in the clinic, the best method for hypoxia assessment has in our opinion not been realised.
Collapse
Affiliation(s)
- Amarnath Challapalli
- Department of Clinical Oncology, Bristol Cancer Institute, Horfield Road, Bristol, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| |
Collapse
|
24
|
Development of a mathematical model to estimate intra-tumor oxygen concentrations through multi-parametric imaging. Biomed Eng Online 2016; 15:114. [PMID: 27733170 PMCID: PMC5062945 DOI: 10.1186/s12938-016-0235-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/04/2016] [Indexed: 01/22/2023] Open
Abstract
Background Tumor hypoxia is involved in every stage of solid tumor development: formation, progression, metastasis, and apoptosis. Two types of hypoxia exist in tumors—chronic hypoxia and acute hypoxia. Recent studies indicate that the regional hypoxia kinetics is closely linked to metastasis and therapeutic responses, but regional hypoxia kinetics is hard to measure. We propose a novel approach to determine the local pO2 by fusing the parameters obtained from in vivo functional imaging through the use of a modified multivariate Krogh model. Methods To test our idea and its potential to translate into an in vivo setting through the use of existing imaging techniques, simulation studies were performed comparing the local partial oxygen pressure (pO2) from the proposed multivariate image fusion model to the referenced pO2 derived by Green’s function, which considers the contribution from every vessel segment of an entire three-dimensional tumor vasculature to profile tumor oxygen with high spatial resolution. Results pO2 derived from our fusion approach were close to the referenced pO2 with regression slope near 1.0 and an r2 higher than 0.8 if the voxel size (or the spatial resolution set by functional imaging modality) was less than 200 μm. The simulation also showed that the metabolic rate, blood perfusion, and hemoglobin concentration were dominant factors in tissue oxygenation. The impact of the measurement error of functional imaging to the pO2 precision and accuracy was simulated. A Gaussian error function with FWHM equal to 20 % of blood perfusion or fractional vascular volume measurement contributed to average 7 % statistical error in pO2. Conclusion The simulation results indicate that the fusion of multiple parametric maps through the biophysically derived mathematical models can monitor the intra-tumor spatial variations of hypoxia in tumors with existing imaging methods, and the potential to further investigate different forms of hypoxia, such as chronic and acute hypoxia, in response to cancer therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12938-016-0235-5) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Zschaeck S, Steinbach J, Troost EGC. FMISO as a Biomarker for Clinical Radiation Oncology. Recent Results Cancer Res 2016; 198:189-201. [PMID: 27318688 DOI: 10.1007/978-3-662-49651-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumour hypoxia is a well-known negative prognostic marker in almost all solid tumours. [18F]Fluoromisonidazole (FMISO)-positron emission tomography (PET) is a non-invasive method to detect tumour hypoxia. Compared to other methods of hypoxia assessment it possesses some considerable advantages: It is non-invasive, it delivers spatial information on the hypoxia distribution within the entire tumour volume, and it can be repeated during the course of radio(chemo)therapy. This chapter briefly describes different methods of hypoxia evaluation and focuses on hypoxia PET imaging, with the most commonly used tracer being FMISO. The preclinical rationale and clinical studies to use FMISO-PET for patient stratification in radiation therapy are discussed as well as possible agents or radiation-dose modifications to overcome hypoxia.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,German Cancer Consortium (DKTK), Dresden, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
26
|
Abstract
There is an important and strong, but complex influence of the tumor microenvironment on tumor cells' phenotype, aggressiveness, and treatment sensitivity. One of the most frequent and best-studied aspects of the tumor microenvironment is hypoxia. Low oxygen tension often occurs in tumor cells by several mechanisms, for example, poor angiogenesis and increased oxygen consumption. Hypoxia is a heterogeneous concept with oxygen tensions ranging from <0.01% (anoxia) to 5%, and can be chronic, acute, or cycling, all with differential effects on tumor cells. Quantification of tumor hypoxia can be performed directly or indirectly, and with exogenous or endogenous markers. Tumor cells launch different intracellular signaling pathways to survive hypoxia, such as hypoxia-inducible factor 1-mediated gene expression, the unfolded protein response, and AKT-mammalian target of rapamycin signaling. These pathways induce aggressive, metastatic, and treatment-insensitive tumors and are considered potential targets for (additive) therapy. Hypoxia leads to important, yet currently not well-understood changes in microRNA expression, epigenetics, and metabolism. Further, treatment-insensitive tumors arise through hypoxia-induced Darwinian selection of apoptosis-deficient, p53-mutated tumor cells. In conclusion, hypoxia has profound and largely still poorly understood effects on tumor cells with a major effect on the tumor's biology.
Collapse
Affiliation(s)
- Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Masaki Y, Shimizu Y, Yoshioka T, Tanaka Y, Nishijima KI, Zhao S, Higashino K, Sakamoto S, Numata Y, Yamaguchi Y, Tamaki N, Kuge Y. The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci Rep 2015; 5:16802. [PMID: 26582591 PMCID: PMC4652161 DOI: 10.1038/srep16802] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/20/2015] [Indexed: 01/15/2023] Open
Abstract
18F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.
Collapse
Affiliation(s)
- Yukiko Masaki
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi &Co., Ltd., Sapporo 001-0021, Japan
| | - Yoichi Shimizu
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi &Co., Ltd., Sapporo 001-0021, Japan
| | - Yukari Tanaka
- Shionogi Pharmaceutical Research Center, Research Laboratory for Development, Shionogi &Co., Ltd., Osaka 561-0825, Japan
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Japan.,Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Songji Zhao
- Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi &Co., Ltd., Sapporo 001-0021, Japan
| | - Shingo Sakamoto
- Shionogi Pharmaceutical Research Center, Research Laboratory for Development, Shionogi &Co., Ltd., Osaka 561-0825, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi &Co., Ltd., Sapporo 001-0021, Japan
| | - Yoshitaka Yamaguchi
- Shionogi Pharmaceutical Research Center, Research Laboratory for Development, Shionogi &Co., Ltd., Osaka 561-0825, Japan
| | - Nagara Tamaki
- Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo 060-0815, Japan.,Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
28
|
Tamaki N, Hirata K. Tumor hypoxia: a new PET imaging biomarker in clinical oncology. Int J Clin Oncol 2015; 21:619-625. [DOI: 10.1007/s10147-015-0920-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 01/02/2023]
|
29
|
Troost EG, Thorwarth D, Oyen WJ. Imaging-Based Treatment Adaptation in Radiation Oncology. J Nucl Med 2015; 56:1922-9. [DOI: 10.2967/jnumed.115.162529] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
|
30
|
Cui YL, Wang X, Li XF. (18)F-fluoromisonidazole PET reveals spatial and temporal heterogeneity of hypoxia in mouse models of human non-small-cell lung cancer. Future Oncol 2015; 11:2841-9. [PMID: 26361064 DOI: 10.2217/fon.15.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIM To noninvasively observe dynamic changes in tumor hypoxia in mouse models of human non-small-cell lung cancer (NSCLC) using (18)F-fluoromisonidazole PET. MATERIALS & METHODS Nude mice with NSCLC H460 and A549 subcutaneous xenografts were coinjected intravenously with (18)F-fluoromisonidazole and the hypoxia marker pimonidazole, and observed by serial PET scans. After sacrifice, the tumor distribution of (18)F-fluoromisonidazole and pimonidazole was compared by digital autoradiography and microscopy, respectively. RESULTS The NSCLC hypoxic microenvironment was spatially heterogeneous. Serial PET scans over 48 h revealed an apparent change in the intratumoral distribution of (18)F-fluoromisonidazole. CONCLUSION The tumor hypoxic microenvironment is spatially and temporally heterogeneous, and hypoxic cancer cells have a shorter life span when growing in vivo. Therefore, the concept of hypoxic resistance and hypoxia-targeting therapy of macroscopic tumors should be revisited.
Collapse
Affiliation(s)
- Ya-Li Cui
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Xuemei Wang
- Department of Nuclear Medicine, Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia, China
| | - Xiao-Feng Li
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Alonzi R. Functional Radiotherapy Targeting using Focused Dose Escalation. Clin Oncol (R Coll Radiol) 2015; 27:601-17. [PMID: 26456478 DOI: 10.1016/j.clon.2015.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Various quantitative and semi-quantitative imaging biomarkers have been identified that may serve as valid surrogates for the risk of recurrence after radiotherapy. Tumour characteristics, such as hypoxia, vascularity, cellular proliferation and clonogen density, can be geographically mapped using biological imaging techniques. The potential gains in therapeutic ratio from the precision targeting of areas of intrinsic resistance makes focused dose escalation an exciting field of study. This overview will explore the issues surrounding biologically optimised radiotherapy, including its requirements, feasibility, technical considerations and potential applicability.
Collapse
Affiliation(s)
- R Alonzi
- Mount Vernon Cancer Centre, Northwood, UK.
| |
Collapse
|
32
|
Assessment of hypoxic subvolumes in laryngeal cancer with (18)F-fluoroazomycinarabinoside ((18)F-FAZA)-PET/CT scanning and immunohistochemistry. Radiother Oncol 2015; 117:106-12. [PMID: 26250803 DOI: 10.1016/j.radonc.2015.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE (18)F-fluoroazomycinarabinoside ((18)F-FAZA) is a promising hypoxia radiopharmaceutical agent with outstanding biokinetic parameters. We aimed to determine the accuracy of (18)F-FAZA-PET/CT scan in detecting hypoxic regions within the tumor using immunohistochemical markers in a pilot study. PATIENTS AND METHODS Eleven patients with primary or recurrent laryngeal squamous cell carcinoma were indicated for total laryngectomy (TLE). Patients underwent (18)F-FAZA-PET/CT scan before TLE. Hypoxic regions inside the laryngeal tumor were determined. After TLE, regions with high uptake on (18)F-FAZA-PET scan were selected for immunohistochemical examination for exogenous (pimonidazole) and endogenous (HIF1α, CA-IX and GLUT-1) hypoxia markers. To assess the accuracy of (18)F-FAZA-PET scanning, radiopharmacon accumulation was related with immunohistochemical expression of hypoxia markers. RESULTS Inter- and intratumoral heterogeneity of tumor hypoxia was observed on (18)F-FAZA-PET scan. Nine of the eleven tumors were hypoxic with (18)F-FAZA-PET. Hypoxia could also be detected with pimonidazole, HIF1α, CA-IX and GLUT-1 expression in some tumors. No clear association was observed between (18)F-FAZA uptake and hypoxia markers. CONCLUSIONS This pilot study could not prove the accuracy of (18)F-FAZA-PET in determining hypoxic subvolumes in laryngeal cancer. Further study is required to investigate the benefit of (18)F-FAZA-PET imaging in radiotherapy planning.
Collapse
|
33
|
Wack LJ, Mönnich D, van Elmpt W, Zegers CML, Troost EGC, Zips D, Thorwarth D. Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia--a simulation study. Acta Oncol 2015. [PMID: 26203928 DOI: 10.3109/0284186x.2015.1067721] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND To investigate the effect of hypoxia tracer properties on positron emission tomography (PET) image quality for three tracers [18F]-fluoromisonidazole (FMISO), [18F]-fluoroazomycinarabinoside (FAZA) and [18F]-flortanidazole (HX4), using mathematical simulations based on microscopic tumor tissue sections. MATERIAL AND METHODS Oxygen distribution and tracer binding was mathematically simulated on immunohistochemically stained cross-sections of tumor xenografts. Tracer diffusion properties were determined based on available literature. Blood activity and clearance over a four-hour period post-injection (p.i.) were derived from clinical dynamic PET scans of patients suffering from head and neck or bronchial cancer. Simulations were performed both for average patient blood activities and for individual patients, and image contrast between normoxic and hypoxic tissue areas was determined over this four-hour period p.i. RESULTS On average, HX4 showed a six-fold higher clearance than FMISO and an almost three-fold higher clearance than FAZA based on the clinical PET data. The absolute variation in clearance was significantly higher for HX4 than for FMISO (standard deviations of 5.75 *10-5 s-1 vs. 1.55 *10-5 s-1). The absolute tracer activity in these scans at four hours p.i. was highest for FMISO and lowest for HX4. Simulated contrast at four hours p.i. was highest for HX4 (2.39), while FMISO and FAZA were comparable (1.67 and 1.75, respectively). Variations in contrast of 7-11% were observed for each tracer depending on the vascularization patterns of the chosen tissue. Higher variations in clearance for HX4 resulted in an increased inter-patient variance in simulated contrast at four hours p.i. CONCLUSIONS In line with recent experimental and clinical data, the results suggest that HX4 is a promising new tracer that provides high image contrast four hours p.i., though inter-patient variance can be very high. Nevertheless, the widely used tracer FMISO provides a robust and reproducible signal four hours p.i., but with a lower contrast. The simulations revealed tracer clearance to be the key factor in determining image contrast.
Collapse
Affiliation(s)
- Linda J Wack
- a Section for Biomedical Physics, Department of Radiation Oncology , University Hospital Tübingen , Tübingen , Germany
| | - David Mönnich
- a Section for Biomedical Physics, Department of Radiation Oncology , University Hospital Tübingen , Tübingen , Germany
| | - Wouter van Elmpt
- b Department of Radiation Oncology (MAASTRO) , GROW - School for Oncology and Developmental Biology , Maastricht , The Netherlands
| | - Catharina M L Zegers
- b Department of Radiation Oncology (MAASTRO) , GROW - School for Oncology and Developmental Biology , Maastricht , The Netherlands
| | - Esther G C Troost
- b Department of Radiation Oncology (MAASTRO) , GROW - School for Oncology and Developmental Biology , Maastricht , The Netherlands
- c Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Daniel Zips
- d Department of Radiation Oncology , University Hospital Tübingen , Tübingen , Germany
| | - Daniela Thorwarth
- a Section for Biomedical Physics, Department of Radiation Oncology , University Hospital Tübingen , Tübingen , Germany
| |
Collapse
|
34
|
Nagelkerke A, Sweep FCGJ, Stegeman H, Grénman R, Kaanders JHAM, Bussink J, Span PN. Hypoxic regulation of the PERK/ATF4/LAMP3-arm of the unfolded protein response in head and neck squamous cell carcinoma. Head Neck 2015; 37:896-905. [PMID: 24634103 DOI: 10.1002/hed.23693] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine the hypoxic regulation of the PKR-like endoplasmic reticulum kinase (PERK)/activating transcription factor-4 (ATF4)/lysosome-associated membrane protein 3 (LAMP3)-arm of the unfolded protein response (UPR) in head and neck squamous cell carcinoma (HNSCC). METHODS LAMP3 expression was determined in patient biopsies by immunohistochemistry and correlated to clinicopathological parameters. mRNA and protein expression for PERK, ATF4, and LAMP3 was evaluated after hypoxic exposure of HNSCC cell lines. RESULTS In patients with HNSCC, high LAMP3 expression correlated with N classification (p = .019) and the occurrence of distant metastases during follow-up (p = .039). Patients with high LAMP3 levels had a worse metastasis-free survival (p = .008). Intriguingly, LAMP3 expression was localized exclusively in normoxic areas of tumors and xenografts. Expression of PERK, p-PERK, p-eIF2α, ATF4, and LAMP3 was not universally induced in hypoxic HNSCC cell lines. Exposure to endoplasmic reticulum-stress stimulated PERK, ATF4, and LAMP3 expression. CONCLUSION LAMP3 is relevant for prognosis in HNSCC. However, the PERK/ATF4/LAMP3-arm of the UPR responds differently to hypoxia in HNSCC compared to other tumor types.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Hanneke Stegeman
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery and Department of Medical Biochemistry, Turku University Hospital and University of Turku, Turku, Finland
| | - Johannes H A M Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Jentsch C, Beuthien-Baumann B, Troost EGC, Shakirin G. Validation of functional imaging as a biomarker for radiation treatment response. Br J Radiol 2015; 88:20150014. [PMID: 26083533 DOI: 10.1259/bjr.20150014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Major advances in radiotherapy techniques, increasing knowledge of tumour biology and the ability to translate these advances into new therapeutic approaches are important goals towards more individualized cancer treatment. With the development of non-invasive functional and molecular imaging techniques such as positron emission tomography (PET)-CT scanning and MRI, there is now a need to evaluate potential new biomarkers for tumour response prediction, for treatment individualization is not only based on morphological criteria but also on biological tumour characteristics. The goal of individualization of radiotherapy is to improve treatment outcome and potentially reduce chronic treatment toxicity. This review gives an overview of the molecular and functional imaging modalities of tumour hypoxia and tumour cell metabolism, proliferation and perfusion as predictive biomarkers for radiation treatment response in head and neck tumours and in lung tumours. The current status of knowledge on integration of PET/CT/MRI into treatment management and bioimage-guided adaptive radiotherapy are discussed.
Collapse
Affiliation(s)
- C Jentsch
- 1 OncoRay-National Centre for Radiation Research in Oncology, Dresden, Germany.,2 Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden,Helmholtz-Zentrum Dresden-Rossendorf, Germany.,3 German Cancer Consortium (DKTK) Dresden, Germany
| | - B Beuthien-Baumann
- 1 OncoRay-National Centre for Radiation Research in Oncology, Dresden, Germany.,3 German Cancer Consortium (DKTK) Dresden, Germany.,4 Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - E G C Troost
- 1 OncoRay-National Centre for Radiation Research in Oncology, Dresden, Germany.,2 Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden,Helmholtz-Zentrum Dresden-Rossendorf, Germany.,3 German Cancer Consortium (DKTK) Dresden, Germany.,4 Institute of Radiation Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | |
Collapse
|
36
|
Verwer EE, Boellaard R, Veldt AAMVD. Positron emission tomography to assess hypoxia and perfusion in lung cancer. World J Clin Oncol 2014; 5:824-844. [PMID: 25493221 PMCID: PMC4259945 DOI: 10.5306/wjco.v5.i5.824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed.
Collapse
|
37
|
Grönroos TJ, Lehtiö K, Söderström KO, Kronqvist P, Laine J, Eskola O, Viljanen T, Grénman R, Solin O, Minn H. Hypoxia, blood flow and metabolism in squamous-cell carcinoma of the head and neck: correlations between multiple immunohistochemical parameters and PET. BMC Cancer 2014; 14:876. [PMID: 25421331 PMCID: PMC4251851 DOI: 10.1186/1471-2407-14-876] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background The relationship between the uptake of [18F]fluoroerythronitroimidazole ([18F]FETNIM), blood flow ([15O]H2O) and 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) and immunohistochemically determined biomarkers was evaluated in squamous-cell carcinomas of the head and neck (HNSCC). Methods [18F]FETNIM and [18F]FDG PET were performed on separate days on 15 untreated patients with HNSCC. Hypoxia imaging with [18F]FETNIM was coupled with measurement of tumor blood flow using [15O]H2O. Uptake of [18F]FETNIM was measured as tumor-to-plasma ratio (T/P) and fractional hypoxic volume (FHV), and that of [18F]FDG as standardized uptake value (SUV) and the metabolically active tumor volume (TV). Tumor biopsies were cut and stained for GLUT-1, Ki-67, p53, CD68, HIF-1α, VEGFsc-152, CD31 and apoptosis. The expression of biomarkers was correlated to PET findings and patient outcome. Results None of the PET parameters depicting hypoxia and metabolism correlated with the expression of the biomarkers on a continuous scale. When PET parameters were divided into two groups according to median values, a significant association was detected between [18F]FDG SUV and p53 expression (p =0.029) using median SUV as the cut-off. There was a significant association between tumor volume and the amount of apoptotic cells (p =0.029). The intensity of VEGF stained cells was associated with [18F]FDG SUV (p =0.036). Patient outcome was associated with tumor macrophage content (p =0.050), but not with the other biomarkers. HIF-1α correlated with GLUT-1 (rs =0.553, p =0.040) and Ki-67 with HIF-1α (rs =506, p =0.065). p53 correlated inversely with GLUT-1 (rs = −618, p =0.019) and apoptosis with Ki-67 (rs = −638, p =0.014). Conclusions A high uptake of [18F]FDG expressed as SUV is linked to an aggressive HNSCC phenotype: the rate of apoptosis is low and the expressions of p53 and VEGF are high. None of the studied biomarkers correlated with perfusion and hypoxia as evaluated with [15O]H2O-PET and [18F]FETNIM-PET. Increased tumor metabolism evaluated with PET may thus signify an aggressive phenotype, which should be taken into account in the management of HNSCC.
Collapse
Affiliation(s)
- Tove J Grönroos
- Turku PET Centre, Medicity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Furukawa T, Yuan Q, Jin ZH, Aung W, Yoshii Y, Hasegawa S, Endo H, Inoue M, Zhang MR, Fujibayashi Y, Saga T. Comparison of intratumoral FDG and Cu-ATSM distributions in cancer tissue originated spheroid (CTOS) xenografts, a tumor model retaining the original tumor properties. Nucl Med Biol 2014; 41:653-659. [PMID: 24997088 DOI: 10.1016/j.nucmedbio.2014.05.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The intratumoral distributions of [(18)F]FDG and [(64)Cu]Cu-ATSM have been reported to be similar in adenocarcinomas but different in squamous cell carcinoma (SCC) in clinical studies. In the present study, we compared the intratumoral distributions of these two tracers in cancer tissue originated spheroid (CTOS) xenografts derived from adenocarcinoma and SCC, which retain the histological characteristics of the original tumors, and in cancer cell line xenografts of corresponding origin, to investigate the underlying mechanism of the distinct FDG and Cu-ATSM distribution patterns in adenocarcinoma and SCC. METHODS CTOSs derived from colon adenocarcinoma and lung SCC and cell lines established from colon adenocarcinoma and lung SCC, which were used for comparison, were subcutaneously transplanted into immunodeficient mice. One hour after administering [(14)C]FDG and [(64)Cu]Cu-ATSM, the intratumoral distributions were compared in the xenografts by using dual-tracer autoradiography. Adjacent sections were evaluated for necrosis, vasculature anatomy, Ki-67 antigen, and pimonidazole adducts using hematoxylin and eosin and immunohistochemical staining. RESULTS There was a higher regional overlap of high FDG and Cu-ATSM accumulations in the adenocarcinoma CTOS xenografts than in the SCC CTOS xenografts, while the overlap in the adenocarcinoma cell line xenograft was lower than that observed in the SCC cell line. High FDG accumulation occurred primarily in proximity to necrotic or pimonidazole adduct positive regions, while high Cu-ATSM accumulation occurred primarily in live cell regions separate from the necrotic regions. The adenocarcinoma CTOS xenograft had the stereotypical glandular structure, resulting in more intricately mixed regions of live and necrotic cells compared to those observed in the SCC CTOS or the cell line xenografts. CONCLUSION Tumor morphological characteristics, specifically the spatial distribution of live and necrotic cell regions, appeared to be one of the most critical factors determining the regional overlap of FDG and Cu-ATSM distributions in adenocarcinoma.
Collapse
Affiliation(s)
- Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - Qinghua Yuan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Winn Aung
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Yukie Yoshii
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Sumitaka Hasegawa
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroko Endo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Yasuhisa Fujibayashi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
39
|
Schütze C, Bergmann R, Brüchner K, Mosch B, Yaromina A, Zips D, Hessel F, Krause M, Thames H, Kotzerke J, Steinbach J, Baumann M, Beuthien-Baumann B. Effect of [18F]FMISO stratified dose-escalation on local control in FaDu hSCC in nude mice. Radiother Oncol 2014; 111:81-7. [DOI: 10.1016/j.radonc.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
40
|
Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res 2014; 181:335-49. [PMID: 24673257 DOI: 10.1667/rr13590.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The problem of tumor hypoxia has been recognized and studied by the oncology community for over 60 years. From radiation and chemotherapy resistance to the increased risk of metastasis, low oxygen concentrations in tumors have caused patients with many types of tumors to respond poorly to conventional cancer therapies. It is clear that patients with high levels of tumor hypoxia have a poorer overall treatment response and that the magnitude of hypoxia is an important prognostic factor. As a result, the development of methods to measure tumor hypoxia using invasive and noninvasive techniques has become desirable to the clinical oncology community. A variety of imaging modalities have been established to visualize hypoxia in vivo. Positron emission tomography (PET) imaging, in particular, has played a key role for imaging tumor hypoxia because of the development of hypoxia-specific radiolabelled agents. Consequently, this technique is increasingly used in the clinic for a wide variety of cancer types. Following a broad overview of the complexity of tumor hypoxia and measurement techniques to date, this article will focus specifically on the accuracy and reproducibility of PET imaging to quantify tumor hypoxia. Despite numerous advances in the field of PET imaging for hypoxia, we continue to search for the ideal hypoxia tracer to both qualitatively and quantitatively define the tumor hypoxic volume in a clinical setting to optimize treatments and predict response in cancer patients.
Collapse
Affiliation(s)
- Olivia J Kelada
- a Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut; and
| | | |
Collapse
|
41
|
Cheng X, Bayer C, Maftei CA, Astner ST, Vaupel P, Ziegler SI, Shi K. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry. Phys Med Biol 2013; 59:347-62. [PMID: 24351879 DOI: 10.1088/0031-9155/59/2/347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.
Collapse
Affiliation(s)
- Xiaoyin Cheng
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Hoeben BAW, Bussink J, Troost EGC, Oyen WJG, Kaanders JHAM. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer. Acta Oncol 2013; 52:1257-71. [PMID: 24003853 DOI: 10.3109/0284186x.2013.812799] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.
Collapse
Affiliation(s)
- Bianca A W Hoeben
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre , Nijmegen , The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Biological characteristics of intratumoral [F-18]‑fluoromisonidazole distribution in a rodent model of glioma. Int J Oncol 2013; 42:823-30. [PMID: 23338175 PMCID: PMC3597456 DOI: 10.3892/ijo.2013.1781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/18/2012] [Indexed: 11/05/2022] Open
Abstract
Accurate imaging to identify hypoxic regions in tumors is key for radiotherapy planning. [F-18]‑fluoro-misonidazole ([F-18]-FMISO) is widely used for tumor hypoxia imaging and has the potential to optimize radiotherapy planning. However, the biological characteristics of intratumoral [F-18]-FMISO distribution have not yet been fully investigated. In hypoxic cells, the hypoxia-inducible factor-1 (HIF-1) target proteins that induce cellular proliferation and glucose metabolism, glucose transporter-1 (Glut-1) and hexokinase-II (HK-II), are upregulated. In this study, we determined the intratumoral distribution of [F-18]-FMISO by autoradiography (ARG) and compared it with pimonidazole uptake, expression of Glut-1, tumor proliferative activity (Ki-67 index) and glucose metabolism ([C-14]2-fluoro-2-deoxy-D-glucose uptake; [C-14]-FDG) in a glioma rat model. Five C6 glioma‑bearing rats were injected with [F-18]-FMISO and [C-14]-FDG. After 90 min, the rats were injected with pimonidazole and 60 min later, the rats were sacrificed and tumor tissues were sectioned into slices. The adjacent slices were used for ARG and immunohistochemical (IHC) analyses of pimonidazole, Glut-1 and Ki-67. [F-18]-FMISO ARG images were divided into regions of high [F-18]-FMISO uptake (FMISO+) and low [F-18]-FMISO uptake (FMISO-). Pimonidazole and Glut-1 expression levels, Ki-67 index and [C-14]-FDG distribution were evaluated in the regions of interest (ROIs) placed on FMISO+ and FMISO-. [F-18]-FMISO distribution was generally consistent with pimonidazole distribution. The percentage of positively stained areas (% positive) of Glut-1 in FMISO+ was significantly higher compared to FMISO- (24 ± 8% in FMISO+ and 9 ± 4% in FMISO-; P<0.05). There were no significant differences in Ki-67 index and [C-14]-FDG uptake between FMISO+ and FMISO- (for Ki-67, 10 ± 5% in FMISO+ and 12 ± 5% in FMISO-, P=ns; for [C-14]-FDG, 1.4 ± 0.3% ID/g/kg in FMISO+ and 1.3 ± 0.3% ID/g/kg in FMISO-, P = ns). Intratumoral [F-18]-FMISO distribution reflected tumor hypoxia and expression of the hypoxia‑related gene product Glut-1; it did not, however, reflect tumor proliferation or glucose metabolism. Our findings help elucidate the biological characteristics of intratumoral [F-18]-FMISO distribution that are relevant to radiotherapy planning.
Collapse
|
44
|
Murakami M, Zhao S, Zhao Y, Chowdhury NF, Yu W, Nishijima KI, Takiguchi M, Tamaki N, Kuge Y. Evaluation of changes in the tumor microenvironment after sorafenib therapy by sequential histology and 18F-fluoromisonidazole hypoxia imaging in renal cell carcinoma. Int J Oncol 2012; 41:1593-600. [PMID: 22965141 PMCID: PMC3583814 DOI: 10.3892/ijo.2012.1624] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023] Open
Abstract
The mechanistic dissociation of ‘tumor starvation’ versus ‘vascular normalization’ following anti-angiogenic therapy is a subject of intense controversy in the field of experimental research. In addition, accurately evaluating changes of the tumor microenvironment after anti-angiogenic therapy is important for optimizing treatment strategy. Sorafenib has considerable anti-angiogenic effects that lead to tumor starvation and induce tumor hypoxia in the highly vascularized renal cell carcinoma (RCC) xenografts. 18F-fluoromisonidazole (18F-FMISO) is a proven hypoxia imaging probe. Thus, to clarify early changes in the tumor microenvironment following anti-angiogenic therapy and whether 18F-FMISO imaging can detect those changes, we evaluated early changes in the tumor microenvironment after sorafenib treatment in an RCC xenograft by sequential histological analysis and 18F-FMISO autoradiography (ARG). A human RCC xenograft (A498) was established in nude mice, for histological studies and ARG, and further assigned to the control and sorafenib-treated groups (80 mg/kg, per os). Mice were sacrificed on Days 1, 2, 3 and 7 in the histological study, and on Days 3 and 7 in ARG after sorafenib treatment. Tumor volume was measured every day. 18F-FMISO and pimonidazole were injected intravenously 4 and 2 h before sacrifice, respectively. Tumor sections were stained with hematoxylin and eosin and immunohistochemically with pimonidazole and CD31. Intratumoral 18F-FMISO distribution was quantified in ARG. Tumor volume did not significantly change on Day 7 after sorafenib treatment. In the histological study, hypoxic fraction significantly increased on Day 2, mean vessel density significantly decreased on Day 1 and necrosis area significantly increased on Day 2 after sorafenib treatment. Intratumoral 18F-FMISO distribution significantly increased on Days 3 (10.2-fold, p<0.01) and 7 (4.1-fold, p<0.01) after sorafenib treatment. The sequential histological evaluation of the tumor microenvironment clarified tumor starvation in A498 xenografts treated with sorafenib. 18F-FMISO hypoxia imaging confirmed the tumor starvation. 18F-FMISO PET may contribute to determine an optimum treatment protocol after anti-angiogenic therapy.
Collapse
Affiliation(s)
- Masahiro Murakami
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang T, Civelek AC, Li J, Jiang H, Ng CK, Postel GC, Shen B, Li XF. Tumor microenvironment-dependent 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole uptake: a pilot study in mouse models of human non-small cell lung cancer. J Nucl Med 2012; 53:1262-8. [PMID: 22717978 DOI: 10.2967/jnumed.111.098087] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED (18)F-FDG, (18)F-fluorothymidine, and (18)F-misonidazole PET scans have emerged as important clinical tools in the management of cancer; however, none of them have demonstrated conclusive superiority. The aim of this study was to compare the intratumoral accumulation of (18)F-FDG, (18)F-fluorothymidine, and (18)F-misonidazole and relate this to specific components of the tumor microenvironment in mouse models of human non-small cell lung cancer (NSCLC). METHODS We used NSCLC A549 and HTB177 cells to generate subcutaneous and peritoneal xenografts in nude mice. Animals were coinjected with a PET radiotracer, pimonidazole (hypoxia marker), and bromodeoxyuridine (proliferation marker) intravenously 1 h before animal euthanasia. Tumor perfusion was assessed by Hoechst 33342 injection, given 1 min before sacrifice. The intratumoral distribution of PET radiotracers was visualized by digital autoradiography and related to microscopic visualization of proliferation, hypoxia, perfusion, stroma, and necrosis. RESULTS NSCLC xenografts had complex structures with intermingled regions of viable cancer cells, stroma, and necrosis. Cancer cells were either well oxygenated (staining negatively for pimonidazole) and highly proliferative (staining positively for bromodeoxyuridine) or hypoxic (pimonidazole-positive) and noncycling (little bromodeoxyuridine). Hypoxic cancer cells with a low proliferation rate had high(18)F-FDG and (18)F-misonidazole uptake but low (18)F-fluorothymidine accumulation. Well-oxygenated cancer cells with a high proliferation rate accumulated a high level of (18)F-fluorothymidine but low (18)F-FDG and(18)F-misonidazole. Tumor stroma and necrotic zones were always associated with low (18)F-FDG, (18)F-misonidazole, and (18)F-fluorothymidine activity. CONCLUSION In NSCLC A549 and HTB177 subcutaneously or intraperitoneally growing xenografts, (18)F-fluorothymidine accumulates in well-oxygenated and proliferative cancer cells, whereas (18)F-misonidazole and (18)F-FDG accumulate mostly in poorly proliferative and hypoxic cancer cells. (18)F-FDG and (18)F-misonidazole display similar intratumoral distribution patterns, and both mutually exclude (18)F-fluorothymidine.
Collapse
Affiliation(s)
- Tao Huang
- Department of Medical Imaging, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
(64)Cu-ATSM and (18)FDG PET uptake and (64)Cu-ATSM autoradiography in spontaneous canine tumors: comparison with pimonidazole hypoxia immunohistochemistry. Radiat Oncol 2012; 7:89. [PMID: 22704363 PMCID: PMC3403947 DOI: 10.1186/1748-717x-7-89] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to compare (64)Cu-diacetyl-bis(N(4)-methylsemicarbazone) ((64)Cu-ATSM) and (18)FDG PET uptake characteristics and (64)Cu-ATSM autoradiography to pimonidazole immunohistochemistry in spontaneous canine sarcomas and carcinomas. METHODS Biopsies were collected from individual tumors between approximately 3 and 25 hours after the intravenous injection of (64)Cu-ATSM and pimonidazole. (64)Cu-ATSM autoradiography and pimonidazole immunostaining was performed on sectioned biopsies. Acquired (64)Cu-ATSM autoradiography and pimonidazole images were rescaled, aligned and their distribution patterns compared. (64)Cu-ATSM and (18)FDG PET/CT scans were performed in a concurrent study and uptake characteristics were obtained for tumors where available. RESULTS Maximum pimonidazole pixel value and mean pimonidazole labeled fraction was found to be strongly correlated to (18)FDG PET uptake levels, whereas more varying results were obtained for the comparison to (64)Cu-ATSM. In the case of the latter, uptake at scans performed 3 h post injection (pi) generally showed strong positive correlated to pimonidazole uptake.Comparison of distribution patterns of pimonidazole immunohistochemistry and (64)Cu-ATSM autoradiography yielded varying results. Significant positive correlations were mainly found in sections displaying a heterogeneous distribution of tracers. CONCLUSIONS Tumors with high levels of pimonidazole staining generally displayed high uptake of (18)FDG and (64)Cu-ATSM (3 h pi.). Similar regional distribution of (64)Cu-ATSM and pimonidazole was observed in most heterogeneous tumor regions. However, tumor and hypoxia level dependent differences may exist with regard to the hypoxia specificity of (64)Cu-ATSM in canine tumors.
Collapse
|
47
|
Maftei CA, Bayer C, Shi K, Astner ST, Vaupel P. Changes in the fraction of total hypoxia and hypoxia subtypes in human squamous cell carcinomas upon fractionated irradiation: evaluation using pattern recognition in microcirculatory supply units. Radiother Oncol 2012; 101:209-16. [PMID: 21641070 DOI: 10.1016/j.radonc.2011.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Evaluate changes in total hypoxia and hypoxia subtypes in vital tumor tissue of human head and neck squamous cell carcinomas (hHNSCC) upon fractionated irradiation. MATERIALS AND METHODS Xenograft tumors were generated from 5 hHNSCC cell lines (UT-SCC-15, FaDu, SAS, UT-SCC-5 and UT-SCC-14). Hypoxia subtypes were quantified in cryosections based on (immuno-)fluorescent marker distribution patterns of Hoechst 33342 (perfusion), pimonidazole (hypoxia) and CD31 (endothelium) in microcirculatory supply units (MCSUs). Tumors were irradiated with 5 or 10 fractions of 2 Gy, 5×/week. RESULTS Upon irradiation with 10 fractions, the overall fraction of hypoxic MCSUs decreased in UT-SCC-15, FaDu and SAS, remained the same in UT-SCC-5 and increased in UT-SCC-14. Decreases were observed in the proportion of chronically hypoxic MCSUs in UT-SCC-15, in the fraction of acutely hypoxic MCSUs in UT-SCC-15 and SAS, and in the percentage of hypoxemically hypoxic MCSUs in SAS tumors. After irradiation with 5 fractions, there were no significant changes in hypoxia subtypes. Changes in the overall fraction of hypoxic MCSUs were comparable to corresponding alterations in the proportions of acutely hypoxic MCSUs. There was no correlation between radiation resistance (TCD(50)) and any of the investigated hypoxic fractions upon fractionated irradiation. CONCLUSIONS This study shows that there are large alterations in the fractions of hypoxia subtypes upon irradiation that can differ from changes in the overall fraction of hypoxic MCSUs.
Collapse
Affiliation(s)
- Constantin-Alin Maftei
- Department of Radiotherapy and Radiation Oncology, Technical University of Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Jones DT, Harris AL. Small-molecule inhibitors of the HIF pathway and synthetic lethal interactions. Expert Opin Ther Targets 2012; 16:463-80. [PMID: 22512262 DOI: 10.1517/14728222.2012.674516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Activation of the hypoxia response pathway is a feature of many tumours and is one of the key mechanisms associated with tumour growth, chemoresistance and radioresistance. The major component of the hypoxia response pathway is the heterodimeric transcription factor, hypoxia-inducible factor (HIF), which is upregulated in many human cancers. Therefore, HIF is an attractive therapeutic target and several strategies have been developed to target it. AREAS COVERED Approaches used in targeting the hypoxia response pathway are discussed. Reviewed are agents that target upstream, directly and downstream of HIF, as well as some of the challenges in HIF-targeted therapy. EXPERT OPINION Many of the therapeutic agents that are in clinical use inhibit downstream HIF target genes, but ideally a molecule specific to HIF will have a more potent effect in inhibiting multiple HIF pathways. However, many anti-HIF molecules have multiple targets, which may increase non-specific cytotoxicity. In addition, many anti-HIF agents cannot discriminate between the different isoforms of HIF-α. So, it is important to assess whether targeting both HIF-1α and HIF-2α or each subunit selectively will provide better therapeutic effects.
Collapse
Affiliation(s)
- Dylan T Jones
- University of Oxford, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, Department of Oncology, Molecular Oncology Laboratories, Growth Factor Group , Headington, Oxford , UK
| | | |
Collapse
|
49
|
Axente M, He J, Bass CP, Hirsch JI, Sundaresan G, Williamson J, Zweit J, Pugachev A. Tumour microenvironment heterogeneity affects the perceived spatial concordance between the intratumoural patterns of cell proliferation and 18F-fluorothymidine uptake. Radiother Oncol 2012; 105:49-56. [PMID: 22444241 DOI: 10.1016/j.radonc.2012.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/08/2012] [Accepted: 02/16/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE PET imaging with (18)F-fluorothymidine ((18)F-FLT) can potentially be used to identify tumour subvolumes for selective dose escalation in radiation therapy. The purpose of this study is to analyse the co-localization of intratumoural patterns of cell proliferation with (18)F-FLT tracer uptake. MATERIALS AND METHODS Mice bearing FaDu or SQ20B xenograft tumours were injected with (18)F-FLT, and bromodeoxyuridine (proliferation marker). Ex vivo images of the spatial pattern of intratumoural (18)F-FLT uptake and that of bromodeoxyuridine DNA incorporation were obtained from thin tumour tissue sections. These images were segmented by thresholding and Relative Operating Characteristic (ROC) curves and Dice similarity indices were evaluated. RESULTS The thresholds at which maximum overlap occurred between FLT-segmented areas and areas of active cell proliferation were significantly different for the two xenograft tumour models, whereas the median Dice values were not. However, ROC analysis indicated that segmented FLT images were more specific at detecting the proliferation pattern in FaDu tumours than in SQ20B tumours. CONCLUSION Highly dispersed patterns of cell proliferation observed in certain tumours can affect the perceived spatial concordance between the spatial pattern of (18)F-FLT uptake and that of cell proliferation even when high-resolution ex vivo autoradiography imaging is used for (18)F-FLT imaging.
Collapse
Affiliation(s)
- Marian Axente
- Department of Radiation Oncology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0037, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Aerts HJWL, Bussink J, Oyen WJG, van Elmpt W, Folgering AM, Emans D, Velders M, Lambin P, De Ruysscher D. Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 2011; 75:73-6. [PMID: 21782272 DOI: 10.1016/j.lungcan.2011.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/12/2011] [Accepted: 06/09/2011] [Indexed: 11/15/2022]
Abstract
It was recently described that high FDG-uptake areas pre-radiotherapy largely correspond with residual metabolic-active areas post-radiotherapy. Here, an independent prospective validation of these results was performed using an overlap-fraction (OF) calculation of various FDG-uptake based thresholds. Data from twelve patients treated at Radboud University Nijmegen Medical Center with lung cancer were analyzed. All patients underwent two FDG-PET-CT scans, one pre-radiotherapy (pre-RT) and one approximately three months after treatment (post-RT). Of the twelve analyzed patients, eight patients showed residual FDG uptake on the post-RT scan and were included for analysis. One of these patients had a residue that was not clearly distinguishable from the surrounding tissue due to FDG avid inflammation. Therefore, seven patients remained for further analysis. The mean volume of the residual metabolic-active areas post-RT was 14.6±10.0% (mean±SD) of the mean volume of the gross tumour volume (GTV) pre-RT. The residual metabolic-active areas largely corresponded with the pre-RT GTV (OF=93.7±7.2%). The pre-RT-scan threshold delineations of 34%, 40% and 50% of the SUV(max) had a large OF with the residual region, 86.9±8.3%, 77.4±8.1% and 67.9±6.8%, respectively. In this independent dataset, we confirmed that the location of residual FDG-uptake areas after radiotherapy corresponds with the high FDG-uptake areas pre-radiotherapy. Therefore, a pre-radiotherapy FDG-PET-CT scan can potentially be used for radiotherapy dose redistribution.
Collapse
Affiliation(s)
- Hugo J W L Aerts
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|