1
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
2
|
De Pasquale MD, D'Angelo P, Crocoli A, Vallero SG, Bertolini P, Miele E, Terenziani M. Role of 18F-Fluorodeoxyglucose Positron Emission Tomography in Children With Germ Cell Tumor After Chemotherapy. J Pediatr Hematol Oncol 2024; 46:e272-e276. [PMID: 38912835 DOI: 10.1097/mph.0000000000002882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/10/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND/AIM 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is a diagnostic tool widely used in adult oncology and some pediatric oncological settings. There are no established recommendations for the use of this imaging modality in pediatric malignant germ cell tumors (mGCT), however. Our aim is to evaluate the role of 18F-FDG PET/CT in the restaging of mGCT after chemotherapy in children and adolescents. METHODS We retrospectively reviewed patients with mGCT treated in Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) centers who underwent 18F-FDG PET/CT between 2011 and 2021. RESULTS Seventeen patients (median age 13 y) were included in the study. In 14 patients, 18F-FDG PET/CT was performed at diagnosis; 12 showed pathologic uptake. The 2 18F-FDG PET/CT negative cases were histologically defined as yolk sac tumor (YST) and mixed (chorioncarcinoma, YST). Nine of the 12 patients who had pathologic 18F-FDG PET/CT at diagnosis repeated the examination after neoadjuvant chemotherapy, before, second look surgery. In 5 cases, no pathologic uptake was evident. Histology showed necrosis alone in 4 cases and necrosis and mature teratoma in 1. In 3 of the 6 cases with pathologic uptake (2 of 6 patients did not perform the examination at diagnosis), histology showed persistence of malignant component, whereas in the remaining 3 cases, necrosis and mature teratoma were present. CONCLUSION In our review of a series of children with mGCT, 18F-FDG PET/CT after neoadjuvant chemotherapy showed 1 of 5 false negatives and was unable to discriminate between residual malignant component and mature teratoma.
Collapse
Affiliation(s)
| | - Paolo D'Angelo
- Pediatric Hematology/Oncology Unit, A.R.N.A.S. Civico Di Cristina e Benfratelli, Palermo
| | | | - Stefano G Vallero
- Section of Pediatric Onco-Hematology, Department of Public Health and Pediatric Sciences, University of Turin, Turin
| | - Patrizia Bertolini
- Pediatric Hematology Oncology Unit, Azienda Ospedaliero Universitaria of Parma, Parma
| | - Evelina Miele
- Hematology/Oncology and Cell therapy Department, Ospedale Pediatrico Bambino Gesù- IRCCS, Roma
| | - Monica Terenziani
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| |
Collapse
|
3
|
Meshaka R, Biassoni L, Chambers G, Voss S, Orr K. Nuclear medicine techniques in paediatric body oncology: Present and future. EJC PAEDIATRIC ONCOLOGY 2023; 2:100120. [DOI: 10.1016/j.ejcped.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Chen X, Hu P, Yu H, Tan H, He Y, Cao S, Zhou Y, Shi H. Head-to-head intra-individual comparison of total-body 2-[ 18F]FDG PET/CT and digital PET/CT in patients with malignant tumor: how sensitive could it be? Eur Radiol 2023; 33:7890-7898. [PMID: 37338551 DOI: 10.1007/s00330-023-09825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES To comparatively evaluate the lesion-detecting ability of 2-[18F]FDG total-body PET/CT (TB PET/CT) and conventional digital PET/CT. METHODS This study enrolled 67 patients (median age, 65 years; 24 female and 43 male patients) who underwent a TB PET/CT scan and a conventional digital PET/CT scan after a single 2-[18F]FDG injection (3.7 MBq/kg). Raw PET data for TB PET/CT were acquired over the course of 5 min, and images were reconstructed using data from the first 1, 2, 3, and 4 min and the entire 5 min (G1, G2, G3, G4, and G5, respectively). The conventional digital PET/CT scan acquired in 2-3 min per bed (G0). Two nuclear medicine physicians independently assessed subjective image quality using a 5-point Likert scale and recorded the number of 2-[18F]FDG-avid lesions. RESULTS A total of 241 lesions (69 primary lesions; 32 liver, lung, and peritoneum metastases; and 140 regional lymph nodes) among 67 patients with various types of cancer were analyzed. The subjective image quality score and SNR (signal-to-noise ratio) increased gradually from G1 to G5, and these values were significantly higher than the values at G0 (all p < 0.05). Compared to conventional PET/CT, G4 and G5 of TB PET/CT detected an additional 15 lesions (2 primary lesions; 5 liver, lung, and peritoneum lesions; and 8 lymph node metastases). CONCLUSION TB PET/CT was more sensitive than conventional whole-body PET/CT in detecting small (4.3 mm, maximum standardized uptake value (SUVmax) of 1.0) or low-uptake (tumor-to-liver ratio of 1.6, SUVmax of 4.1) lesions. CLINICAL RELEVANCE STATEMENT This study explored the gain of the image quality and lesion detectability of TB PET/CT, compared to conventional PET/CT, and recommended the appropriate acquisition time for TB PET/CT in clinical practice with an ordinary 2-[18F] FDG dose. KEY POINTS • TB PET/CT increases the effective sensitivity to approximately 40 times that of conventional PET scanners. • The subjective image quality score and signal-to-noise ratio of TB PET/CT from G1 to G5 were better than those of conventional PET/CT. • 2-[18F]FDG TB PET/CT with a 4-min acquisition time at a regular tracer dose detected an additional 15 lesions compared to conventional PET/CT.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yibo He
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shuangliang Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
5
|
Shashidhar TB, Srivastava T, Yadav A, Nambiar VS. Uncovering a Novel Site of Ewing's Sarcoma: the Hypopharynx. Indian J Otolaryngol Head Neck Surg 2023; 75:2630-2633. [PMID: 37636598 PMCID: PMC10447781 DOI: 10.1007/s12070-023-03821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 08/29/2023] Open
Abstract
Ewing's sarcoma is usually seen in bones but 20-30% are found in extra skeletal soft tissues like in head and neck region. We present the case of Ewing sarcoma of hypopharynx in a 1 year old child who presented to us with acute respiratory distress. Child was intubated using videolaryngoscope and mass was removed using microdebrider. Final histopathological examination revealed Ewing sarcoma. EWSR1 gene rearrangement studies were advised, which the patient refused. Post-operative patient was started on adjuvant chemotherapy. PET CT after 2 months showed no FDG avid lesions within or elsewhere in the region of the body surveyed. There is no case of Ewing's sarcoma in hypopharynx reported to date. The clinical presentation, management and outcome has been discussed with a review of the literature.
Collapse
Affiliation(s)
| | | | - Ankita Yadav
- Artemis Health Institue, Gurugram, Haryana India
| | | |
Collapse
|
6
|
Wang YRJ, Wang P, Adams LC, Sheybani ND, Qu L, Sarrami AH, Theruvath AJ, Gatidis S, Ho T, Zhou Q, Pribnow A, Thakor AS, Rubin D, Daldrup-Link HE. Low-count whole-body PET/MRI restoration: an evaluation of dose reduction spectrum and five state-of-the-art artificial intelligence models. Eur J Nucl Med Mol Imaging 2023; 50:1337-1350. [PMID: 36633614 PMCID: PMC10387227 DOI: 10.1007/s00259-022-06097-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To provide a holistic and complete comparison of the five most advanced AI models in the augmentation of low-dose 18F-FDG PET data over the entire dose reduction spectrum. METHODS In this multicenter study, five AI models were investigated for restoring low-count whole-body PET/MRI, covering convolutional benchmarks - U-Net, enhanced deep super-resolution network (EDSR), generative adversarial network (GAN) - and the most cutting-edge image reconstruction transformer models in computer vision to date - Swin transformer image restoration network (SwinIR) and EDSR-ViT (vision transformer). The models were evaluated against six groups of count levels representing the simulated 75%, 50%, 25%, 12.5%, 6.25%, and 1% (extremely ultra-low-count) of the clinical standard 3 MBq/kg 18F-FDG dose. The comparisons were performed upon two independent cohorts - (1) a primary cohort from Stanford University and (2) a cross-continental external validation cohort from Tübingen University - in order to ensure the findings are generalizable. A total of 476 original count and simulated low-count whole-body PET/MRI scans were incorporated into this analysis. RESULTS For low-count PET restoration on the primary cohort, the mean structural similarity index (SSIM) scores for dose 6.25% were 0.898 (95% CI, 0.887-0.910) for EDSR, 0.893 (0.881-0.905) for EDSR-ViT, 0.873 (0.859-0.887) for GAN, 0.885 (0.873-0.898) for U-Net, and 0.910 (0.900-0.920) for SwinIR. In continuation, SwinIR and U-Net's performances were also discreetly evaluated at each simulated radiotracer dose levels. Using the primary Stanford cohort, the mean diagnostic image quality (DIQ; 5-point Likert scale) scores of SwinIR restoration were 5 (SD, 0) for dose 75%, 4.50 (0.535) for dose 50%, 3.75 (0.463) for dose 25%, 3.25 (0.463) for dose 12.5%, 4 (0.926) for dose 6.25%, and 2.5 (0.534) for dose 1%. CONCLUSION Compared to low-count PET images, with near-to or nondiagnostic images at higher dose reduction levels (up to 6.25%), both SwinIR and U-Net significantly improve the diagnostic quality of PET images. A radiotracer dose reduction to 1% of the current clinical standard radiotracer dose is out of scope for current AI techniques.
Collapse
Affiliation(s)
- Yan-Ran Joyce Wang
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94304, USA.
| | - Pengcheng Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Lisa Christine Adams
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Natasha Diba Sheybani
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94304, USA
| | - Liangqiong Qu
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94304, USA
| | - Amir Hossein Sarrami
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Ashok Joseph Theruvath
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Tina Ho
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Quan Zhou
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Allison Pribnow
- Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Avnesh S Thakor
- Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Daniel Rubin
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94304, USA
- Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Heike E Daldrup-Link
- Department of Radiology, School of Medicine, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA.
- Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
7
|
Rodina AD, Polyakov VG, Gorbunova TV, Merkulov OA, Kashanina AL, Odzharova AA, Stroganova AM. Distant metastasis of alveolar rhabdomyosarcoma with pancreatic parameningeal localization in children: clinical case series. HEAD AND NECK TUMORS (HNT) 2023. [DOI: 10.17650/2222-1468-2022-12-4-91-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Rhabdomyosarcoma is a malignant neoplasm that develops from embryonic mesenchymal cells, with an annual incidence of 4.3 cases per 1,000,000 children. The prevalence of the tumor process is estimated on the basis of data from a comprehensive examination, including magnetic resonance imaging with intravenous contrast, ultrasound examination of the primary focus of regional and distant metastasis zones, computed tomography and radioisotope studies. The overall 5-year survival rate for localized rhabdomyosarcoma reaches 70 %. During the initial diagnosis, distant metastasis to the lungs, bones, and bone marrow is detected, which significantly worsens the prognosis in 20–25 % of patients. The factors of an extremely unfavorable prognosis for the course of alveolar rhabdomyosarcoma are the occurrence of regional and distant metastases before the start of specific treatment, dissemination of the tumor lesion during treatment, and the presence of translocation of the 13q14 sector. Publications contain data on a high (11.2 %) prevalence of metastases of alveolar rhabdomyosarcoma in the pancreas. In the presence of metastatic lesions of the pancreas, surgical treatment is effective only in combination with chemoradiotherapy. Long-term results of treatment of this cohort of children are unsatisfactory due to the high risk of recurrence and dissemination of the tumor.Aim. To study risk factors, evaluate methods and prospects for the treatment of children with metastatic pancreatic lesions in parameningeal alveolar rhabdomyosarcoma. The article considers three clinical cases of such a lesion. We would like to draw the attention of pediatric oncologists and radiologists to the possible association of metastases in the pancreas in children with localization of rhabdomyosarcoma in the head and neck region, which requires improvement of examination protocols in this group of patients.
Collapse
Affiliation(s)
- A. D. Rodina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. G. Polyakov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - T. V. Gorbunova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. A. Merkulov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. L. Kashanina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. A. Odzharova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. M. Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
8
|
Lopci E, Elia C, Catalfamo B, Burnelli R, De Re V, Mussolin L, Piccardo A, Cistaro A, Borsatti E, Zucchetta P, Bianchi M, Buffardi S, Farruggia P, Garaventa A, Sala A, Vinti L, Mauz-Koerholz C, Mascarin M. Prospective Evaluation of Different Methods for Volumetric Analysis on [ 18F]FDG PET/CT in Pediatric Hodgkin Lymphoma. J Clin Med 2022; 11:jcm11206223. [PMID: 36294544 PMCID: PMC9605658 DOI: 10.3390/jcm11206223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Rationale: Therapy response evaluation by 18F-fluorodeoxyglucose PET/CT (FDG PET) has become a powerful tool for the discrimination of responders from non-responders in pediatric Hodgkin lymphoma (HL). Recently, volumetric analyses have been regarded as a valuable tool for disease prognostication and biological characterization in cancer. Given the multitude of methods available for volumetric analysis in HL, the AIEOP Hodgkin Lymphoma Study Group has designed a prospective analysis of the Italian cohort enrolled in the EuroNet-PHL-C2 trial. Methods: Primarily, the study aimed to compare the different segmentation techniques used for volumetric assessment in HL patients at baseline (PET1) and during therapy: early (PET2) and late assessment (PET3). Overall, 50 patients and 150 scans were investigated for the current analysis. A dedicated software was used to semi-automatically delineate contours of the lesions by using different threshold methods. More specifically, four methods were applied: (1) fixed 41% threshold of the maximum standardized uptake value (SUVmax) within the respective lymphoma site (V41%), (2) fixed absolute SUV threshold of 2.5 (V2.5); (3) SUVmax(lesion)/SUVmean liver >1.5 (Vliver); (4) adaptive method (AM). All parameters obtained from the different methods were analyzed with respect to response. Results: Among the different methods investigated, the strongest correlation was observed between AM and Vliver (rho > 0.9; p < 0.001 for SUVmean, MTV and TLG at all scan timing), along with V2.5 and AM or Vliver (rho 0.98, p < 0.001 for TLG at baseline; rho > 0.9; p < 0.001 for SUVmean, MTV and TLG at PET2 and PET3, respectively). To determine the best segmentation method, we applied logistic regression and correlated different results with Deauville scores at late evaluation. Logistic regression demonstrated that MTV (metabolic tumor volume) and TLG (total lesion glycolysis) computation according to V2.5 and Vliver significantly correlated to response to treatment (p = 0.01 and 0.04 for MTV and 0.03 and 0.04 for TLG, respectively). SUVmean also resulted in significant correlation as absolute value or variation. Conclusions: The best correlation for volumetric analysis was documented for AM and Vliver, followed by V2.5. The volumetric analyses obtained from V2.5 and Vliver significantly correlated to response to therapy, proving to be preferred thresholds in our pediatric HL cohort.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence: or
| | - Caterina Elia
- AYA and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Barbara Catalfamo
- Nuclear Medicine Unit, University Hospital “Mater Domini, 88100 Catanzaro, Italy
| | - Roberta Burnelli
- Pediatric Onco-Hematologic Unit, University Hospital S. Anna, 44121 Ferrara, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lara Mussolin
- Pediatric Hemato-Oncology Clinic, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy
- Institute of Pediatric Research-Fondazione Città della Speranza, 35127 Padua, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, Galliera Hospital, 16128 Genoa, Italy
| | - Angelina Cistaro
- Nuclear Medicine Division, Salus Alliance Medical, 16128 Genoa, Italy
| | - Eugenio Borsatti
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Department, Padova University Hospital, 35128 Padua, Italy
| | - Maurizio Bianchi
- Onco-Hematology Division, Regina Margherita Hospital, 10126 Torino, Italy
| | - Salvatore Buffardi
- Department of Oncology, Hospital Santobono-Pausilipon, 80123 Naples, Italy
| | - Piero Farruggia
- Department of Pediatric Onco-Hematology, A.R.N.A.S. Ospedali Civico, 90127 Palermo, Italy
| | - Alberto Garaventa
- Pediatric Oncology Unit, I RCCS G.Gaslini Hospital, 16147 Genoa, Italy
| | - Alessandra Sala
- Pediatric Division, Hospital San Gerardo, 20900 Monza, Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology, Ospedale Bambino Gesù, IRCSS, 00165 Rome, Italy
| | - Christine Mauz-Koerholz
- Pädiatrische Hämatologie und Onkologie, Zentrum für Kinderheilkunde der Justus-Liebig-Universität Gießen, 35392 Giessen, Germany
- Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
| | - Maurizio Mascarin
- AYA and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
9
|
Development and Validation of a Novel Clinical Prediction Model to Predict the Risk of Lung Metastasis from Ewing Sarcoma for Medical Human-Computer Interface. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1888586. [PMID: 35392046 PMCID: PMC8983195 DOI: 10.1155/2022/1888586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 01/11/2023]
Abstract
Background. This study aimed at establishing and validating a quantitative and visual prognosis model of Ewing Sarcoma (E.S.) via a nomogram. This model was developed to predict the risk of lung metastasis (L.M.) in patients with E.S. to provide a practical tool and help in clinical diagnosis and treatment. Methods. Data of all patients diagnosed with Ewing sarcoma between 2010 and 2016 were retrospectively retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. A training dataset from the enrolled cohorts was built (n = 929). Predictive factors for L.M. were identified based on the results of multivariable logistic regression analyses. A nomogram model and a web calculator were constructed based on those key predictors. A multicenter dataset from four medical institutions was established for model validation (n = 51). The predictive ability of the nomogram model was evaluated by the receiver operating characteristic (ROC) curve and calibration plot. Decision curve analysis (DCA) was applied to explain the accuracy of the nomogram model in clinical practice. Results. Five independent factors, including survival time, surgery, tumor (T) stage, node (N) stage, and bone metastasis, were identified to develop a nomogram model. Internal and external validation indicated significant predictive discrimination: the area under the ROC curve (AUC) value was 0.769 (95% CI: 0.740 to 0.795) in the training cohort and 0.841 (95% CI: 0.712 to 0.929) in the validation cohort, respectively. Calibration plots and DCA presented excellent performance of the nomogram model with great clinical utility. Conclusions. In this study, a nomogram model was constructed and validated to predict L.M. in patients with E.S. for medical human-computer interface—a web calculator (https://drliwenle.shinyapps.io/LMESapp/). This practical tool could help clinicians make better decisions to provide precision prognosis and treatment for patients with E.S.
Collapse
|
10
|
Mohammadi N, Akhlaghi P. Evaluation of radiation dose to pediatric models from whole body PET/CT imaging. J Appl Clin Med Phys 2022; 23:e13545. [PMID: 35112453 PMCID: PMC8992961 DOI: 10.1002/acm2.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/06/2022] Open
Abstract
Positron emission tomography (PET)/computed tomography (CT) is a well-known modality for the diagnosis of various diseases in children and adult patients. On the other hand, younger patients are more radiosensitive than adults, so there are concerns about the level of ionizing radiation exposure in pediatric whole body PET/CT imaging. In this regard, comprehensive specific radiation dosimetry for whole body PET/CT imaging is highly desired for different ages, sizes, and shapes. Therefore, in this study, organ absorbed doses were evaluated for pediatric voxel models from 4 to 14 years old and compared with those of ICRP phantoms. Monte Carlo calculation was performed to evaluate S-value, absorbed dose, and effective dose from 18 F-FDG radiotracers and whole body CT scan for different computational models, including 4- to 14-year-old phantoms. The results showed that the S-value and, therefore, absorbed dose of 18 F-FDG strongly depended on the phantom anatomy. These variations were justified by the distance between source and target organs. Moreover, on average, the absorbed doses from whole body CT scans were 13.5 times lower than those from 18 F-FDG for all organs. According to the results, various anatomies and ages should be considered for accurate dose evaluation. These data can be used for specific risk assessment of the pediatric population in clinical nuclear imaging.
Collapse
Affiliation(s)
- Najmeh Mohammadi
- Faculty of Sciences, Physics Department, Sahand University of Technology, Tabriz, Iran
| | - Parisa Akhlaghi
- Faculty of Medicine, Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Daldrup-Link HE, Theruvath AJ, Baratto L, Hawk KE. One-stop local and whole-body staging of children with cancer. Pediatr Radiol 2022; 52:391-400. [PMID: 33929564 PMCID: PMC10874282 DOI: 10.1007/s00247-021-05076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Accurate staging and re-staging of cancer in children is crucial for patient management. Currently, children with a newly diagnosed cancer must undergo a series of imaging tests, which are stressful, time-consuming, partially redundant, expensive, and can require repetitive anesthesia. New approaches for pediatric cancer staging can evaluate the primary tumor and metastases in a single session. However, traditional one-stop imaging tests, such as CT and positron emission tomography (PET)/CT, are associated with considerable radiation exposure. This is particularly concerning for children because they are more sensitive to ionizing radiation than adults and they live long enough to experience secondary cancers later in life. In this review article we discuss child-tailored imaging tests for tumor detection and therapy response assessment - tests that can be obtained with substantially reduced radiation exposure compared to traditional CT and PET/CT scans. This includes diffusion-weighted imaging (DWI)/MRI and integrated [F-18]2-fluoro-2-deoxyglucose (18F-FDG) PET/MRI scans. While several investigators have compared the value of DWI/MRI and 18F-FDG PET/MRI for staging pediatric cancer, the value of these novel imaging technologies for cancer therapy monitoring has received surprisingly little attention. In this article, we share our experiences and review existing literature on this subject.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA.
| | - Ashok J Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| | - Kristina Elizabeth Hawk
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
12
|
The Diagnostic Value of 18F-FDG PET/CT Bone Marrow Uptake Pattern in Detecting Bone Marrow Involvement in Pediatric Neuroblastoma Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7556315. [PMID: 35082556 PMCID: PMC8758298 DOI: 10.1155/2022/7556315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Objectives To explore the diagnostic value of 18F-FDG PET/CT bone marrow uptake pattern (BMUP) in detecting bone marrow involvement (BMI) in pediatric neuroblastoma (NB) patients. Methods Ninety-eight NB patients were enrolled in BMI analysis. Four patterns of bone marrow uptake were categorized based on pretreatment cF-FDG PET/CT images. Some crucial inspection indexes and 18F-FDG PET/CT metabolic parameters were analyzed. The BMUP was divided into BMUP1, BMUP2, BMUP3, and BMUP4. Paired-like homeobox 2b (PHOX2B) of bone marrow and blood, bone marrow biopsy (BMB) result, and 18F-FDG PET/CT were compared to detect BMI. All patients were followed up for at least six months. Results BMUP had excellent consistency among different physicians. Kappa coefficients of two residents and two attending physicians and between the resident and attending physician, were 0.857, 0.891, and 0.845, respectively. The optimal cut-off value of SUVmax-Bone/Liver was 2.08 to diagnose BMI for BMUP3 patients, and the area under curve (AUC) was 0.873. AUC of PHOX2B of bone marrow (PHOX2B of BM), PHOX2B of blood, BMB, and 18F-FDG PET/CT were 0.916, 0.811, 0.806, and 0.904, respectively. There was no significant difference between PHOX2B of BM and PET/CT. Positive predictive value, negative predictive value, sensitivity, and specificity in diagnosis of BMI were 92.9%, 92.9%, 97.0%, and 83.9% for PET/CT and 96.7%, 80.6%, 89.6%, and 93.5% for PHOX2B of BM, respectively. Conclusions BMUP of pretreatment 18F-FDG PET/CT is a simple and practical method, which has a relatively high diagnostic efficiency in detecting BMI and might decrease unnecessary invasive inspections in some pediatric NB patients.
Collapse
|
13
|
Pfluger T, Ciarmiello A, Giovacchini G, Montravers F, Le Pointe HD, Landman-Parker J, Meniconi M, Franzius C. Diagnostic Applications of Nuclear Medicine: Pediatric Cancers. NUCLEAR ONCOLOGY 2022:1271-1307. [DOI: 10.1007/978-3-031-05494-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Theruvath AJ, Siedek F, Yerneni K, Muehe AM, Spunt SL, Pribnow A, Moseley M, Lu Y, Zhao Q, Gulaka P, Chaudhari A, Daldrup-Link HE. Validation of Deep Learning-based Augmentation for Reduced 18F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma. Radiol Artif Intell 2021; 3:e200232. [PMID: 34870211 DOI: 10.1148/ryai.2021200232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Purpose To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma. Materials and Methods In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 patients with lymphoma (mean age, 16.4 years ± 6.4 [standard deviation]) underwent 18F-FDG PET/MRI between July 2015 and August 2019 at baseline and after induction chemotherapy. Full-dose 18F-FDG PET data (3 MBq/kg) were simulated to lower 18F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG dose [hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 12.5%Sim, and 6.25%Sim, respectively]). A U.S. Food and Drug Administration-approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUVmax) of the tumor normalized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of correct response status were computed using full-dose PET as the reference standard. Results With decreasing simulated radiotracer doses, tumor SUVmax increased. A dose below 75%Sim of the full dose led to erroneous upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%Sim; 93% [13 of 14 patients] for 50%Sim; and 100% [14 of 14 patients] below 50%Sim; P < .05 for all). CNN-enhanced low-dose PET/MRI scans at 75%Sim and 50%Sim enabled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%Sim, and augmented 50%Sim images. Conclusion CNN enhancement of PET/MRI scans may enable 50% 18F-FDG dose reduction with correct treatment response assessment of children and young adults with lymphoma.Keywords: Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, Lymphoma, Tumor Response, Whole-Body Imaging, Technology AssessmentClinical trial registration no: NCT01542879 Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Ashok J Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Florian Siedek
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Ketan Yerneni
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Anne M Muehe
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Sheri L Spunt
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Allison Pribnow
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Ying Lu
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Qian Zhao
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Praveen Gulaka
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Akshay Chaudhari
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| |
Collapse
|
15
|
Vaarwerk B, Breunis WB, Haveman LM, de Keizer B, Jehanno N, Borgwardt L, van Rijn RR, van den Berg H, Cohen JF, van Dalen EC, Merks JH. Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT) for the detection of bone, lung, and lymph node metastases in rhabdomyosarcoma. Cochrane Database Syst Rev 2021; 11:CD012325. [PMID: 34753195 PMCID: PMC8577863 DOI: 10.1002/14651858.cd012325.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common paediatric soft-tissue sarcoma and can emerge throughout the whole body. For patients with newly diagnosed RMS, prognosis for survival depends on multiple factors such as histology, tumour site, and extent of the disease. Patients with metastatic disease at diagnosis have impaired prognosis compared to those with localised disease. Appropriate staging at diagnosis therefore plays an important role in choosing the right treatment regimen for an individual patient. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is a functional molecular imaging technique that uses the increased glycolysis of cancer cells to visualise both structural information and metabolic activity. 18F-FDG-PET combined with computed tomography (CT) could help to accurately stage the extent of disease in patients with newly diagnosed RMS. In this review we aimed to evaluate whether 18F-FDG-PET could replace other imaging modalities for the staging of distant metastases in RMS. OBJECTIVES To determine the diagnostic accuracy of 18F-FDG-PET/CT imaging for the detection of bone, lung, and lymph node metastases in RMS patients at first diagnosis. SEARCH METHODS We searched MEDLINE in PubMed (from 1966 to 23 December 2020) and Embase in Ovid (from 1980 to 23 December 2020) for potentially relevant studies. We also checked the reference lists of relevant studies and review articles; scanned conference proceedings; and contacted the authors of included studies and other experts in the field of RMS for information about any ongoing or unpublished studies. We did not impose any language restrictions. SELECTION CRITERIA We included cross-sectional studies involving patients with newly diagnosed proven RMS, either prospective or retrospective, if they reported the diagnostic accuracy of 18F-FDG-PET/CT in diagnosing lymph node involvement or bone metastases or lung metastases or a combination of these metastases. We included studies that compared the results of the 18F-FDG-PET/CT imaging with those of histology or with evaluation by a multidisciplinary tumour board as reference standard. DATA COLLECTION AND ANALYSIS Two review authors independently performed study selection, data extraction, and methodological quality assessement according to Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). We analysed data for the three outcomes (nodal involvement and lung and bone metastases) separately. We used data from the 2 × 2 tables (consisting of true positives, false positives, true negatives, and false negatives) to calculate sensitivity and specificity in each study and corresponding 95% confidence intervals. We did not consider a formal meta-analysis to be relevant because of the small number of studies and substantial heterogeneity between studies. MAIN RESULTS Two studies met our inclusion criteria. The diagnostic accuracy of 18F-FDG-PET/CT was reported in both studies, which included a total of 36 participants. We considered both studies to be at high risk of bias for the domain reference standard. We considered one study to be at high risk of bias for the domain index test and flow and timing. Sensitivity and specificity of 18F-FDG-PET/CT for the detection of bone metastases was 100% in both studies (95% confidence interval (CI) for sensitivity was 29% to 100% in study one and 40% to 100% in study two; 95% CI for specificity was 83% to 100% in study one and 66% to 100% in study two). The reported sensitivity of 18F-FDG-PET/CT for the detection of lung metastases was not calculated since only two participants in study two showed lung metastases, of which one was detected by 18F-FDG-PET/CT. Reported specificity was 96% in study one (95% CI 78% to 100%) and 100% (95% CI 72% to 100%) in study two. The reported sensitivity for the detection of nodal involvement was 100% (95% CI 63% to 100% in study one and 40% to 100% in study two); the reported specificity was 100% (95% CI 78% to 100%) in study one and 89% (95% CI 52% to 100%) in study two. AUTHORS' CONCLUSIONS The diagnostic accuracy of 18F-FDG-PET/CT for the detection of bone, lung, and lymph node metastases was reported in only two studies including a total of only 36 participants with newly diagnosed RMS. Because of the small number of studies (and participants), there is currently insufficient evidence to reliably determine the diagnostic accuracy of 18F-FDG-PET/CT in the detection of distant metastases. Larger series evaluating the diagnostic accuracy of 18F-FDG-PET/CT for the detection of metastases in patients with RMS are necessary.
Collapse
Affiliation(s)
- Bas Vaarwerk
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Paediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Willemijn B Breunis
- Department of Paediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lianne M Haveman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Paediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Bart de Keizer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen , Denmark
| | - Rick R van Rijn
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Henk van den Berg
- Department of Paediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jérémie F Cohen
- Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Centre of Research in Epidemiology and Statistics (CRESS), UMR1153, Université de Paris, Paris, France
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker - Enfants malades hospital, Assistance Publique - Hôpitaux de Paris, Paris Descartes University, Paris, France
| | | | - Johannes Hm Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Paediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Verhagen MV, Menezes LJ, Neriman D, Watson TA, Punwani S, Taylor SA, Shankar A, Daw S, Humphries PD. 18F-FDG PET/MRI for Staging and Interim Response Assessment in Pediatric and Adolescent Hodgkin Lymphoma: A Prospective Study with 18F-FDG PET/CT as the Reference Standard. J Nucl Med 2021; 62:1524-1530. [PMID: 33608429 PMCID: PMC8612337 DOI: 10.2967/jnumed.120.260059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment regimens for pediatric Hodgkin lymphoma (HL) depend on accurate staging and treatment response assessment, based on accurate disease distribution and metabolic activity depiction. With the aim of radiation dose reduction, we compared the diagnostic performance of 18F-FDG PET/MRI with a 18F-FDG PET/CT reference standard for staging and response assessment. Methods: Twenty-four patients (mean age, 15.4 y; range, 8-19.5 y) with histologically proven HL were prospectively and consecutively recruited in 2015 and 2016, undergoing both 18F-FDG PET/CT and 18F-FDG PET/MRI at initial staging (n = 24) and at response assessment (n = 21). The diagnostic accuracy of 18F-FDG PET/MRI for both nodal and extranodal disease was compared with that of 18F-FDG PET/CT, which was considered the reference standard. Discrepancies were retrospectively classified as perceptual or technical errors, and 18F-FDG PET/MRI and 18F-FDG PET/CT were corrected by removing perceptual error. Agreement with Ann Arbor staging and Deauville grading was also assessed. Results: For nodal and extranodal sites combined, corrected staging 18F-FDG PET/MRI sensitivity was 100% (95% CI, 96.7%-100%) and specificity was 99.5% (95% CI, 98.3%-99.9%). Corrected response-assessment 18F-FDG PET/MRI sensitivity was 83.3% (95% CI, 36.5%-99.1%) and specificity was 100% (95% CI, 99.2%-100%). Modified Ann Arbor staging agreement between 18F-FDG PET/CT and 18F-FDG PET/MRI was perfect (κ = 1.0, P = 0.000). Deauville grading agreement between 18F-FDG PET/MRI and 18F-FDG PET/CT was excellent (κ = 0.835, P = 0.000). Conclusion:18F-FDG PET/MRI is a promising alternative to 18F-FDG PET/CT for staging and response assessment in children with HL.
Collapse
Affiliation(s)
- Martijn V Verhagen
- Department of Radiology, University College London Hospital, London, United Kingdom
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Leon J Menezes
- UCL Institute of Nuclear Medicine, University College London Hospital, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Deena Neriman
- UCL Institute of Nuclear Medicine, University College London Hospital, London, United Kingdom
| | - Tom A Watson
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Shonit Punwani
- Department of Radiology, University College London Hospital, London, United Kingdom
| | - Stuart A Taylor
- Department of Radiology, University College London Hospital, London, United Kingdom
- Centre for Medical Imaging, CBH, London, United Kingdom; and
| | - Ananth Shankar
- Centre for Medical Imaging, CBH, London, United Kingdom; and
- Department of Pediatrics, University College London Hospital, London, United Kingdom
| | - Stephen Daw
- Department of Pediatrics, University College London Hospital, London, United Kingdom
| | - Paul D Humphries
- Department of Radiology, University College London Hospital, London, United Kingdom;
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
17
|
Bıçakçı N, Elli M. 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. Mol Imaging Radionucl Ther 2021; 30:18-27. [PMID: 33586403 PMCID: PMC7885281 DOI: 10.4274/mirt.galenos.2020.64436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: The aim of the study was to evaluate the utility of 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in the diagnosis, staging, restaging, and treatment response of childhood malignancies. Methods: This study included 52 patients (32 boys, 20 girls) who were referred to our clinic between November 2008 and December 2018 with the diagnosis of malignancy. The patients were evaluated retrospectively. Median age of the patients was 13 years (range 2-17). 18F-FDG was given to the patients intravenously, and time of flight with PET/16 slice CT was performed 1 hour thereafter. The lowest dose was 2 mCi (74 MBq) and the highest dose was 10 mCi (370 MBq). Fasting blood sugars of all patients were found below 200 mg/dL (11.1 mmol/L). Results: 18F-FDG PET/CT was performed to evaluate the response to treatment in 38 of 52 children, staging in 11 patients (staging and evaluation of the response to treatment in nine of them), restaging in 2 patients, restaging, and evaluation of the response to treatment in 1 patient. 18F-FDG PET/CT examination was reported as normal in 13 patients (5 girls, 8 boys). The pathological 18F-FDG uptake was detected in 39 patients (14 girls, 25 boys), which indicated metastasis and/or recurrence of the primary disease. Total number of deaths was 30 (13 girls, 17 boys). Conclusion: 18F-FDG PET/CT has a significant role for staging, restaging, treatment response, and detection of metastatic disease but it is limited for the early diagnosis of childhood cancers
Collapse
Affiliation(s)
- Nilüfer Bıçakçı
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Nuclear Medicine, Samsun, Turkey
| | - Murat Elli
- İstanbul Medipol University Faculty of Medicine, Department of Pediatric Oncology, İstanbul, Turkey
| |
Collapse
|
18
|
Wang YRJ, Baratto L, Hawk KE, Theruvath AJ, Pribnow A, Thakor AS, Gatidis S, Lu R, Gummidipundi SE, Garcia-Diaz J, Rubin D, Daldrup-Link HE. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging 2021; 48:2771-2781. [PMID: 33527176 DOI: 10.1007/s00259-021-05197-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/10/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE To generate diagnostic 18F-FDG PET images of pediatric cancer patients from ultra-low-dose 18F-FDG PET input images, using a novel artificial intelligence (AI) algorithm. METHODS We used whole-body 18F-FDG-PET/MRI scans of 33 children and young adults with lymphoma (3-30 years) to develop a convolutional neural network (CNN), which combines inputs from simulated 6.25% ultra-low-dose 18F-FDG PET scans and simultaneously acquired MRI scans to produce a standard-dose 18F-FDG PET scan. The image quality of ultra-low-dose PET scans, AI-augmented PET scans, and clinical standard PET scans was evaluated by traditional metrics in computer vision and by expert radiologists and nuclear medicine physicians, using Wilcoxon signed-rank tests and weighted kappa statistics. RESULTS The peak signal-to-noise ratio and structural similarity index were significantly higher, and the normalized root-mean-square error was significantly lower on the AI-reconstructed PET images compared to simulated 6.25% dose images (p < 0.001). Compared to the ground-truth standard-dose PET, SUVmax values of tumors and reference tissues were significantly higher on the simulated 6.25% ultra-low-dose PET scans as a result of image noise. After the CNN augmentation, the SUVmax values were recovered to values similar to the standard-dose PET. Quantitative measures of the readers' diagnostic confidence demonstrated significantly higher agreement between standard clinical scans and AI-reconstructed PET scans (kappa = 0.942) than 6.25% dose scans (kappa = 0.650). CONCLUSIONS Our CNN model could generate simulated clinical standard 18F-FDG PET images from ultra-low-dose inputs, while maintaining clinically relevant information in terms of diagnostic accuracy and quantitative SUV measurements.
Collapse
Affiliation(s)
- Yan-Ran Joyce Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA
| | - K Elizabeth Hawk
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA
| | - Ashok J Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA
| | - Allison Pribnow
- Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Avnesh S Thakor
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rong Lu
- Quantitative Sciences Unit, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Santosh E Gummidipundi
- Quantitative Sciences Unit, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Jordi Garcia-Diaz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA
| | - Daniel Rubin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA. .,Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA.
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, CA, 94304, Stanford, USA. .,Department of Pediatrics, Pediatric Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
19
|
Pediatric Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Vogrin M, Trojner T, Kelc R. Artificial intelligence in musculoskeletal oncological radiology. Radiol Oncol 2020; 55:1-6. [PMID: 33885240 PMCID: PMC7877260 DOI: 10.2478/raon-2020-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Due to the rarity of primary bone tumors, precise radiologic diagnosis often requires an experienced musculoskeletal radiologist. In order to make the diagnosis more precise and to prevent the overlooking of potentially dangerous conditions, artificial intelligence has been continuously incorporated into medical practice in recent decades. This paper reviews some of the most promising systems developed, including those for diagnosis of primary and secondary bone tumors, breast, lung and colon neoplasms. CONCLUSIONS Although there is still a shortage of long-term studies confirming its benefits, there is probably a considerable potential for further development of computer-based expert systems aiming at a more efficient diagnosis of bone and soft tissue tumors.
Collapse
Affiliation(s)
- Matjaz Vogrin
- Department of Orthopaedic Surgery, University Medical CenterMaribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Teodor Trojner
- Department of Orthopaedic Surgery, University Medical CenterMaribor, Slovenia
| | - Robi Kelc
- Department of Orthopaedic Surgery, University Medical CenterMaribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
21
|
Theruvath AJ, Siedek F, Muehe AM, Garcia-Diaz J, Kirchner J, Martin O, Link MP, Spunt S, Pribnow A, Rosenberg J, Herrmann K, Gatidis S, Schäfer JF, Moseley M, Umutlu L, Daldrup-Link HE. Therapy Response Assessment of Pediatric Tumors with Whole-Body Diffusion-weighted MRI and FDG PET/MRI. Radiology 2020; 296:143-151. [PMID: 32368961 PMCID: PMC7325702 DOI: 10.1148/radiol.2020192508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Abstract
Background Whole-body diffusion-weighted (DW) MRI can help detect cancer with high sensitivity. However, the assessment of therapy response often requires information about tumor metabolism, which is measured with fluorine 18 fluorodeoxyglucose (FDG) PET. Purpose To compare tumor therapy response with whole-body DW MRI and FDG PET/MRI in children and young adults. Materials and Methods In this prospective, nonrandomized multicenter study, 56 children and young adults (31 male and 25 female participants; mean age, 15 years ± 4 [standard deviation]; age range, 6-22 years) with lymphoma or sarcoma underwent 112 simultaneous whole-body DW MRI and FDG PET/MRI between June 2015 and December 2018 before and after induction chemotherapy (ClinicalTrials.gov identifier: NCT01542879). The authors measured minimum tumor apparent diffusion coefficients (ADCs) and maximum standardized uptake value (SUV) of up to six target lesions and assessed therapy response after induction chemotherapy according to the Lugano classification or PET Response Criteria in Solid Tumors. The authors evaluated agreements between whole-body DW MRI- and FDG PET/MRI-based response classifications with Krippendorff α statistics. Differences in minimum ADC and maximum SUV between responders and nonresponders and comparison of timing for discordant and concordant response assessments after induction chemotherapy were evaluated with the Wilcoxon test. Results Good agreement existed between treatment response assessments after induction chemotherapy with whole-body DW MRI and FDG PET/MRI (α = 0.88). Clinical response prediction according to maximum SUV (area under the receiver operating characteristic curve = 100%; 95% confidence interval [CI]: 99%, 100%) and minimum ADC (area under the receiver operating characteristic curve = 98%; 95% CI: 94%, 100%) were similar (P = .37). Sensitivity and specificity were 96% (54 of 56 participants; 95% CI: 86%, 99%) and 100% (56 of 56 participants; 95% CI: 54%, 100%), respectively, for DW MRI and 100% (56 of 56 participants; 95% CI: 93%, 100%) and 100% (56 of 56 participants; 95% CI: 54%, 100%) for FDG PET/MRI. In eight of 56 patients who underwent imaging after induction chemotherapy in the early posttreatment phase, chemotherapy-induced changes in tumor metabolism preceded changes in proton diffusion (P = .002). Conclusion Whole-body diffusion-weighted MRI showed significant agreement with fluorine 18 fluorodeoxyglucose PET/MRI for treatment response assessment in children and young adults. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ashok J. Theruvath
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Florian Siedek
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Anne M. Muehe
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Jordi Garcia-Diaz
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Julian Kirchner
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Ole Martin
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Michael P. Link
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Sheri Spunt
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Allison Pribnow
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Jarrett Rosenberg
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Ken Herrmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Sergios Gatidis
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Jürgen F. Schäfer
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Michael Moseley
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Lale Umutlu
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Heike E. Daldrup-Link
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| |
Collapse
|
22
|
Pourmehdi Lahiji A, Jackson T, Nejadnik H, von Eyben R, Rubin D, Spunt SL, Quon A, Daldrup-Link H. Association of Tumor [ 18F]FDG Activity and Diffusion Restriction with Clinical Outcomes of Rhabdomyosarcomas. Mol Imaging Biol 2020; 21:591-598. [PMID: 30187233 DOI: 10.1007/s11307-018-1272-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To evaluate whether the extent of restricted diffusion and 2-deoxy-2-[18F] fluoro-D-glucose ([18F]FDG) uptake of pediatric rhabdomyosarcomas (RMS) on positron emission tomography (PET)/magnetic resonance (MR) images provides prognostic information. PROCEDURE In a retrospective, IRB-approved study, we evaluated [18F]FDG PET/CT and diffusion-weighted (DW) MR imaging studies of 21 children and adolescents (age 1-20 years) with RMS of the head and neck. [18F]FDG PET and DW MR scans at the time of the initial tumor diagnosis were fused using MIM software. Quantitative measures of the tumor mass with restricted diffusion, [18F]FDG hypermetabolism, or both were dichotomized at the median and tested for significance using Gray's test. Data were analyzed using a survival analysis and competing risk model with death as the competing risk. RESULTS [18F]FDG PET/MR images demonstrated a mismatch between tumor areas with increased [18F]FDG uptake and restricted diffusion. The DWI, PET, and DWI + PET tumor volumes were dichotomized at their median values, 23.7, 16.4, and 9.5 cm3, respectively, and were used to estimate survival. DWI, PET, and DWI + PET overlap tumor volumes above the cutoff values were associated with tumor recurrence, regardless of post therapy COG stage (p = 0.007, p = 0.04, and p = 0.07, respectively). CONCLUSION The extent of restricted diffusion within RMS and overlap of hypermetabolism plus restricted diffusion predict unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Arian Pourmehdi Lahiji
- The Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Tatianie Jackson
- The Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
- Department of Radiology, Boston University Medical Center, Boston, MA, USA
| | - Hossein Nejadnik
- The Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Rubin
- The Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri L Spunt
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Quon
- Department of Nuclear Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Heike Daldrup-Link
- The Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA.
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Daldrup-Link H. Artificial intelligence applications for pediatric oncology imaging. Pediatr Radiol 2019; 49:1384-1390. [PMID: 31620840 PMCID: PMC6820135 DOI: 10.1007/s00247-019-04360-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/21/2018] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
Machine learning algorithms can help to improve the accuracy and efficiency of cancer diagnosis, selection of personalized therapies and prediction of long-term outcomes. Artificial intelligence (AI) describes a subset of machine learning that can identify patterns in data and take actions to reach pre-set goals without specific programming. Machine learning tools can help to identify high-risk populations, prescribe personalized screening tests and enrich patient populations that are most likely to benefit from advanced imaging tests. AI algorithms can also help to plan personalized therapies and predict the impact of genomic variations on the sensitivity of normal and tumor tissue to chemotherapy or radiation therapy. The two main bottlenecks for successful AI applications in pediatric oncology imaging to date are the needs for large data sets and appropriate computer and memory power. With appropriate data entry and processing power, deep convolutional neural networks (CNNs) can process large amounts of imaging data, clinical data and medical literature in very short periods of time and thereby accelerate literature reviews, correct diagnoses and personalized treatments. This article provides a focused review of emerging AI applications that are relevant for the pediatric oncology imaging community.
Collapse
Affiliation(s)
- Heike Daldrup-Link
- Department of Radiology, Lucile Packard Children's Hospital, Pediatric Molecular Imaging Program, Stanford University School of Medicine, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA. .,Department of Pediatrics, Hematology/Oncology Section, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Chambers G, Frood R, Patel C, Scarsbrook A. 18F-FDG PET-CT in paediatric oncology: established and emerging applications. Br J Radiol 2019; 92:20180584. [PMID: 30383441 PMCID: PMC6404840 DOI: 10.1259/bjr.20180584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate staging and response assessment is vital in the management of childhood malignancies. Fluorine-18 fluorodeoxyglucose positron emission tomography/CT (FDG PET-CT) provides complimentary anatomical and functional information. Oncological applications of FDG PET-CT are not as well-established within the paediatric population compared to adults. This article will comprehensively review established oncological PET-CT applications in paediatric oncology and provide an overview of emerging and future developments in this domain.
Collapse
Affiliation(s)
- Greg Chambers
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Russell Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chirag Patel
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | |
Collapse
|
25
|
Cerci JJ, Etchebehere EC, Nadel H, Brink A, Bal CS, Rangarajan V, Pfluger T, Kagna O, Alonso O, Begum FK, Mir KB, Magboo VP, Menezes LJ, Paez D, Pascual TN. Is True Whole-Body 18F-FDG PET/CT Required in Pediatric Lymphoma? An IAEA Multicenter Prospective Study. J Nucl Med 2019; 60:1087-1093. [PMID: 30683766 DOI: 10.2967/jnumed.118.222299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/19/2018] [Indexed: 01/22/2023] Open
Abstract
Guidelines recommend true whole-body 18F-FDG PET/CT scans from vertex to toes in pediatric lymphoma patients, although this suggestion has not been validated in large clinical trials. The objective of the study was to evaluate the incidence and clinical impact of lesions outside the "eyes to thighs" regular field of view (R-FOV) in 18F-FDG PET/CT staging (sPET) and interim (iPET) scans in pediatric lymphoma patients. Methods: True whole-body sPET and iPET scans were prospectively obtained in pediatric lymphoma patients (11 worldwide centers). Expert panel central review of sPET and iPET scans were evaluated for lymphoma lesions outside the R-FOV and clinical relevance of these findings. Results: A total of 610 scans were obtained in 305 patients. The sPET scans did not show lesions outside the R-FOV in 91.8% of the patients, whereas in 8.2% patients the sPET scans demonstrated lesions also outside the R-FOV (soft tissue, bone, bone marrow, and skin); however, the presence of these lesions did not change the clinical stage of any patient and did not affect treatment decision. Among the 305 iPET scans, there were no new positive 18F-FDG-avid lesions outside the R-FOV, when compared with their paired sPET scans. A single lesion outside the R-FOV on iPET occurred in 1 patient (0.3%), with the primary lesion diagnosed in the femur on sPET that persisted on iPET. Conclusion: The identification of additional lesions outside the R-FOV (eyes to thighs) using 18F-FDG PET/CT has no impact in the definition of the clinical stage of disease and minimal impact in the treatment definition of patients with pediatric lymphoma. As so, R-FOV for both sPET and iPET scans could be performed.
Collapse
Affiliation(s)
| | | | - Helen Nadel
- University of British Columbia, Vancouver, Canada
| | - Anita Brink
- University of Cape Town, Cape Town, South Africa
| | | | | | - Thomas Pfluger
- Ludwig-Maximillian University of Munich, Munich, Germany
| | - Olga Kagna
- Rambam Health Care Campus, Rambam, Israel
| | - Omar Alonso
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Fatima K Begum
- National Institute of Nuclear Medicine and Allied Sciences, Bangladesh, Bangladesh
| | | | | | - Leon J Menezes
- Institute of Nuclear Medicine, London, United Kingdom; and
| | - Diana Paez
- International Atomic Energy Agency, Vienna, Austria
| | | |
Collapse
|
26
|
How to Provide Gadolinium-Free PET/MR Cancer Staging of Children and Young Adults in Less than 1 h: the Stanford Approach. Mol Imaging Biol 2019; 20:324-335. [PMID: 28721605 DOI: 10.1007/s11307-017-1105-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To provide clinically useful gadolinium-free whole-body cancer staging of children and young adults with integrated positron emission tomography/magnetic resonance (PET/MR) imaging in less than 1 h. PROCEDURES In this prospective clinical trial, 20 children and young adults (11-30 years old, 6 male, 14 female) with solid tumors underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/MR on a 3T PET/MR scanner after intravenous injection of ferumoxytol (5 mg Fe/kg) and [18F]FDG (2-3 MBq/kg). Time needed for patient preparation, PET/MR image acquisition, and data processing was compared before (n = 5) and after (n = 15) time-saving interventions, using a Wilcoxon test. The ferumoxytol-enhanced PET/MR images were compared with clinical standard staging tests regarding radiation exposure and tumor staging results, using Fisher's exact tests. RESULTS Tailored workflows significantly reduced scan times from 36 to 24 min for head to mid thigh scans (p < 0.001). These streamlined PET/MR scans were obtained with significantly reduced radiation exposure (mean 3.4 mSv) compared to PET/CT with diagnostic CT (mean 13.1 mSv; p = 0.003). Using the iron supplement ferumoxytol "off label" as an MR contrast agent avoided gadolinium chelate administration. The ferumoxytol-enhanced PET/MR scans provided equal or superior tumor staging results compared to clinical standard tests in 17 out of 20 patients. Compared to PET/CT, PET/MR had comparable detection rates for pulmonary nodules with diameters of equal or greater than 5 mm (94 vs. 100 %), yet detected significantly fewer nodules with diameters of less than 5 mm (20 vs 100 %) (p = 0.03). [18F]FDG-avid nodules were detected with slightly higher sensitivity on the PET of the PET/MR compared to the PET of the PET/CT (59 vs 49 %). CONCLUSION Our streamlined ferumoxytol-enhanced PET/MR protocol provided cancer staging of children and young adults in less than 1 h with equivalent or superior clinical information compared to clinical standard staging tests. The detection of small pulmonary nodules with PET/MR needs to be improved.
Collapse
|
27
|
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol 2019; 15:289-301. [PMID: 30570412 DOI: 10.1080/1744666x.2019.1561283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION High-resolution imaging is the gold standard to measure the functional and biological features of bone lesions. Imaging markers have allowed the characterization both of tumour heterogeneity and metabolic data. Besides, ongoing studies are evaluating a combined use of 'imaging markers', such as SUVs, MATV, TLG, ADC from PET and MRI techniques respectively, and several 'biomarkers' spanning from chemokine immune-modulators, such as PD-1, RANK/RANKL, CXCR4/CXCL12 to transcription factors, such as TP53, RB1, MDM2, RUNX family, EZH2, YY1, MAD2. Osteoimmunology may improve diagnosis and prognosis leading to precision medicine in bone lesion treatment. Areas covered: We investigated modalities (molecular and imaging approach) useful to identify bone lesions deriving both from primary bone tumours and from osteotropic tumours, which have a higher incidence, prevalence and prognosis. Here, we summarized the recent advances in imaging techniques and osteoimmunology biomarkers which could play a pivotal role in personalized treatment. Expert commentary: Although imaging and molecular integration could allow both early diagnosis and stratification of cancer prognosis, large scale clinical trials will be necessary to translate pilot studies in the current clinical setting. ABBREVIATIONS ADC: apparent diffusion coefficient; ALCAM: Activated Leukocyte Cell Adhesion Molecule; ALP: Alkaline phosphatases; BC: Breast cancer; BSAP: B-Cell Lineage Specific Activator; BSAP: bone-specific alkaline phosphatase; BSP: bone sialoprotein; CRIP1: cysteine-rich intestinal protein 1; CD44: cluster of differentiation 44; CT: computed tomography; CXCL12: C-X-C motif ligand 12; CXCR4: C-X-C C-X-C chemokine receptor type 4; CTLA-4: Cytotoxic T-lymphocyte antigen 4; CTX-1: C-terminal end of the telopeptide of type I collagen; DC: dendritic cell; DWI: Diffusion-weighted MR image; EMT: mesenchymal transition; ET-1: endothelin-1; FDA: Food and Drug Administration; FDG: 18F-2-fluoro-2-deoxy-D-glucose; FGF: fibroblast growth factor; FOXC2: forkhead box protein C2: HK-2: hexokinase-2; ICTP: carboxyterminal cross-linked telopeptide of type I collagen; IGF-1R: Insulin Like Growth Factor 1 Receptor; ILC: innate lymphocytes cells; LC: lung cancer; IL-1: interleukin-1; LYVE1: lymphatic vessel endothelial hyaluronic acid receptor 1; MAD2: mitotic arrest deficient 2; MATV: metabolically active tumour volume; M-CSF: macrophage colony stimulating factor; MM: multiple myeloma; MIP1a: macrophage inflammatory protein 1a; MSC: mesenchymal stem cell; MRI: magnetic resonance imaging; PC: prostate cancer; NRP2: neuropilin 2; OPG: osteoprotogerin; PDGF: platelet-derived growth factor; PD-1: Programmed Cell Death 1; PET: positron emission tomography; PINP: procollagen type I N propeptide; PROX1: prospero homeobox protein 1; PSA: Prostate-specific antigen; PTH: parathyroid hormone; RANK: Receptor activator of NF-kB ligand; RECK: Reversion-inducing-cysteine-rich protein; SEMAs: semaphorins; SPECT: single photon computed tomography; SUV: standard uptake value; TLG: total lesion glycolysis; TP53: tumour protein 53; VCAM-1: vascular endothelial molecule-1; VOI: volume of interest; YY1: Yin Yang 1.
Collapse
Affiliation(s)
- Concetta Schiano
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy
| | - Andrea Soricelli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,b Department of Motor Sciences and Healthiness , University of Naples Parthenope , Naples , Italy
| | - Filomena De Nigris
- c Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,d Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
28
|
|
29
|
Huang T, Li F, Yan Z, Ma Y, Xiong F, Cai X, Zhang Q, Liu F, Dong J. Effectiveness of 18F-FDG PET/CT in the diagnosis, staging and recurrence monitoring of Ewing sarcoma family of tumors: A meta-analysis of 23 studies. Medicine (Baltimore) 2018; 97:e13457. [PMID: 30508968 PMCID: PMC6283220 DOI: 10.1097/md.0000000000013457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To investigate the value of positron emission tomography (PET) and PET/computed tomography (CT) using fluorine-18-fluorodeoxyglucose (F-FDG) in the diagnosis, staging, restaging and recurrence monitoring of Ewing sarcoma family of tumors (ESFTs), a meta-analysis was performed through systematically searching PubMed, Embase, and Cochrane Central library to retrieve articles. METHODS After screening and diluting out the articles that met inclusion criteria to be used for statistical analysis the pooled evaluation indexes including sensitivity, specificity, and diagnostic odd ratio (DOR) as well as the summary receiver operating characteristic curve (SROC) were calculated involving diagnostic data (true positive, false positive, false negative, and true negative) extracted from original studies. RESULTS Screening determined that out of 2007, 23 studies involving a total of 524 patients were deemed viable for inclusion in the meta-analysis. The results of the analysis showed that the sensitivity and specificity were at 86% and 80%, respectively. Additionally, a satisfactory accuracy of F-FDG PET and PET/CT was observed in detecting ESFT recurrence, lung metastasis, and osseous metastasis. CONCLUSION This meta-analysis suggests that F-FDG PET and PET/CT with an extremely high accuracy could be considered a valuable method for detecting distant metastasis and post-operational recurrence of ESFT, which might have a profound impact on the development of treatment protocols for ESFT.
Collapse
Affiliation(s)
- Tao Huang
- Department of Orthopaedics, Yantai Shan Hospital, Yantai
| | - Feng Li
- Department of Orthopaedics, Zhangqiu District People's Hospital of Jinan City, Zhangqiu District, Jinan City, Shandong Province, China
| | - Zexing Yan
- Department of Trauma Surgery, University of Regensburg, Regensburg
| | - Yupeng Ma
- Department of Orthopaedics, Yantai Shan Hospital, Yantai
| | - Fei Xiong
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Großhadern, Munich, Germany
| | - Xia Cai
- Department of Orthopaedics, Zhangqiu District People's Hospital of Jinan City, Zhangqiu District, Jinan City, Shandong Province, China
| | - Qingyu Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University
| | - Fanxiao Liu
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Großhadern, Munich, Germany
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jinlei Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Behzadi AH, Raza SI, Carrino JA, Kosmas C, Gholamrezanezhad A, Basques K, Matcuk GR, Patel J, Jadvar H. Applications of PET/CT and PET/MR Imaging in Primary Bone Malignancies. PET Clin 2018; 13:623-634. [PMID: 30219192 DOI: 10.1016/j.cpet.2018.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary bone malignancies are characterized with anatomic imaging. However, in recent years, there has been an increased interest in PET/computed tomography scanning and PET/MRI with fludeoxyglucose F 18 for evaluating and staging musculoskeletal neoplasms. These hybrid imaging modalities have shown promise largely owing to their high sensitivity, ability to perform more thorough staging, and ability to monitor treatment response. This article reviews the current role of PET/computed tomography scanning and PET/MRI in primary malignancies of bone, with an emphasis on imaging characteristics, clinical usefulness, and current limitations.
Collapse
Affiliation(s)
| | - Syed Imran Raza
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, New York, NY 10065, USA
| | - John A Carrino
- Department of Radiology and Imaging, 535 East 70th Street, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christos Kosmas
- Department of Radiology and Imaging, University Hospitals of Cleveland, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ali Gholamrezanezhad
- Division of Musculoskeletal Radiology, Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA
| | - Kyle Basques
- Department of Radiology and Imaging, University Hospitals of Cleveland, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - George R Matcuk
- Division of Musculoskeletal Radiology, Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90007, USA
| | - Jay Patel
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, New York, NY 10065, USA
| | - Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| |
Collapse
|
31
|
Gatidis S, Gückel B, la Fougère C, Schmitt J, Schäfer JF. [Simultaneous whole-body PET-MRI in pediatric oncology : More than just reducing radiation?]. Radiologe 2017; 56:622-30. [PMID: 27306199 DOI: 10.1007/s00117-016-0122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diagnostic imaging plays an essential role in pediatric oncology with regard to diagnosis, therapy-planning, and the follow-up of solid tumors. The current imaging standard in pediatric oncology includes a variety of radiological and nuclear medicine imaging modalities depending on the specific tumor entity. The introduction of combined simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) has opened up new diagnostic options in pediatric oncology. This novel modality combines the excellent anatomical accuracy of MRI with the metabolic information of PET. In initial clinical studies, the technical feasibility and possible diagnostic advantages of combined PET-MRI have been in comparison with alternative imaging techniques. It was shown that a reduction in radiation exposure of up to 70 % is achievable compared with PET-CT. Furthermore, it has been shown that the number of imaging studies necessary can be markedly reduced using combined PET-MRI. Owing to its limited availability, combined PET-MRI is currently not used as a routine procedure. However, this new modality has the potential to become the imaging reference standard in pediatric oncology in the future. This review article summarizes the central aspects of pediatric oncological PET-MRI based on existing literature. Typical pediatric oncological PET-MRI cases are also presented.
Collapse
Affiliation(s)
- S Gatidis
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - B Gückel
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - C la Fougère
- Radiologische Klinik, Nuklearmedizin, Universität Tübingen, Tübingen, Deutschland
| | - J Schmitt
- Abteilung für Präklinische Bildgebung und Radiopharmazie, Werner Siemens Imaging Center, Universität Tübingen, Tübingen, Deutschland
| | - J F Schäfer
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| |
Collapse
|
32
|
Hart A, Vali R, Marie E, Shaikh F, Shammas A. The clinical impact of 18F-FDG PET/CT in extracranial pediatric germ cell tumors. Pediatr Radiol 2017; 47:1508-1513. [PMID: 28664453 DOI: 10.1007/s00247-017-3899-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/01/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Extracranial germ cell tumors are an uncommon pediatric malignancy with limited information on the clinical impact of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the literature. OBJECTIVE The purpose of this study was to evaluate and compare the clinical impact on management of 18F-FDG PET/CT with diagnostic computed tomography (CT) in pediatric extracranial germ cell tumor. MATERIALS AND METHODS The list of 18F-FDG PET/CT performed for extracranial germ cell tumor between May 2007 and November 2015 was obtained from the nuclear medicine database. 18F-FDG PET/CT and concurrent diagnostic CT were obtained and independently reviewed. Additionally, the patients' charts were reviewed for duration of follow-up and biopsy when available. The impact of 18F-FDG PET/CT compared with diagnostic CT on staging and patient management was demonstrated by chart review, imaging findings and follow-up studies. RESULTS During the study period, 9 children (5 males and 4 females; age range: 1.6-17 years, mode age: 14 years) had 11 18F-FDG PET/CT studies for the evaluation of germ cell tumor. Diagnostic CTs were available for comparison in 8 patients (10 18F-FDG PET/CT studies). The average interval between diagnostic CT and PET/CT was 7.2 days (range: 0-37 days). In total, five lesions concerning for active malignancy were identified on diagnostic CT while seven were identified on PET/CT. Overall, 18F-FDG PET/CT resulted in a change in management in 3 of the 9 patients (33%). CONCLUSION 18F-FDG PET/CT had a significant impact on the management of pediatric germ cell tumors in this retrospective study. Continued multicenter studies are required secondary to the rarity of this tumor to demonstrate the benefit of 18F-FDG PET/CT in particular clinical scenarios.
Collapse
Affiliation(s)
- Adam Hart
- Department of Medical Imaging, Nuclear Medicine, The Hospital for Sick Children and University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada
| | - Reza Vali
- Department of Medical Imaging, Nuclear Medicine, The Hospital for Sick Children and University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada.
| | - Eman Marie
- Department of Medical Imaging, Nuclear Medicine, The Hospital for Sick Children and University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada
| | - Furqan Shaikh
- Division of Haematology and oncology, The Hospital for Sick Children and University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada
| | - Amer Shammas
- Department of Medical Imaging, Nuclear Medicine, The Hospital for Sick Children and University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada
| |
Collapse
|
33
|
|
34
|
Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI. Eur J Nucl Med Mol Imaging 2017; 44:1742-1750. [PMID: 28534182 DOI: 10.1007/s00259-017-3726-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted 18F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. METHODS A total of 28 18F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. RESULTS PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI1; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI2; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. CONCLUSION 18F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.
Collapse
|
35
|
Abstract
PURPOSE To review how PET/MR technology could add value for pediatric cancer patients. RECENT FINDINGS Since many primary tumors in children are evaluated with MRI and metastases are detected with PET/CT, integrated PET/MR can be a time-efficient and convenient solution for pediatric cancer staging. 18F-FDG PET/MR can assess primary tumors and the whole body in one imaging session, avoid repetitive anesthesia and reduce radiation exposure compared to 18F-FDG PET/CT. This article lists 10 action points, which might improve the clinical value of PET/MR for children with cancer. However, even if PET/MR proves valuable, it cannot enter mainstream applications if it is not accessible to the majority of pediatric cancer patients. Therefore, innovations are needed to make PET/MR scanners affordable and increase patient throughput. SUMMARY PET/MR offers opportunities for more efficient, accurate and safe diagnoses of pediatric cancer patients. The impact on patient management and outcomes has to be substantiated by large-scale prospective clinical trials.
Collapse
Affiliation(s)
- Heike Daldrup-Link
- Department of Radiology, Lucile Packard Children's Hospital, and Pediatric Molecular Imaging Program (@PedsMIPS) in the Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Stanford University
| |
Collapse
|
36
|
Guimarães MD, Noschang J, Teixeira SR, Santos MK, Lederman HM, Tostes V, Kundra V, Oliveira AD, Hochhegger B, Marchiori E. Whole-body MRI in pediatric patients with cancer. Cancer Imaging 2017; 17:6. [PMID: 28187778 PMCID: PMC5303228 DOI: 10.1186/s40644-017-0107-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of natural death in the pediatric populations of developed countries, yet cure rates are greater than 70% when a cancer is diagnosed in its early stages. Recent advances in magnetic resonance imaging methods have markedly improved diagnostic and therapeutic approaches, while avoiding the risks of ionizing radiation that are associated with most conventional radiological methods, such as computed tomography and positron emission tomography/computed tomography. The advent of whole-body magnetic resonance imaging in association with the development of metabolic- and function-based techniques has led to the use of whole-body magnetic resonance imaging for the screening, diagnosis, staging, response assessment, and post-therapeutic follow-up of children with solid sporadic tumours or those with related genetic syndromes. Here, the advantages, techniques, indications, and limitations of whole-body magnetic resonance imaging in the management of pediatric oncology patients are presented.
Collapse
Affiliation(s)
- Marcos Duarte Guimarães
- Department of Imaging, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, Liberdade, São Paulo/SP, 01509-010, Brazil.,Universidade Federal do Vale do São Francisco (UNIVASF), Av. José de Sá Maniçoba, Petrolina, PE, 56304-917, Brazil
| | - Julia Noschang
- Department of Imaging, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, Liberdade, Sao Paulo/SP, 01509-010, Brazil.
| | - Sara Reis Teixeira
- Division of Radiology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto/ SP, 14049-090, Brazil
| | - Marcel Koenigkam Santos
- Division of Radiology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto/ SP, 14049-090, Brazil
| | - Henrique Manoel Lederman
- Universidade Federal de São Paulo, Departamento de Diagnóstico Por Imagem, Disciplina de Diagnóstico por Imagem em Pediatria, Rua Napoleão de Barros, 800, Vila Clementino, Sao Paulo/SP, 04024002, Brazil
| | - Vivian Tostes
- Universidade Federal de São Paulo, Centro de Diagnóstico por Imagem do Instituto de Oncologia Pediátrica e Médica Radiologista do Centro de Diagnóstico por Imagem do Instituto de Oncologia Pediátrica, Rua Napoleão de Barros, 800, Vila Clementino, Sao Paulo/SP, 04024002, Brazil
| | - Vikas Kundra
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Alex Dias Oliveira
- Department of Imaging, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, Liberdade, Sao Paulo/SP, 01509-010, Brazil
| | - Bruno Hochhegger
- Department of Radiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Professor Anes Dias, 285, Centro Histórico, Porto Alegre/RS, 90020-090, Brazil
| | - Edson Marchiori
- Department of Radiology, Universidade Federal do Rio de Janeiro, Rua Thomaz Cameron, 438, Valparaíso, Petrópolis/RJ, 25685-129, Brazil
| |
Collapse
|
37
|
Abstract
Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system, and is metastatic or otherwise high risk for relapse in nearly 50% of cases, with a long-term survival of <40%. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for finding the adequate therapeutic choice. The tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor-specific agent for imaging. On the contrary, MIBG imaging has several disadvantages such as limited spatial resolution, limited sensitivity in small lesions, need for two or even more acquisition sessions, and a delay between the start of the examination and result. Most of these limitations can be overcome with positron emission tomography (PET) using different radiotracers. Furthermore, for operative or biopsy planning, a combination with morphological imaging methods is indispensable. This article would discuss the therapeutic strategy for primary and follow-up diagnosis in neuroblastoma using MIBG scintigraphy and different new PET tracers as well as multimodality imaging.
Collapse
Affiliation(s)
- Thomas Pfluger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | |
Collapse
|
38
|
Wagner LM, Kremer N, Gelfand MJ, Sharp SE, Turpin BK, Nagarajan R, Tiao GM, Pressey JG, Yin J, Dasgupta R. Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: Sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging-A prospective trial. Cancer 2016; 123:155-160. [PMID: 27563842 DOI: 10.1002/cncr.30282] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lymph node metastases are an important cause of treatment failure for pediatric and adolescent/young adult (AYA) sarcoma patients. Nodal sampling is recommended for certain sarcoma subtypes that have a predilection for lymphatic spread. Sentinel lymph node biopsy (SLNB) may improve the diagnostic yield of nodal sampling, particularly when single-photon emission computed tomography/computed tomography (SPECT-CT) is used to facilitate anatomic localization. Functional imaging with positron emission tomography/computed tomography (PET-CT) is increasingly used for sarcoma staging and is a less invasive alternative to SLNB. To assess the utility of these 2 staging methods, this study prospectively compared SLNB plus SPECT-CT with PET-CT for the identification of nodal metastases in pediatric and AYA patients. METHODS Twenty-eight pediatric and AYA sarcoma patients underwent SLNB with SPECT-CT. The histological findings of the excised lymph nodes were then correlated with preoperative PET-CT imaging. RESULTS A median of 2.4 sentinel nodes were sampled per patient. No wound infections or chronic lymphedema occurred. SLNB identified tumors in 7 of the 28 patients (25%), including 3 patients who had normal PET-CT imaging of the nodal basin. In contrast, PET-CT demonstrated hypermetabolic regional nodes in 14 patients, and this resulted in a positive predictive value of only 29%. The sensitivity and specificity of PET-CT for detecting histologically confirmed nodal metastases were only 57% and 52%, respectively. CONCLUSIONS SLNB can safely guide the rational selection of nodes for biopsy in pediatric and AYA sarcoma patients and can identify therapy-changing nodal disease not appreciated with PET-CT. Cancer 2017;155-160. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Lars M Wagner
- Division of Pediatric Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Nathalie Kremer
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Michael J Gelfand
- Division of Pediatric Radiology and Medical Imaging, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Susan E Sharp
- Division of Pediatric Radiology and Medical Imaging, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Brian K Turpin
- Division of Pediatric Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Rajaram Nagarajan
- Division of Pediatric Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Gregory M Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Joseph G Pressey
- Division of Pediatric Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Julie Yin
- Division of Pediatric Pathology and Laboratory Medicine, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Roshni Dasgupta
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
39
|
Aghighi M, Pisani LJ, Sun Z, Klenk C, Madnawat H, Fineman SL, Advani R, Von Eyben R, Owen D, Quon A, Moseley M, Daldrup-Link HE. Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol 2016; 26:4239-4248. [PMID: 27048532 DOI: 10.1007/s00330-016-4332-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/23/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Combining 18F-FDG PET with whole-body MR for paediatric cancer staging is practically feasible if imaging protocols can be streamlined. We compared 18F-FDG PET/STIR with accelerated 18F-FDG PET/FSPGR for whole-body tumour imaging in children and young adults. METHODS Thirty-three children and young adults (17.5 ± 5.5 years, range 10-30) with malignant lymphoma or sarcoma underwent a 18F-FDG PET staging examination, followed by ferumoxytol-enhanced STIR and FSPGR whole-body MR. 18F-FDG PET scans were fused with MR data and the number and location of tumours on each integrated examination were determined. Histopathology and follow-up imaging served as standard of reference. The agreement of each MR sequence with the reference and whole-body imaging times were compared using Cohen's kappa coefficient and Student's t-test, respectively. RESULTS Comparing 18F-FDG PET/FSPGR to 18F-FDG PET/STIR, sensitivities were 99.3 % for both, specificities were statistically equivalent, 99.8 versus 99.9 %, and the agreement with the reference based on Cohen's kappa coefficient was also statistically equivalent, 0.989 versus 0.992. However, the total scan-time for accelerated FSPGR of 19.8 ± 5.3 minutes was significantly shorter compared to 29.0 ± 7.6 minutes for STIR (p = 0.001). CONCLUSION F-FDG PET/FSPGR demonstrated equivalent sensitivities and specificities for cancer staging compared to 18F-FDG PET/STIR, but could be acquired with shorter acquisition time. KEY POINTS • Breath-hold FSPGR sequences shorten the data acquisition time for whole-body MR and PET/MR. • Ferumoxytol provides long-lasting vascular contrast for whole-body MR and PET/MR. • 18 F-FDG PET/FSPGR data provided equal sensitivity and specificity for cancer staging compared to 18 F-FDG PET/STIR.
Collapse
Affiliation(s)
- Maryam Aghighi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Laura Jean Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Ziyan Sun
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Christopher Klenk
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Himani Madnawat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Sandra Luna Fineman
- Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Ranjana Advani
- Department of Medicine, Stanford Hospital, Stanford University, Stanford, CA, USA
| | - Rie Von Eyben
- Department of Radiation and Oncology, Stanford University, Stanford, CA, USA
| | - Daniel Owen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Andrew Quon
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94304, USA.
| |
Collapse
|
40
|
Roberts CC, Kransdorf MJ, Beaman FD, Adler RS, Amini B, Appel M, Bernard SA, Fries IB, Germano IM, Greenspan BS, Holly LT, Kubicky CD, Lo SSM, Mosher TJ, Sloan AE, Tuite MJ, Walker EA, Ward RJ, Wessell DE, Weissman BN. ACR Appropriateness Criteria Follow-Up of Malignant or Aggressive Musculoskeletal Tumors. J Am Coll Radiol 2016; 13:389-400. [PMID: 26922595 DOI: 10.1016/j.jacr.2015.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Appropriate imaging modalities for the follow-up of malignant or aggressive musculoskeletal tumors include radiography, MRI, CT, (18)F-2-fluoro-2-deoxy-D-glucose PET/CT, (99m)Tc bone scan, and ultrasound. Clinical scenarios reviewed include evaluation for metastatic disease to the lung in low- and high-risk patients, for osseous metastatic disease in asymptomatic and symptomatic patients, for local recurrence of osseous tumors with and without significant hardware present, and for local recurrence of soft tissue tumors. The timing for follow-up of pulmonary metastasis surveillance is also reviewed. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Collapse
Affiliation(s)
| | | | | | - Ronald S Adler
- New York University Center for Musculoskeletal Care, New York, New York
| | - Behrang Amini
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marc Appel
- Warwick Valley Orthopedic Surgery, Warwick, New York, American Academy of Orthopaedic Surgeons
| | - Stephanie A Bernard
- Penn State University Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Ian Blair Fries
- Bone, Spine and Hand Surgery, Chartered, Brick, New Jersey, American Academy of Orthopaedic Surgeons
| | | | | | - Langston T Holly
- University of California Los Angeles Medical Center, Los Angeles, California
| | | | - Simon Shek-Man Lo
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Timothy J Mosher
- Penn State University Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Andrew E Sloan
- University Hospital Case Medical Center, Cleveland, Ohio
| | | | - Eric A Walker
- Penn State University Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | | | |
Collapse
|
41
|
Pessanha LB, Oliveira ARND, Guerra LFA, Martins DLN, Rondina RG, Mello MBN. PET/CT and brown fat in the evaluation of treatment response in Hodgkin lymphoma. Radiol Bras 2015; 48:402-3. [PMID: 26811562 PMCID: PMC4725406 DOI: 10.1590/0100-3984.2015.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Bleeker G, Tytgat GAM, Adam JA, Caron HN, Kremer LCM, Hooft L, van Dalen EC. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev 2015; 2015:CD009263. [PMID: 26417712 PMCID: PMC4621955 DOI: 10.1002/14651858.cd009263.pub2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood.Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (¹²³I-MIBG), which can be used for imaging the tumour. Moreover, ¹²³I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of ¹²³I-MIBG scintigraphy to detect neuroblastoma varies according to the literature.Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of ¹²³I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of ¹²³I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose ((18)F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. OBJECTIVES PRIMARY OBJECTIVES 1.1 To determine the diagnostic accuracy of ¹²³I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old.1.2 To determine the diagnostic accuracy of negative ¹²³I-MIBG scintigraphy in combination with (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. SECONDARY OBJECTIVES 2.1 To determine the diagnostic accuracy of (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old.2.2 To compare the diagnostic accuracy of ¹²³I-MIBG (SPECT-CT) and (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. This was performed within and between included studies. ¹²³I-MIBG (SPECT-CT) scintigraphy was the comparator test in this case. SEARCH METHODS We searched the databases of MEDLINE/PubMed (1945 to 11 September 2012) and EMBASE/Ovid (1980 to 11 September 2012) for potentially relevant articles. Also we checked the reference lists of relevant articles and review articles, scanned conference proceedings and searched for unpublished studies by contacting researchers involved in this area. SELECTION CRITERIA We included studies of a cross-sectional design or cases series of proven neuroblastoma, either retrospective or prospective, if they compared the results of ¹²³I-MIBG (SPECT-CT) scintigraphy or (18)F-FDG-PET(-CT) imaging, or both, with the reference standards or with each other. Studies had to be primary diagnostic and report on children aged between 0 to 18 years old with a neuroblastoma of any stage at first diagnosis or at recurrence. DATA COLLECTION AND ANALYSIS One review author performed the initial screening of identified references. Two review authors independently performed the study selection, extracted data and assessed the methodological quality.We used data from two-by-two tables, describing at least the number of patients with a true positive test and the number of patients with a false negative test, to calculate the sensitivity, and if possible, the specificity for each included study.If possible, we generated forest plots showing estimates of sensitivity and specificity together with 95% confidence intervals. MAIN RESULTS Eleven studies met the inclusion criteria. Ten studies reported data on patient level: the scan was positive or negative. One study reported on all single lesions (lesion level). The sensitivity of ¹²³I-MIBG (SPECT-CT) scintigraphy (objective 1.1), determined in 608 of 621 eligible patients included in the 11 studies, varied from 67% to 100%. One study, that reported on a lesion level, provided data to calculate the specificity: 68% in 115 lesions in 22 patients. The sensitivity of ¹²³I-MIBG scintigraphy for detecting metastases separately from the primary tumour in patients with all neuroblastoma stages ranged from 79% to 100% in three studies and the specificity ranged from 33% to 89% for two of these studies.One study reported on the diagnostic accuracy of (18)F-FDG-PET(-CT) imaging (add-on test) in patients with negative ¹²³I-MIBG scintigraphy (objective 1.2). Two of the 24 eligible patients with proven neuroblastoma had a negative ¹²³I-MIBG scan and a positive (18)F-FDG-PET(-CT) scan.The sensitivity of (18)F-FDG-PET(-CT) imaging as a single diagnostic test (objective 2.1) and compared to ¹²³I-MIBG (SPECT-CT) (objective 2.2) was only reported in one study. The sensitivity of (18)F-FDG-PET(-CT) imaging was 100% versus 92% of ¹²³I-MIBG (SPECT-CT) scintigraphy. We could not calculate the specificity for both modalities. AUTHORS' CONCLUSIONS The reported sensitivities of ¹²³-I MIBG scintigraphy for the detection of neuroblastoma and its metastases ranged from 67 to 100% in patients with histologically proven neuroblastoma.Only one study in this review reported on false positive findings. It is important to keep in mind that false positive findings can occur. For example, physiological uptake should be ruled out, by using SPECT-CT scans, although more research is needed before definitive conclusions can be made.As described both in the literature and in this review, in about 10% of the patients with histologically proven neuroblastoma the tumour does not accumulate ¹²³I-MIBG (false negative results). For these patients, it is advisable to perform an additional test for staging and assess response to therapy. Additional tests might for example be (18)F-FDG-PET(-CT), but to be certain of its clinical value, more evidence is needed.The diagnostic accuracy of (18)F-FDG-PET(-CT) imaging in case of a negative ¹²³I-MIBG scintigraphy could not be calculated, because only very limited data were available. Also the detection of the diagnostic accuracy of index test (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma tumour and its metastases, and to compare this to comparator test ¹²³I-MIBG (SPECT-CT) scintigraphy, could not be calculated because of the limited available data at time of this search.At the start of this project, we did not expect to find only very limited data on specificity. We now consider it would have been more appropriate to use the term "the sensitivity to assess the presence of neuroblastoma" instead of "diagnostic accuracy" for the objectives.
Collapse
Affiliation(s)
- Gitta Bleeker
- Northwest ClinicsRadiology and Nuclear MedicinePO box 501AlkmaarNetherlands1800 AM
| | - Godelieve AM Tytgat
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | - Judit A Adam
- Amsterdam UMC, University of AmsterdamNuclear Medicine and RadiologyP.O. Box 22660AmsterdamNetherlands1100 DD
| | - Huib N Caron
- F. Hoffmann‐La Roche AGiPODD Pediatric Oncology team, Pharma Development OncologyBldg/Room 682/332BaselSwitzerland4070
| | - Leontien CM Kremer
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht UniversityCochrane NetherlandsRoom Str. 6.127P.O. Box 85500UtrechtNetherlands3508 GA
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | | |
Collapse
|
43
|
Liu F, Zhang Q, Zhu D, Liu F, Li Z, Li J, Wang B, Zhou D, Dong J. Performance of Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Using Fluorine-18-Fluorodeoxyglucose for the Diagnosis, Staging, and Recurrence Assessment of Bone Sarcoma: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 2015; 94:e1462. [PMID: 26356700 PMCID: PMC4616630 DOI: 10.1097/md.0000000000001462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023] Open
Abstract
To investigate the performance of fluorine-18-fluorodeoxyglucose (F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the diagnosis, staging, restaging, and recurrence surveillance of bone sarcoma by systematically reviewing and meta-analyzing the published literature.To retrieve eligible studies, we searched the MEDLINE, Embase, and the Cochrane Central library databases using combinations of following Keywords: "positron emission tomography" or "PET," and "bone tumor" or "bone sarcoma" or "sarcoma." Bibliographies from relevant articles were also screened manually. Data were extracted and the pooled sensitivity, specificity, and diagnostic odds ratio (DOR), on an examination-based or lesion-based level, were calculated to appraise the diagnostic accuracy of F-FDG PET and PET/CT. All statistical analyses were performed using Meta-Disc 1.4.Forty-two trials were eligible. The pooled sensitivity and specificity of PET/CT to differentiate primary bone sarcomas from benign lesions were 96% (95% confidence interval [CI], 93-98) and 79% (95% CI, 63-90), respectively. For detecting recurrence, the pooled results on an examination-based level were sensitivity 92% (95% CI, 85-97), specificity 93% (95% CI, 88-96), positive likelihood ratio (PLR) 10.26 (95% CI, 5.99-17.60), and negative likelihood ratio (NLR) 0.11 (95% CI, 0.05-0.22). For detecting distant metastasis, the pooled results on a lesion-based level were sensitivity 90% (95% CI, 86-93), specificity 85% (95% CI, 81-87), PLR 5.16 (95% CI, 2.37-11.25), and NLR 0.15 (95% CI, 0.11-0.20). The accuracies of PET/CT for detecting local recurrence, lung metastasis, and bone metastasis were satisfactory. Pooled outcome estimates of F-FDG PET were less complete compared with those of PET/CT.F-FDG PET and PET/CT showed a high sensitivity for diagnosing primary bone sarcoma. Moreover, PET/CT demonstrated excellent accuracy for the staging, restaging, and recurrence surveillance of bone sarcoma. However, to avoid misdiagnosis, pathological examination or long-term follow-up should be carried out for F-FDG-avid lesions in patients with suspected bone sarcoma.
Collapse
Affiliation(s)
- Fanxiao Liu
- From the Department of Orthopedics, Shandong Hospital Affiliated to Shandong University, Jinan, Shandong, China (FL, BW, DZ); Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong, China (QZ, ZL, JL); and Department of Orthopedics, Heze Peony People's Hospital, Heze, Shandong, China (DZ, FL)
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sheikhbahaei S, Marcus C, Hafezi-Nejad N, Taghipour M, Subramaniam RM. Value of FDG PET/CT in Patient Management and Outcome of Skeletal and Soft Tissue Sarcomas. PET Clin 2015; 10:375-93. [PMID: 26099673 DOI: 10.1016/j.cpet.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorodeoxyglucose (FDG)-PET/computed tomography (CT) has been increasingly used in bone and soft tissue sarcomas and provides advantages in the initial tumor staging, tumor grading, therapy assessment, and recurrence detection. FDG-PET/CT metabolic parameters are reliable predictors of survival in sarcomas and could be implemented in risk stratification models along with other prognostic factors in these patients.
Collapse
Affiliation(s)
- Sara Sheikhbahaei
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, JHOC 3230, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Charles Marcus
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, JHOC 3230, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Nima Hafezi-Nejad
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, JHOC 3230, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Mehdi Taghipour
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, JHOC 3230, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Rathan M Subramaniam
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, JHOC 3230, 601 North Caroline Street, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins School of Medicine, 401 North Broadway, Baltimore, MD 21231, USA; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Kornerup JS, Brodin P, Birk Christensen C, Björk-Eriksson T, Kiil-Berthelsen A, Borgwardt L, Munck Af Rosenschöld P. Use of PET/CT instead of CT-only when planning for radiation therapy does not notably increase life years lost in children being treated for cancer. Pediatr Radiol 2015; 45:570-81. [PMID: 25378209 DOI: 10.1007/s00247-014-3197-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/03/2014] [Accepted: 08/13/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND PET/CT may be more helpful than CT alone for radiation therapy planning, but the added risk due to higher doses of ionizing radiation is unknown. OBJECTIVE To estimate the risk of cancer induction and mortality attributable to the [F-18]2-fluoro-2-deoxyglucose (FDG) PET and CT scans used for radiation therapy planning in children with cancer, and compare to the risks attributable to the cancer treatment. MATERIALS AND METHODS Organ doses and effective doses were estimated for 40 children (2-18 years old) who had been scanned using PET/CT as part of radiation therapy planning. The risk of inducing secondary cancer was estimated using the models in BEIR VII. The prognosis of an induced cancer was taken into account and the reduction in life expectancy, in terms of life years lost, was estimated for the diagnostics and compared to the life years lost attributable to the therapy. Multivariate linear regression was performed to find predictors for a high contribution to life years lost from the radiation therapy planning diagnostics. RESULTS The mean contribution from PET to the effective dose from one PET/CT scan was 24% (range: 7-64%). The average proportion of life years lost attributable to the nuclear medicine dose component from one PET/CT scan was 15% (range: 3-41%). The ratio of life years lost from the radiation therapy planning PET/CT scans and that of the cancer treatment was on average 0.02 (range: 0.01-0.09). Female gender was associated with increased life years lost from the scans (P < 0.001). CONCLUSION Using FDG-PET/CT instead of CT only when defining the target volumes for radiation therapy of children with cancer does not notably increase the number of life years lost attributable to diagnostic examinations.
Collapse
Affiliation(s)
- Josefine S Kornerup
- Section of Radiotherapy, Department of Oncology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark,
| | | | | | | | | | | | | |
Collapse
|
46
|
Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 2015; 56:274-86. [PMID: 25572088 DOI: 10.2967/jnumed.114.146290] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful management of solid tumors in children requires imaging tests for accurate disease detection, characterization, and treatment monitoring. Technologic developments aim toward the creation of integrated imaging approaches that provide a comprehensive diagnosis with a single visit. These integrated diagnostic tests not only are convenient for young patients but also save direct and indirect health-care costs by streamlining procedures, minimizing hospitalizations, and minimizing lost school or work time for children and their parents. (18)F-FDG PET/CT is a highly sensitive and specific imaging modality for whole-body evaluation of pediatric malignancies. However, recent concerns about ionizing radiation exposure have led to a search for alternative imaging methods, such as whole-body MR imaging and PET/MR. As we develop new approaches for tumor staging, it is important to understand current benchmarks. This review article will synthesize the current literature on (18)F-FDG PET/CT for tumor staging in children, summarizing questions that have been solved and providing an outlook on unsolved avenues.
Collapse
Affiliation(s)
- Lebriz Uslu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California; and
| | - Jessica Donig
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California; and
| | - Michael Link
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jarrett Rosenberg
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California; and
| | - Andrew Quon
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California; and
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California; and
| |
Collapse
|
47
|
Quartuccio N, Fox J, Kuk D, Wexler LH, Baldari S, Cistaro A, Schöder H. Pediatric bone sarcoma: diagnostic performance of ¹⁸F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol 2015; 204:153-160. [PMID: 25539251 DOI: 10.2214/ajr.14.12932] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to compare the diagnostic performance of (18)F-FDG PET/CT and conventional imaging for staging and follow-up of pediatric osteosarcoma and skeletal Ewing sarcoma. MATERIALS AND METHODS We calculated sensitivity, specificity, and accuracy of PET/CT and conventional imaging (CT, MRI, bone scanning) for sites of disease and number of lesions. Diagnostic benefit, defined as better characterization of lesions, was evaluated on a per-scan basis, comparing PET/CT and conventional imaging. RESULTS A total of 412 lesions were characterized by imaging in 64 patients (20, osteosarcoma; 44, Ewing sarcoma). For osteosarcoma patients PET/CT was available only at follow-up, where it proved more accurate than conventional imaging for the detection of bone lesions (accuracy, 95% vs 67% for CT and 86% for MRI) and complementary to CT in evaluating lung nodules (sensitivity, 84% vs 94%; specificity, 79% vs 71%) with diagnostic benefit in 18% of examinations. In patients with Ewing sarcoma, PET/CT tended to perform better during follow-up than at initial staging (accuracy, 85% vs 69%). For lung findings, PET/CT was more specific than CT but was less sensitive. The diagnostic benefit of PET/CT was greater at staging (28%) than during followup (9%). On a per-patient basis, PET/CT provided diagnostic benefit in 21 of 44 patients with Ewing sarcoma and nine of 20 patients with osteosarcoma at least once during clinical management. CONCLUSION FDG PET/CT provides diagnostic benefit in Ewing sarcoma and osteosarcoma, with the exception of small lung nodules. Prospective studies are needed to define the best imaging algorithm and combination of tests in the staging and follow-up of patients with pediatric bone sarcoma.
Collapse
Affiliation(s)
- Natale Quartuccio
- 1 Nuclear Medicine Unit, Department of Biomedical Sciences and of Morphologic and Functional Images, University of Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Schäfer JF, Gatidis S, Schmidt H, Gückel B, Bezrukov I, Pfannenberg CA, Reimold M, Ebinger M, Fuchs J, Claussen CD, Schwenzer NF. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 2014; 273:220-31. [PMID: 24877983 DOI: 10.1148/radiol.14131732] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To compare positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for lesion detection and interpretation, quantification of fluorine 18 ((18)F) fluorodeoxyglucose (FDG) uptake, and accuracy of MR-based PET attenuation correction in pediatric patients with solid tumors. Materials and Methods This prospective study had local ethics committee and German Federal Institute for Drugs and Medical Devices approval. Written informed consent was obtained from all patients and legal guardians. Twenty whole-body (18)F-FDG PET/CT and (18)F-FDG PET/MR examinations were performed in 18 pediatric patients (median age, 14 years; range, 11-17 years). (18)F-FDG PET/CT and (18)F-FDG PET/MR data were acquired sequentially on the same day for all patients. PET standardized uptake values (SUVs) were quantified with volume of interest measurements in lesions and healthy tissues. MR-based PET attenuation correction was compared with CT-derived attenuation maps (µ-maps). Lesion detection was assessed with separate reading of PET/CT and PET/MR data. Estimates of radiation dose were derived from the applied doses of (18)F-FDG and CT protocol parameters. Descriptive statistical analyses were performed to report correlation coefficients and relative deviations for comparison of SUVs, rates of lesion detection, and percentage reductions in radiation dose. RESULTS PET SUVs showed strong correlations between PET of PET/CT (PETCT) and PET of PET/MR (PETMR) (r > 0.85 for most tissues). Apart from drawbacks of MR-based PET attenuation correction in osseous structures and lungs, similar SUVs were found on PET images corrected with CT-based µ-maps (13.1% deviation of SUVs for bone marrow and <5% deviation for other tissues). Lesion detection rate with PET/MR imaging was equivalent to that with PET/CT (61 areas of focal uptake on PETMR images vs 62 areas on PETCT images). Advantages of PET/MR were observed especially in soft-tissue regions. Furthermore, PET/MR offered significant dose reduction (73%) compared with PET/CT. CONCLUSION Pediatric oncologic PET/MR is technically feasible, showing satisfactory performance for PET quantification with SUVs similar to those of PET/CT. Compared with PET/CT, PET/MR demonstrates equivalent lesion detection rates while offering markedly reduced radiation exposure. Thus, PET/MR is a promising modality for the clinical work-up of pediatric malignancies. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jürgen F Schäfer
- From the Department of Radiology, Diagnostic and Interventional Radiology (J.F.S., S.G., H.S., B.G., C.A.P., C.D.C., N.F.S.), Department of Radiology, Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation (H.S., I.B.), Department of Radiology, Division of Nuclear Medicine (M.R.), Children's Hospital, Department of General Pediatrics, Hematology and Oncology (M.E.), and Children's Hospital, Department of Pediatric Surgery and Pediatric Urology (J.F.), Eberhard-Karls-University Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany; and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany (I.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Oliveira Schiavon JL, Lederman HM. Whole Body MRI and Diffusion Weighed Images in Pediatric Oncology: Lymphomas and Several Others Tumors. CURRENT RADIOLOGY REPORTS 2014. [DOI: 10.1007/s40134-014-0054-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
García Molina M, Chicaiza-Becerra L, Moreno-Calderón A, Prieto Martínez V, Sarmiento Urbina I, Linares Ballesteros A. Costo-efectividad de 18FDG-PET/CT vs CT al final del tratamiento en pacientes pediátricos con Linfoma Hodgkin. Rev Salud Publica (Bogota) 2014. [DOI: 10.15446/rsap.v16n2.37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|