1
|
Khoshbakht S, Zare S, Khatuni M, Ghodsirad M, Bayat M, Mirabootalebi FS, Pirayesh E, Amoui M, Norouzi G. Diagnostic Value of 99mTc-Ubiquicidin Scintigraphy in Differentiating Bacterial from Nonbacterial Pneumonia. Cancer Biother Radiopharm 2025. [PMID: 40040519 DOI: 10.1089/cbr.2024.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Purpose: Differentiating purely viral from bacterial etiologies continues to be a challenging yet key step in the management of community-acquired pneumonia (CAP), further highlighted since the COVID-19 pandemic. This study aims to evaluate the utility of 99mTc-ubiquicidin (UBI) in the differentiation of bacterial from nonbacterial pneumonia. Methods: A total of 30 patients with CAP were allocated into groups A, bacterial (n = 15), and B, viral pneumonia (n = 15). All patients underwent 99mTc-UBI scan with planar and single-photon emission computed tomography (SPECT) images of thorax acquired at 30 and 180 min postinjection. Target-to-background (T/B) ratios were calculated with values >1.4 interpreted as positive for bacterial infection. Correlation was made with computed tomography (CT) scan and polymerase chain reaction (PCR) results. Results: UBI scan was positive in 43.3% (n = 13) of patients, with sensitivity, specificity, and accuracy of 86.7%, 100%, and 93.3%, respectively, and close correlation with chest CT scan and PCR results (p-value = 0.000). Planar images were generally not helpful. Receiver operating characteristic curve analysis indicated similar diagnostic performance for 30-min and 3-h SPECT images by implementing T/B thresholds of 1.2 and 1.33, respectively. Conclusions: 99mTc-UBI SPECT is a promising modality for differentiating purely viral from bacterial or superimposed bacterial pneumonia and provides reliable evidence either to mandate or withhold administration of antibiotics in patients with CAP.
Collapse
Affiliation(s)
- Sepideh Khoshbakht
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
- Clinical Research Development Unit of Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Zare
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
| | - Mahdi Khatuni
- Department of Internal Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
| | - Mohammadali Ghodsirad
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
- Clinical Research Development Unit of Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Bayat
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
| | | | - Elahe Pirayesh
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
- Clinical Research Development Unit of Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, Shahid Beheshti Medical University, Tehran, Iran
- Clinical Research Development Unit of Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Norouzi
- Department of Nuclear Medicine, The Ottawa Hospital, University of Ottawa, Faculty of Medicine, Ottawa, Canada
| |
Collapse
|
2
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
3
|
Balcı Ş, Ergüden B. Gold Nanoparticles and Antimicrobial Peptides: A Novel Combination. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 09/14/2024]
Abstract
AbstractThis article examines the diverse conjugation forms of AMP‐AuNP nanostructures that arise from the amalgamation of antimicrobial peptides (AMPs) and gold nanoparticles (AuNPs), as well as their prospective utility in the field of biomedicine. AMPs are a class of naturally occurring microbicidal compounds that are recognized for their wide range of inhibitory effects and distinctive modes of operation. The utilization of AuNPs in diverse biomedical applications is facilitated through the application of nanotechnology. AMP‐AuNP nanostructures exhibit diverse features through the utilization of molecular linkage techniques. The aforementioned qualities encompass the ability to expedite the process of wound healing, facilitate precise targeting through the incorporation of DNA aptamers, serve as a means for bacterial imaging, enable the use of photothermal therapy, and contribute to the advancement of prospective treatments for fungal infections. The utilization of these synthesized antimicrobial gold nanostructures in many biomedical applications holds significant promise for advancing treatments and enhancing disease management.
Collapse
Affiliation(s)
- Şule Balcı
- Gebze Technical University Department of Bioengineering Kocaeli TURKEY
| | - Bengü Ergüden
- Gebze Technical University Department of Bioengineering Kocaeli TURKEY
| |
Collapse
|
4
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
5
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
6
|
Yus C, Gámez E, Arruebo M. Expert opinion on antimicrobial therapies: is there enough scientific evidence to state that targeted therapies outperform non-targeted ones? Expert Opin Drug Deliv 2024; 21:593-609. [PMID: 38619078 DOI: 10.1080/17425247.2024.2340661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Different active and passive strategies have been developed to fight against pathogenic bacteria. Those actions are undertaken to reduce the bacterial burden while minimizing the possibilities to develop not only antimicrobial resistance but also antimicrobial side-effects such as allergic or hypersensitivity reactions. AREAS COVERED We have reviewed preclinical results that evidence that targeted antimicrobial therapies outperform non-targeted ones. Active selective targeting against pathogenic bacteria has been achieved through the functionalization of antimicrobials, either alone or encapsulated within micro- or nanocarriers, with various recognition moieties. These moieties include peptides, aptamers, antibodies, carbohydrates, extracellular vesicles, cell membranes, infective agents, and other affinity ligands with specific bacterial tropism. Those selective ligands increase retention and enhance effectiveness reducing the side-effects and the required dose to exert the antimicrobial action at the site of infection. EXPERT OPINION When using targeted antimicrobial therapies not only reduced side-effects are observed, but also, compared to the administration of equivalent doses of the non-targeted drugs, a superior efficacy has been demonstrated against planktonic, sessile, and intracellular pathogenic bacterial persisters. The translation of those targeted therapies to subsequent phases of clinical development still requires the demonstration of a reduction in the probabilities for the pathogen to develop resistance when using targeted approaches.
Collapse
Affiliation(s)
- Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Enrique Gámez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
7
|
Yu J, Xu H, Wei J, Niu L, Zhu H, Jiang C. Bacteria-Targeting Nanoparticles with ROS-Responsive Antibiotic Release to Eradicate Biofilms and Drug-Resistant Bacteria in Endophthalmitis. Int J Nanomedicine 2024; 19:2939-2956. [PMID: 38529364 PMCID: PMC10962272 DOI: 10.2147/ijn.s433919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Background Bacterial endophthalmitis is an acute progressive visual threatening disease and one of the most important causes of blindness worldwide. Current treatments are unsatisfactory due to the emergence of drug-resistant bacteria and the formation of biofilm. Purpose The aim of our research was to construct a novel nano-delivery system with better antimicrobial and antibiofilm effects. Methods This study developed a novel antibiotic nanoparticle delivery system (MXF@UiO-UBI-PEGTK), which is composed of (i) moxifloxacin (MXF)-loaded UiO-66 nanoparticle as the core, (ii) bacteria-targeting peptide ubiquicidin (UBI29-41) immobilized on UiO-66, and (iii) ROS-responsive poly (ethylene glycol)-thioketal (PEG-TK) as the surface shell. Then the important properties of the newly developed delivery system, including biocompatibility, toxicity, release percentage, thermal stability, ability of targeting bacteria, and synergistic antibacterial effects on bacterial biofilms and endophthalmitis, were evaluated. Results In vitro, MXF@UiO-UBI-PEGTK exhibited significant antibiotic effects including the excellent antibiofilm property against Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus at high levels of ROS. Moreover, MXF@UiO-UBI-PEGTK demonstrated outstanding efficacy in treating bacterial endophthalmitis in vivo. Conclusion This novel nanoparticle delivery system with ROS-responsive and bacteria-targeted properties promotes the precise and effective release of drugs and has significant potential for clinical application of treating bacterial endophthalmitis.
Collapse
Affiliation(s)
- Jian Yu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Huan Xu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Jiaojiao Wei
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Liangliang Niu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Haohao Zhu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Department of Ophthalmology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chunhui Jiang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Jiang Y, Han P, Yin G, Wang Q, Feng J, Ruan Q, Xiao D, Zhang J. Radiosynthesis and Bioevaluation of 99mTc-Labeled Isocyanide Ubiquicidin 29-41 Derivatives as Potential Agents for Bacterial Infection Imaging. Int J Mol Sci 2024; 25:1045. [PMID: 38256119 PMCID: PMC10816394 DOI: 10.3390/ijms25021045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
To develop a novel 99mTc-labeled ubiquicidin 29-41 derivative for bacterial infection single-photon emission computed tomography (SPECT) imaging with improved target-to-nontarget ratio and lower nontarget organ uptake, a series of isocyanide ubiquicidin 29-41 derivatives (CNnUBI 29-41, n = 5-9) with different carbon linkers were designed, synthesized and radiolabeled with the [99mTc]Tc(I)+ core, [99mTc][Tc(I)(CO)3(H2O)3]+ core and [99mTc][Tc(V)N]2+ core. All the complexes are hydrophilic, maintain good stability and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection and sterile inflammation demonstrated that [99mTc]Tc-CN5UBI 29-41 was able to distinguish bacterial infection from sterile inflammation, which had an improved abscess uptake and a greater target-to-nontarget ratio. SPECT imaging study of [99mTc]Tc-CN5UBI 29-41 in bacterial infection mice showed that there was a clear accumulation in the infection site, suggesting that this radiotracer could be a potential radiotracer for bacterial infection imaging.
Collapse
Affiliation(s)
- Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Di Xiao
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China; (Y.J.); (P.H.); (G.Y.); (Q.W.); (J.F.); (Q.R.); (D.X.)
| |
Collapse
|
9
|
Signore A, Bentivoglio V, Varani M, Lauri C. Current Status of SPECT Radiopharmaceuticals for Specific Bacteria Imaging. Semin Nucl Med 2023; 53:142-151. [PMID: 36609002 DOI: 10.1053/j.semnuclmed.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Imaging infection still represents a challenge for researchers. Despite nuclear medicine (NM) offers valuable tools able to discriminate between infections and inflammation, there is an unmet clinical need to develop new strategies able to specifically target the causative pathogen, to select the best antimicrobial treatment for each patient and to accurately assess therapeutic efficacy. These aspects are commonly addressed by microbiology or histology but the diagnosis often relies on invasive procedures that are prone to contamination or sample bias and do not reflect the spatial heterogeneity of the infective process. Therefore, in the era of personalized medicine and treatment, a lot of efforts are in play to improve a personalized diagnosis. Molecular imaging is an ideal candidate for this purpose and, indeed, research is going fast to this direction aiming to find more selective and proper antimicrobial treatments and to overcome broad-spectrum antibiotic use, which still represents the major cause of bacterial drug-resistance. Several approaches for specifically image bacteria have been proposed and provided encouraging perspectives in preclinical studies. Nevertheless, the majority of these promising approaches are still confined in "bench stages" and crucial issues still need to be addressed before their translation in clinical practice. This review will focus on radiolabeled antibiotics for SPECT imaging of bacteria, their mechanisms of action, their potentiality and limitations for "bed-side" applications.
Collapse
Affiliation(s)
- Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Italy.
| | - Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Italy
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Italy
| |
Collapse
|
10
|
Nie B, Huo S, Qu X, Guo J, Liu X, Hong Q, Wang Y, Yang J, Yue B. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater 2022; 16:134-148. [PMID: 35386313 PMCID: PMC8958424 DOI: 10.1016/j.bioactmat.2022.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Orthopedic implants account for 99% of orthopedic surgeries, however, orthopedic implant-related infection is one of the most serious complications owing to the potential for limb-threatening sequelae and mortality. Current antibiotic treatments still lack the capacity to target bone infection sites, thereby resulting in unsatisfactory therapeutic effects. Here, the bone infection site targeting efficacy of D6 and UBI29-41 peptides was investigated, and bone-and-bacteria dual-targeted nanoparticles (NPs) with D6 and UBI29-41 peptides were first fabricated to target bone infection site and control the release of vancomycin in bone infection site. The results of this study demonstrated that the bone-and-bacteria dual-targeted mesoporous silica NPs exhibit excellent bone and bacteria targeting efficacy, excellent biocompatibility and effective antibacterial properties in vitro. Furthermore, in a rat model of orthopedic implant-related infection with methicillin-resistant Staphylococcus aureus, the growth of bacteria was evidently inhibited without cytotoxicity, thus realizing the early treatment of implant-related infection. Hence, the bone-and-bacteria dual-targeted molecule-modified NPs may target bacteria-infected bone sites and act as ideal candidates for the therapy of orthopedic implant-related infections. A novel treatment of OII by nanoparticles targeting bone infection site was proposed. Dual-targeted MSNs with D6 and UBI peptides could target the bone infection site. Dual-targeted MSNs were fabricated to release vancomycin in bone infection site. Dual-targeted MSNs could be used for the therapy of OII.
Collapse
|
11
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Boddeti DK, Kumar V. Evaluation of 68Ga-DOTA-Ubiquicidin (29-41) for imaging Staphylococcus aureus (Staph A) infection and turpentine-induced inflammation in a preclinical setting. World J Nucl Med 2021; 20:266-272. [PMID: 34703395 PMCID: PMC8488884 DOI: 10.4103/wjnm.wjnm_103_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/30/2021] [Indexed: 11/07/2022] Open
Abstract
Synthetic antimicrobial peptide fragment, 99mTc-Ubiquicidin 29–41, is shown to be sensitive and also specific for imaging bacterial infections. We undertook this study to explore the advantage of using a positron emission agent, 68Ga-DOTA-Ubiquicidin 29–41 (68Ga-DOTA-UBI), for detecting Staph-A infection in an animal model, and also evaluated its ability to distinguish a turpentine-induced sterile inflammation in an animal model. Pure Ga-68 was freshly eluted from a 68Ge/68Ga generator (IGG-100). DOTA-UBI (50 μg) was ra diolabeled with pure Ga-68 (500MBq) by incubating the reaction mixture at pH 4.5 for 10 min, 95°C. Rats were infected with Staph-A at the hind leg joint of rats to form bacterial abscess. Sterile inflammation was induced in the right thigh muscle by injecting 200 μl of 100% turpentine oil. Rats were injected intravenously with 10–15 MBq of tracer, and images were acquired at different time intervals with Siemens (Biograph mCT) positron emission tomography computed tomography scanner. The early images at 6 min postinjection clearly indicated mild uptake of the agent corresponding to the infection site, which increased dramatically at 20, 30, and 60 min postinjection. The target to background ratio (T/B) increased significantly over the same time period of study (1.6, 4.2, and 6.1, respectively). There was a mild uptake of 68Ga-DOTA-UBI at the site corresponding to sterile inflammation at 6 min postinjection, which was rapidly washed off as seen at 25 and 45 min images. The images indicated fast clearance of the agent from liver and soft tissues within 6 min. Control rats showed similar biodistribution of activity. The mild uptake of 68Ga-DOTA-UBI at the corresponding Staph-A infection lesion and very fast kinetics of clearance from the blood pool and soft tissues suggested a very high clinical potential for this agent. The absence of uptake of the agent at sterile inflammation site suggests that the agent may be useful in distinguishing infection from inflammation.
Collapse
Affiliation(s)
- Dilip Kumar Boddeti
- Department of Nuclear Medicine and PET, Westmead Hospital, Sydney NSW, Australia.,Department of Nuclear Medicine, The Children's Hospital at Westmead, Westmead.,Westmead Clinical School, University of Sydney, Sydney NSW, Australia
| | - Vijay Kumar
- Department of Nuclear Medicine and PET, Westmead Hospital, Sydney NSW, Australia.,Department of Nuclear Medicine, The Children's Hospital at Westmead, Westmead.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| |
Collapse
|
13
|
Wang A, Lv G, Cheng X, Ma X, Wang W, Gui J, Hu J, Lu M, Chu G, Chen J, Zhang H, Jiang Y, Chen Y, Yang W, Jiang L, Geng H, Zheng R, Li Y, Feng W, Johnson B, Wang W, Zhu D, Hu Y. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). BURNS & TRAUMA 2020; 8:tkaa017. [PMID: 32685563 PMCID: PMC7336185 DOI: 10.1093/burnst/tkaa017] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/21/2020] [Indexed: 02/07/2023]
Abstract
In recent years, as living standards have continued to improve, the number of diabetes patients in China, along with the incidence of complications associated with the disease, has been increasing. Among these complications, diabetic foot disease is one of the main causes of disability and death in diabetic patients. Due to the differences in economy, culture, religion and level of medical care available across different regions, preventive and treatment methods and curative results for diabetic foot vary greatly. In multidisciplinary models built around diabetic foot, the timely assessment and diagnosis of wounds and appropriate methods of prevention and treatment with internal and external surgery are key to clinical practice for this pathology. In 2019, under the leadership of the Jiangsu Medical Association and Chinese Diabetes Society, the writing group for the Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition) was established with the participation of scholars from the specialist areas of endocrinology, burn injury, vascular surgery, orthopedics, foot and ankle surgery and cardiology. Drawing lessons from diabetic foot guidelines from other countries, this guide analyses clinical practices for diabetic foot, queries the theoretical basis and grades and gives recommendations based on the characteristics of the pathology in China. This paper begins with assessments and diagnoses of diabetic foot, then describes treatments for diabetic foot in detail, and ends with protections for high-risk feet and the prevention of ulcers. This manuscript covers the disciplines of internal medicine, surgical, nursing and rehabilitation and describes a total of 50 recommendations that we hope will provide procedures and protocols for clinicians dealing with diabetic foot. Registry number: IPGRP-2020cn124
Collapse
Affiliation(s)
- Aiping Wang
- Diabetic Foot Centre, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, China
| | - Guozhong Lv
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Xingbo Cheng
- Department of endocrinology, the First Affiliated Hospital of Suzhou University, Suzhou, 215006, China
| | - Xianghua Ma
- Department of endocrinology, Jiangsu Province Hospital, Nanjing, 210029, China.,Department of endocrinology, Xuzhou Central Hospital, Xuzhou, 221009,China
| | - Wei Wang
- Vascular Surgery, Gulou Hospital, Nanjing, 210008, China
| | - Jianchao Gui
- Department of orthopedics, Nanjing First Hospital, Nanjing, 210006, China
| | - Ji Hu
- Department of endocrinology, The Second Affiliated Hospital of Suzhou University, Suzhou, 215004, China
| | - Meng Lu
- Diabetic Foot Centre, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, China
| | - Guoping Chu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Jin'an Chen
- Diabetic Foot Centre, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, China
| | - Hao Zhang
- Department of endocrinology, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yiqiu Jiang
- Department of orthopedics, Nanjing First Hospital, Nanjing, 210006, China
| | - Yuedong Chen
- Diabetic Foot Centre, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, China
| | - Wengbo Yang
- Department of orthopedics, Nanjing First Hospital, Nanjing, 210006, China
| | - Lin Jiang
- Department of endocrinology, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Houfa Geng
- Department of endocrinology, Xuzhou Central Hospital, Xuzhou, 221009,China
| | - Rendong Zheng
- Department of endocrinology, Jiangsu Province Hospital on Traditional of Chinese and Western Medicine, 210028, China
| | - Yihui Li
- Diabetic Foot Centre, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, China
| | - Wei Feng
- Operating department, Jiangsu Medical Association, Nanjing, 210008, China
| | - Boey Johnson
- Diabetic Foot Centre, The National University Hospital, 119077, Singapore
| | - Wenjuan Wang
- Department of Chronic Non-Communicable Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dalong Zhu
- Vascular Surgery, Gulou Hospital, Nanjing, 210008, China
| | - Yin Hu
- Operating department, Jiangsu Medical Association, Nanjing, 210008, China
| |
Collapse
|
14
|
Kellar RS, Diller RB, Tabor AJ, Dominguez DD, Audet RG, Bardsley TA, Talbert AJ, Cruz ND, Ingraldi AL, Ensley BD. Improved Wound Closure Rates and Mechanical Properties Resembling Native Skin in Murine Diabetic Wounds Treated with a Tropoelastin and Collagen Wound Healing Device. JOURNAL OF DIABETES AND CLINICAL RESEARCH 2020; 2:86-99. [PMID: 33768213 PMCID: PMC7990315 DOI: 10.33696/diabetes.1.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic wounds in patients suffering from type II diabetes mellitus (DMII) where wounds remain open with a complicated pathophysiology, healing, and recovery process is a public health concern. Normal wound healing plays a critical role in wound closure, restoration of mechanical properties, and the biochemical characteristics of the remodeled tissue. Biological scaffolds provide a tissue substitute to help facilitate wound healing by mimicking the extracellular matrix (ECM) of the dermis. In the current study an electrospun biomimetic scaffold, wound healing device (WHD), containing tropoelastin (TE) and collagen was synthesized to mimic the biochemical and mechanical characteristics of healthy human skin. The WHD was compared to a commercially available porcine small intestinal submucosa (SIS) matrix that has been used in both partial and full-thickness wounds, Oasis® Wound Matrix. Using a diabetic murine model C57BKS.Cg-m+/+Leprdb/J mice (db/db) wound closure rates, histochemistry (CD31 and CD163), qPCR (GAPDH, TNF-α, NOS2, ARG1 and IL10), and mechanical testing of treated wound sites were evaluated. The WHD in a splinted, full thickness, diabetic murine wound healing model demonstrated skin organ regeneration, an enhanced rate of wound closure, decreased tissue inflammation, and a stronger and more durable remodeled tissue that more closely mimics native unwounded skin compared to the control device.
Collapse
Affiliation(s)
- Robert S Kellar
- Center for Materials Interfaces in Research & Applications (¡MIRA!), Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.,Protein Genomics, Sedona, AZ, USA.,Axolotl Biologix, Phoenix, AZ, USA
| | - Robert B Diller
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Aaron J Tabor
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.,Axolotl Biologix, Phoenix, AZ, USA
| | - Dominic D Dominguez
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.,Axolotl Biologix, Phoenix, AZ, USA
| | - Robert G Audet
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.,Axolotl Biologix, Phoenix, AZ, USA
| | - Tatum A Bardsley
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.,Axolotl Biologix, Phoenix, AZ, USA
| | - Alyssa J Talbert
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Nathan D Cruz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Alison L Ingraldi
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.,Axolotl Biologix, Phoenix, AZ, USA
| | | |
Collapse
|
15
|
In Vivo Microbial Targeting of 99mTc-Labeled Human β-Defensin-3 in a Rat Model of Infection. Clin Nucl Med 2019; 44:e602-e606. [PMID: 31306193 DOI: 10.1097/rlu.0000000000002713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Differentiation of infection from aseptic inflammation represents a major clinical issue. None of the commercially available compounds (labeled granulocytes, antigranulocyte antibodies, Ga-citrate, labeled immunoglobulin G, F-FDG) is capable of this differentiation, producing a nonnegligible false-positive rate. Recently, our group reported on a reliable labeling procedure of the antimicrobial peptide human β-defensin 3 (HBD-3) with Tc. The aim of this study was to evaluate in vivo Tc-HBD-3 uptake in a rat model of infection. METHODS Recombinant HBD-3 was radiolabeled with Tc. Radiolabeling yield and specific activity of the compound were calculated. Chromatographic behavior and biological activity of Tc-HBD-3 were also assessed. An experimental model involving Staphylococcus aureus-induced infection and carrageenan-induced aseptic inflammation was performed in 5 Wistar rats. Serial planar scintigraphic acquisitions were performed from 15 to 180 minutes after Tc-HBD-3 intravenous administration. Radiotracer uptake was evaluated qualitatively and semiquantitatively as a target-to-nontarget ratio. RESULTS Radiolabeling yield of Tc-HBD-3 was 70% with a specific activity of 6 to 8 MBq/μg. A significant and progressive Tc-HBD-3 uptake was observed in the site of S. aureus-induced infection, with a maximum average target-to-nontarget ratio of 5.7-fold higher in the infection site compared with an inflammation site observed at 140 minutes. CONCLUSIONS In vivo imaging with Tc-HBD-3 in a rat model of S. aureus-induced infection demonstrated favorable uptake in the infection site compared with sterile inflammation and background. These promising results, together with previous ex vivo uptake and toxicity assessment, suggest the potential of Tc-HBD-3 as a novel agent for specific infection imaging.
Collapse
|
16
|
Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina (B Aires) 2019; 55:medicina55110714. [PMID: 31731539 PMCID: PMC6915664 DOI: 10.3390/medicina55110714] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are the fastest growing chronic complication of diabetes mellitus, with more than 400 million people diagnosed globally, and the condition is responsible for lower extremity amputation in 85% of people affected, leading to high-cost hospital care and increased mortality risk. Neuropathy and peripheral arterial disease trigger deformities or trauma, and aggravating factors such as infection and edema are the etiological factors for the development of DFUs. DFUs require identifying the etiology and assessing the co-morbidities to provide the correct therapeutic approach, essential to reducing lower-extremity amputation risk. This review focuses on the current treatment strategies for DFUs with a special emphasis on tissue engineering techniques and regenerative medicine that collectively target all components of chronic wound pathology.
Collapse
|
17
|
Xiao F, Cao B, Wang C, Guo X, Li M, Xing D, Hu X. Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. ACS NANO 2019; 13:1511-1525. [PMID: 30632740 DOI: 10.1021/acsnano.8b07251] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria.
Collapse
Affiliation(s)
- Fengfeng Xiao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Bing Cao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Congyu Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Xujuan Guo
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Mengge Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science , South China Normal University , Guangzhou 510631 , China
- College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
18
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Ahmed N, Fatima S, Saeed MA, Zia M, Irfan Ullah J. 99m Tc-Ceftizoxime: Synthesis, characterization and its use in diagnosis of diabetic foot osteomyelitis. J Med Imaging Radiat Oncol 2018; 63:61-68. [PMID: 30536554 DOI: 10.1111/1754-9485.12841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The diagnosis of diabetic foot osteomyelitis is crucial and challenging for the proper management of diabetic foot. 99m Tc labelled Ceftizoxime was used as a non-invasive diagnostic agent for diabetic foot osteomyelitis. METHODS Ceftizoxime [CFT], a third generation cephalosporin, was used in a simple and direct method for the synthesis of 99m TcO4 - labelled infection imaging agent with stannous chloride as reducing agent. Its radiochemical purity was checked by thin Layer chromatography. Partition co-efficient was measured with phosphate buffer and chloroform. The radiochemical complex was injected to control and infected animal model for 3 hours in-vivo localization studied with the help of dual head gamma camera. The labelled complexes were injected to 5 patients of known type II diabetes mellitus suspected of diabetic foot osteomyelitis. All patients underwent dynamic and static 99m Tc-MDP and 99m Tc-CFT scans. RESULTS The synthesized radio labelled complex was 98.8% pure, with hydrophilic character. When injected to animal model, at 120 minutes, 49.3% was localized in foci of infection with 3.35% in liver and excretion through kidney. Human studies were interpreted as true or false positive and true or false negative based on bone histopathology/culture and clinical follow-up. We found that of 5 patients, 2 were true positive, 2 as true negative with no false positive or negative and 01 patient had soft tissue infection. CONCLUSION This study showed that 99m Tc-CFT labelled complex could be used for detection of diabetic foot osteomyelitis; however, further confirmation of results with a larger patient population would be optimal.
Collapse
Affiliation(s)
- Naseer Ahmed
- Department of Nuclear Medicine, Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan.,Department of Biotechnology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Shazia Fatima
- Department of Nuclear Medicine, Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Muhammad Adnan Saeed
- Department of Nuclear Medicine, Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Javaid Irfan Ullah
- Department of Nuclear Medicine, Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
| |
Collapse
|
20
|
Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y, Wang J, Tang T. Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14299-14311. [PMID: 29633833 DOI: 10.1021/acsami.7b15678] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Staphylococcus aureus ( S. aureus) is a causative agent in life-threatening human diseases that afflict millions of people annually. Traditional antibiotic treatments are becoming less efficient because S. aureus can invade host cells including osteoblasts and macrophages, constituting a reservoir that is relatively protected from antibiotics that can lead to recrudescent infection. We herein report a unique intracellular antibiotic delivery nanoparticle, which is composed of (i) a mesoporous silica nanoparticle (MSN) core loaded with gentamicin, (ii) an infected microenvironment (bacterial toxin)-responsive lipid bilayer surface shell, and (iii) bacteria-targeting peptide ubiquicidin (UBI29-41) that is immobilized on the lipid bilayer surface shell. The lipid material acts as a gate that prevents drug release before the MSNs reach the target cells or tissue, at which point they are degraded by bacterial toxins to rapidly release the drug, thus eliminating efficient bacteria. We confirm rapid drug release in the presence of bacteria in an extracellular model and observe that S. aureus growth is effectively inhibited both in vitro and in vivo of planktonic and intracellular infection. The inflammation-related gene expression in infected preosteoblast or macrophage is also downregulated significantly after treatment by the antibiotic delivery nanoparticles. The antibiotic delivery nanoparticles offer advantages in fighting intracellular pathogens and eliminating the inflammation caused by intracellular bacterial infections.
Collapse
Affiliation(s)
- Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Yang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| |
Collapse
|
21
|
Vouillarmet J, Moret M, Morelec I, Michon P, Dubreuil J. Application of white blood cell SPECT/CT to predict remission after a 6 or 12 week course of antibiotic treatment for diabetic foot osteomyelitis. Diabetologia 2017; 60:2486-2494. [PMID: 28866726 DOI: 10.1007/s00125-017-4417-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/07/2017] [Indexed: 01/20/2023]
Abstract
AIMS/HYPOTHESIS Diabetic foot osteomyelitis is a major risk factor for amputation. Medical treatment allows remission in 53-82% of cases. However, the optimal duration of antibiotic therapy remains controversial as a validated marker of osteomyelitis remission is lacking. The aim of this cohort study was to assess prospectively the remission rate of diabetic foot osteomyelitis medically treated using white blood cell (WBC)-single-photon emission computed tomography (SPECT)/computed tomography (CT) as a predictive marker of remission. METHODS Individuals with diabetic foot osteomyelitis that was non-surgically treated between April 2014 and December 2015 were included. All participants were treated with antibiotics alone. WBC-SPECT/CT was performed at 6 weeks and antibiotic treatment discontinued if the clinical signs of soft-tissue infection had resolved and there was no abnormal uptake of labelled WBCs. Treatment was otherwise continued for a total of 12 weeks and then discontinued. For these individuals, another WBC-SPECT/CT was performed at 12 weeks. Remission was defined as the absence of recurrence of osteomyelitis at the same location at 1 year. RESULTS Forty-five individuals were included; overall remission rate was 84% at 1 year. A 6 week course of antibiotics was used in 23 participants, 22 of whom were in remission at 1 year (96%); a 12 week course was used for 22 participants, 16 of whom were in remission at 1 year (73%). Sensitivity of WBC-SPECT/CT at 12 weeks was 100%, specificity 56%, positive predictive value 46% and negative predictive value 100%. CONCLUSIONS/INTERPRETATION The study suggests that WBC-SPECT/CT could predict remission at the end of antibiotic treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02927678.
Collapse
Affiliation(s)
- Julien Vouillarmet
- Hospices Civils de Lyon, Service d'Endocrinologie, Diabète et Obésité, Centre Hospitalier Lyon-Sud, 69495, Pierre Bénite, France.
| | - Myriam Moret
- Hospices Civils de Lyon, Service d'Endocrinologie et Diabète, Groupement Hospitalier Est, Bron, France
| | - Isabelle Morelec
- Hospices Civils de Lyon, Service de Médecine Nucléaire, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Paul Michon
- Hospices Civils de Lyon, Service d'Endocrinologie, Diabète et Obésité, Centre Hospitalier Lyon-Sud, 69495, Pierre Bénite, France
| | - Julien Dubreuil
- Hospices Civils de Lyon, Service de Médecine Nucléaire, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
22
|
Molecular imaging in musculoskeletal infections with 99mTc-UBI 29-41 SPECT/CT. Ann Nucl Med 2017; 32:54-59. [PMID: 29164482 DOI: 10.1007/s12149-017-1219-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the added value of CT over planar and SPECT-only imaging in the diagnosis of musculoskeletal infection using 99mTc-UBI 29-4. MATERIALS AND METHODS 184 patients with suspected musculoskeletal infection who underwent planar and SPECT/CT imaging with 99mTc-UBI 29-41 were included. Planar, SPECT-only and SPECT/CT images were reviewed by two independent analysts for presence of bone or soft tissue infection. Final diagnosis was confirmed with tissue cultures, surgery/histology or clinical follow-up. RESULTS 99mTc-UBI 29-41 was true positive in 105/184 patients and true negative in 65/184 patients. When differentiating between soft tissue and bone infection, planar + SPECT-only imaging had a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 95.0, 74.3, 84.8, 91.3 and 86.9%, respectively, versus 99.0, 94.5, 92.5, 98.5 and 94.5% for SPECT/CT. SPECT/CT resulted in a change in reviewers' confidence in the final diagnosis in 91/184 patients. Inter-observer agreement was better with SPECT/CT compared with planar + SPECT imaging (kappa 0.87, 95% CI 0.71-0.85 versus kappa 0.81, 95% CI 0.58-0.75). CONCLUSION Addition of CT to planar and SPECT-only imaging led to an increase in diagnostic performance and an improvement in reviewers' confidence and inter-observer agreement in differentiating bone from soft tissue infection.
Collapse
|
23
|
Huang N, Chen X, Zhu X, Xu M, Liu J. Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials 2017; 141:296-313. [DOI: 10.1016/j.biomaterials.2017.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022]
|
24
|
Starr CG, He J, Wimley WC. Host Cell Interactions Are a Significant Barrier to the Clinical Utility of Peptide Antibiotics. ACS Chem Biol 2016; 11:3391-3399. [PMID: 27797468 DOI: 10.1021/acschembio.6b00843] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite longstanding promise and many known examples, antimicrobial peptides (AMPs) have failed, thus far, to impact human medicine. On the basis of the physical chemistry and mechanism of action of AMPs, we hypothesized that host cell interactions could contribute to a loss of activity in vivo where host cells are highly concentrated. To test this idea, we characterized AMP activity in the presence of human red blood cells (RBC). Indeed, we show that most of a representative set of natural and synthetic AMPs tested are significantly inhibited by preincubation with host cells and would be effectively inactive at physiological cell density. We studied an example broad-spectrum AMP, ARVA (RRGWALRLVLAY), in a direct, label-free binding assay. We show that weak binding to host cells, coupled with their high concentration, is sufficient to account for a loss of useful activity, for at least some AMPs, because >1 × 108 peptides must be bound to each bacterial cell to achieve sterilization. The effect of host cell preincubation on AMP activity is comparable to that of serum protein binding. Feasible changes in host cell binding could lead to AMPs that do not lose activity through interaction with host cells. We suggest that the intentional identification of AMPs that are active in the presence of concentrated host cells can be achieved with a paradigm shift in the way AMPs are discovered.
Collapse
Affiliation(s)
- Charles G. Starr
- Department of Biochemistry
and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Jing He
- Department of Biochemistry
and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - William C. Wimley
- Department of Biochemistry
and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
25
|
Abstract
The rise in multidrug resistant (MDR) bacteria has become a global crisis. Rapid and accurate diagnosis of infection will facilitate antibiotic stewardship and preserve our ability to treat and cure patients from bacterial infection. Direct in situ imaging of bacteria offers the prospect of accurately diagnosing disease and monitoring patient outcomes and response to treatment in real-time. There have been many recent advances in the field of optical imaging of infection; namely in specific probe and fluorophore design. This combined with the advances in imaging device technology render direct optical imaging of infection a feasible approach for accurate diagnosis in the clinic. Despite this, there are currently no licensed molecular probes for clinical optical imaging of infection. Here we report some of the most promising and interesting probes and approaches under development for this purpose, which have been evaluated in in vivo models within the laboratory setting.
Collapse
|
26
|
|
27
|
Arjun C, Mukherjee A, Bhatt J, Chaudhari P, Repaka KM, Venkatesh M, Samuel G. Studies on batch formulation of a kit for the preparation of the 99m Tc-Ubiquicidin (29-41): An infection imaging agent. Appl Radiat Isot 2016; 107:8-12. [DOI: 10.1016/j.apradiso.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/01/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
28
|
Lipsky BA, Aragón-Sánchez J, Diggle M, Embil J, Kono S, Lavery L, Senneville É, Urbančič-Rovan V, Van Asten S, Peters EJG. IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes Metab Res Rev 2016; 32 Suppl 1:45-74. [PMID: 26386266 DOI: 10.1002/dmrr.2699] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin A Lipsky
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- University of Oxford, Oxford, UK
| | | | - Mathew Diggle
- Nottingham University Hospitals Trust, Nottingham, UK
| | - John Embil
- University of Manitoba, Winnipeg, MB, Canada
| | - Shigeo Kono
- WHO-collaborating Centre for Diabetes, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Lawrence Lavery
- University of Texas Southwestern Medical Center and Parkland Hospital, Dallas, TX, USA
| | | | | | - Suzanne Van Asten
- University of Texas Southwestern Medical Center and Parkland Hospital, Dallas, TX, USA
- VU University Medical Centre, Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y. Bacteria-Targeting Conjugates Based on Antimicrobial Peptide for Bacteria Diagnosis and Therapy. Mol Pharm 2015; 12:2505-16. [DOI: 10.1021/acs.molpharmaceut.5b00053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, and ‡School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou
District, Nanjing 210009, China
| | - Cuicui Liu
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, and ‡School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou
District, Nanjing 210009, China
| | - Dan Chen
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, and ‡School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou
District, Nanjing 210009, China
| | - Kyle Madrid
- Department of Chemistry, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Shuwen Peng
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, and ‡School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou
District, Nanjing 210009, China
| | | | - Min Zhang
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, and ‡School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou
District, Nanjing 210009, China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, and ‡School of Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou
District, Nanjing 210009, China
| |
Collapse
|
30
|
Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:867381. [PMID: 25243191 PMCID: PMC4163393 DOI: 10.1155/2014/867381] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides (AMPs) are a heterogeneous class of compounds found in a variety of organisms including humans and, so far, hundreds of these structures have been isolated and characterised. They can be described as natural microbicide, selectively cytotoxic to bacteria, whilst showing minimal cytotoxicity towards the mammalian cells of the host organism. They act by their relatively strong electrostatic attraction to the negatively charged bacterial cells and a relatively weak interaction to the eukaryote host cells. The ability of these peptides to accumulate at sites of infection combined with the minimal host's cytotoxicity motivated for this review to highlight the role and the usefulness of AMPs for PET with emphasis on their mechanism of action and the different interactions with the bacterial cell. These details are key information for their selective properties. We also describe the strategy, design, and utilization of these peptides as potential radiopharmaceuticals as their combination with nuclear medicine modalities such as SPECT or PET would allow noninvasive whole-body examination for detection of occult infection causing, for example, fever of unknown origin.
Collapse
|
31
|
Eggleston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation. INFORMATICS (MDPI) 2014; 1:72-99. [PMID: 26985401 PMCID: PMC4790455 DOI: 10.3390/informatics1010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| |
Collapse
|
32
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
33
|
Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FWB. Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug Chem 2013; 24:1971-1989. [PMID: 24200346 DOI: 10.1021/bc4003037] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial infections have always been, and still are, a major global healthcare problem. For accurate treatment it is of upmost importance that the location(s), severity, type of bacteria, and therapeutic response can be accurately staged. Similar to the recent successes in oncology, tracers specific for molecular imaging of the disease may help advance patient management. Chemical design and bacterial targeting mechanisms are the basis for the specificity of such tracers. The aim of this review is to provide a comprehensive overview of the molecular imaging tracers developed for optical and nuclear identification of bacteria and bacterial infections. Hereby we envision that such tracers can be used to diagnose infections and aid their clinical management. From these compounds we have set out to identify promising targeting mechanisms and select the most promising candidates for further development.
Collapse
Affiliation(s)
- A Bunschoten
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center , Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
A pooled analysis of diagnostic value of 99mTc-ubiquicidin (UBI) scintigraphy in detection of an infectious process. Clin Nucl Med 2013; 38:808-9. [PMID: 24107809 DOI: 10.1097/rlu.0b013e3182a200c7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Donegan R, Sumpio B, Blume PA. Charcot foot and ankle with osteomyelitis. Diabet Foot Ankle 2013; 4:21361. [PMID: 24098835 PMCID: PMC3789286 DOI: 10.3402/dfa.v4i0.21361] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 01/13/2023]
Abstract
This paper presents a review of the current literature discussing topics of Charcot osteoarthropathy, osteomyelitis, diagnosing osteomyelitis, antibiotic management of osteomyelitis, and treatment strategies for management of Charcot osteoarthropathy with concurrent osteomyelitis.
Collapse
|